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Abstract: In biology, difference equations is often used to understand and describe life phenomenon
through mathematical models. So, in this work, we study a new class of difference equations by
focusing on the periodicity character, stability (local and global) and boundedness of its solutions.
Furthermore, this equation involves a May’s Host Parasitoid Model, as a special case.
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1. Introduction

The goal of our paper is to research the dynamics of solutions of equation

Jn+1 = α +
βJ2

n
(γ + Jn) Jn−1

, n = 0, 1, ... , (1)

where α, β, γ ∈ [0, ∞), β 6= 0 and the initial data J−1, J0 ∈ (0, ∞).
When describing the evolution of any phenomenon as a mathematical model, difference equations

often arise, frequently due to the discrete nature of time-evolving variable measurements and
detached sciences. Difference equations are used in situations of real life, in various sciences
(population models, genetics, psychology, economics, sociology, stochastic time series, combinatorial
analysis, queuing problems, number theory, geometry, radiation quanta and electrical networks).

In fact, the nonlinear DEs have the efficiency to make a complicated behavior, regardless of
their order. Among the well-known examples, the family Jn+1 = yλ (Jn), λ > 0, depends on η,
and its conduct changes from a bounded number of periodic solutions to chaos. Due to the many
applications of differential equations, there is a growing interest in searching for various aspects in
terms of dynamics and behaviors of difference equations (see [1–43]).

Our focus in this paper is on the study of qualitative behavior of solutions of the nonlinear
difference equations. Furthermore, a new equation includes a May’s Host Parasitoid Model, as a
special case. Minutely, we discuss the local/global stability, boundedness and periodicity character of
the solution. Moreover, by applying our results, we will prove the following cojecture:

Conjecture 1 ([24]). Let β > 1. Show that every positive solution of May’s Host Parasitoid Model (Equation (1)
with α = 0 and γ = 1) is bounded.
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2. Periodic Solutions with Period p

Here, we will study the existence of periodic solutions to the Equation (1).

Theorem 1. If α, β, γ ∈ [0, ∞), then Equation (1) does not have positive period two solutions. Moreover, if
α, β, γ ∈ R\ {0} and ∣∣∣∣ 1

β
(α + β + γ)

∣∣∣∣ > 2,

then Equation (1) has a period two solutions.

Proof. Assume that Equation (1) has a prime period two solution ...r, s, r, s, ..., (r 6= s). Let α, β

and γ are nonnegative real number. From (1), we get

r = α +
βs2

(γ + s) r
(2)

and

s = α +
βr2

(γ + r) s
. (3)

Consequently,

r− s =
βs2

(γ + s) r
− βr2

(γ + r) s

and so

(r− s)

(
1 +

1
rs

β
(
r2s + γr2 + rs2 + γrs + γs2)

(r + γ) (s + γ)

)
= 0.

Since α, β, γ ∈ [0, ∞), this means that r = s, a contradiction.
On the Other hand, if α, β and γ are real numbers. From (2), we get

r = α +
β s

r( γ
r + s

r
) s

r

= α +
β

t2
1(

γ
r + 1

t

) ,

where t = r/s. Then,

r2 −
(

α +
β

t
− γt

)
r− tαγ = 0,

which gives

r =
1
2t

(
β + tα− t2γ + A

)
, (4)

where
A = ±

√
t4γ2 + 2t3αγ + t2α2 − 2t2βγ + 2tαβ + β2.

Similarly, from (3), we obtain

s =
1
2t

(
−γ + tα + t2β + B

)
, (5)

with
B = ±

√
t2α2 + t4β2 + γ2 + 2tαγ + 2t3αβ− 2t2βγ.

By using the fact r− st = 0, (4) and (5), we find

A + C = Bt, (6)
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where
C = β + tα + tγ− t2α− t2γ− t3β.

By simple computation, (10) shows that

A4 + C4 + t4B4 − 2A2B2t2 − 2B2C2t2 + 2A2C2 − 4A2C2 = 0.

From definitions of A, B and C, we have

t3αγ (t− 1)2
(

β + tα + tβ + tγ + t2β
)2

= 0.

Since αγt 6= 0 and t 6= 1, we obtain

α + β + γ

β
= −

(
t2 + 1

t

)
. (7)

Now, if t ∈ R+, then the function H (t) :=
(
1 + t2) /t attends its minimum value on R+ at t∗+ = 1

and H (t) > minτ∈R+ H (t) = 2. In contrast, if t ∈ R−, then the function H attends its maximum value
on R− at t∗− = −1 and H (t) < maxτ∈R− H (t) = −2. Thus, from (7), we see that

1
β
(α + β + γ) < −2 if rs > 0

or
1
β
(α + β + γ) > 2 if rs < 0.

The proof is complete.

Theorem 2. If α = 0, β, γ ∈ R\ {0} and either

γ

β
< −3, for x−1x0 > 0,

or
γ

β
> 1, for x−1x0 < 0,

then Equation (1) has a period two solutions.

Proof. Assume that Equation (1) has a prime period two solution ...r, s, r, s, ..., (r 6= s). From (1), we
get

r =
β(

γ
r + 1

t

) 1
t2 ,

where t = r/s. Then

r =
β

t
− γt. (8)

Similarly, we obtain

s = βt− γ

t
. (9)

By using the fact r− st = 0, (8) and (9), we find

−βt3 − γt2 + γt + β = 0,
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and so
γ

β
= −1

t

(
t2 + t + 1

)
.

Now, if t ∈ R+, then the function H (t) :=
(
t2 + t + 1

)
/t attends its minimum value on R+

at t∗+ = 1 and H (t) > minτ∈R+ H (t) = 3. In contrast, if t ∈ R−, then the function H attends its
maximum value on R− at t∗− = −1 and H (t) < maxτ∈R− H (t) = −1. Thus, from (7), we se that

γ

β
< −3 if rs > 0

or
γ

β
> 1 if rs < 0.

The proof is complete.

Theorem 3. Let p be a positive integer and p > 2. If every positive solution of Equation (1) is periodic with
period p, then α = 0.

Proof. Assume that every positive solution of Equation (1) is periodic with period p. Now, we consider
the solution with

J−1 = 1 and J0 ∈ (0, ∞) .

Hence, Jp−1 = 1 and Jp = J0. From Equation (1), we have

Jp = α +
βJ2

p−1(
γ + Jp−1

)
Jp−2

= α +
β

(γ + 1) Jp−2
= J0,

or
α (γ + 1) Jp−2 + β = (γ + 1) J0 Jp−2.

Assume that α 6= 0 and β > 0. If we choose J0 < α, then

α (γ + 1) Jp−2 + β = (γ + 1) J0 Jp−2

< α (γ + 1) Jp−2

which is impossible and hence α = 0. The proof of the theorem is complete.

Remark 1. Let α = 0, it is possible that every positive solution of Equation (1) is periodic with period p. As a
special case, if α = γ = 0, then we see that every positive solution of equation

Jn+1 = β
Jn

Jn−1

is periodic with period six

J−1, J0, β
J0

J−1
, β2 1

J−1
, β2 1

J0
, β

J−1

J0
, ... .
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3. Stability and Boundedness

Let Je be a point in the domain of the function F. Then, Je is said to be an equilibrium point of
equation Jn+1 = F (Jn, Jn−1) if Je is a fixed point of F, i.e., F (Je, Je) = Je. The idea of equilibrium points
(states) is focal in the investigation of the dynamics of any physical system. In numerous applications
in science, physics, engineering, and so on., it is known that all states (solutions) of a given system
tend to its equilibrium state (point). We presently give the formula of an equilibrium point of Equation
(1). To find the positive equilibrium points, we let F (Je, Je) = Je, or

Je = α +
βJ2

e
(γ + Je) Je

and so
J2
e − (α + β− γ) Je − αγ = 0.

Thus, we have both cases:
Case (1): If α + β = γ, then the only positive equilibrium point is

Je =
√

αγ.

Case (2): If α + β 6= γ, then the only positive equilibrium point is

Je =
1
2
(α + β− γ) +

1
2

√
(α + β− γ)2 + 4αγ.

Also, if αγ = 0, then the only positive equilibrium is

Je = α + β− γ, if α + β > γ.

One of the fundamental objectives in the investigation of a dynamical system is to determine
the behavior of its solutions near an equilibrium point. For the basic definitions of stability see [24].
To study the local stability of a positive equilibrium point, we define the function F : (0, ∞)× (0, ∞)→
(0, ∞) by

F (u, v) = α +
βu2

(γ + u) v
. (10)

The partial derivatives of function F are

∂

∂u
F (u, v) =

u
v

β

(u + γ)2 (u + 2γ) (11)

and
∂

∂v
F (u, v) = −u2

v2
β

u + γ
. (12)

The equilibrium point Je is called a sink or an attracting equilibrium if every eigenvalue of
Jacobian matrix of Je has absolute value less than one, see [23]. In the following theorem, by using
Theorem 1.1.1 in [24], we study a locally asymptotically stable for positive equilibrium point of (1)
when α, β, γ ∈ [0, ∞).

Theorem 4. Let α 6= 0. Then the positive equilibrium point of Equation (1) is locally asymptotically stable
and sink.
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Proof. By replacing both u and v with Je in Equations (11) and (12), we get

∂

∂u
F (Je, Je) =

β

(γ + Je)
2 (2γ + Je) := µu (13)

and
∂

∂v
F (Je, Je) = −

β

γ + Je
:= µv. (14)

Then, the linearized equation associated with (1) about Je is

zn+1 − µuzn − µvzn−1 = 0.

Now, we have

Je =
1
2
(α + (β− γ)) +

1
2

√
(α + (β− γ))2 + 4αγ

>

(
1
2
+

1
2

)
(β− γ)

and so
β

γ + Je
< 1.

Moreover, we see that
βγ

(γ + Je)
2 <

γ

γ + Je
< 1. (15)

From (13)–(15), we obtain

|µu|+ µv =
β

(γ + Je)
2 (2γ + Je)−

β

γ + Je

=
βγ

(γ + Je)
2 < 1

and
µv = − β

γ + Je
> −1.

Hence, we have |µu| < 1− µv < 2. Therefore, Je is locally asymptotically stable and sink. The
proof of the theorem is complete.

Theorem 5. Let α = 0 and β > γ. Then the positive equilibrium point of Equation (1) is locally asymptotically
stable and sink.

Proof. The proof is similar to the proof of Theorem 4 and so we omit it.

Lemma 1. If α > 0, then

α < Jn ≤ α + β

(
1 +

β

α

)
, (16)

for all n > 0 and so every solution of Equation (1) is bounded.

Proof. Suppose that {Jn}∞
n=−1 be a solution of (1). It follows from (1) that

Jn+1 = α +
βJ2

n
(γ + Jn) Jn−1

> α.
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Since γ > 0, we have Jn < γ + Jn, and thus

Jn+1 = α +
βJ2

n
(γ + Jn) Jn−1

= α + β
Jn

(γ + Jn)

Jn

Jn−1

< α + β
Jn

Jn−1
. (17)

Next, we let

φn+1 = α + β
φn

φn−1
. (18)

From (18), we get φn > α for all n > 1, and so

φn+1 = α + β

(
α

φn−1
+

β

φn−2

)
< α + β

(
1 +

β

α

)
.

Thus, and from (17), we get

α < Jn < α + β

(
1 +

β

α

)
,

for all n > 1. The proof of the lemma is complete.

Lemma 2. If α = 0 and β > γ, then all solution of (1) is bounded.

Proof. As in the proof of Lemma 1, (17) holds. If α = 0, then (17) becomes

Jn+1 < β
Jn

Jn−1
.

Moreover, every positive solution of equation yn+1 = βyn/yn−1 is periodic with period six {y−1,
y0, βy0/y−1, β2/y−1, β2/y0, βy−1/y0}. Thus,

0 < Jn+1 < max
{

J−1, J0, β
J0

J−1
, β2 1

J−1
, β2 1

J0
, β

J−1

J0

}
.

The proof of the lemma is complete.

Theorem 6. Assume that α 6= 0, γ > β and α6 > 2βγ
(
α2 + αβ + β2)2. Then (1) has a unique equilibrium

Je and every solution of (1) converges to Je.

Proof. Consider the function F defined as (10). From (11) and (12), we have that F is increasing in u
and decreasing in v. Now, let (U, L) be a solution of the system{

J = F (J, y) ;
y = F (y, J) .

Then, we get

U = α +
βU2

(γ + U) L
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and

L = α +
βL2

(γ + L)U
.

Hence, we have

U − L =
βU2

(γ + U) L
− βL2

(γ + L)U

= (U − L)
β
(

L2U + γL2 + LU2 + γLU + γU2)
LU (L + γ) (U + γ)

and

(U − L)

(
1−

βγ
(

L2 + U2)+ β
(

L2U + LU2 + γLU
)

L2U2 + γ (L2U + LU2 + γLU)

)
= 0. (19)

From Lemma 1, we have

α < L, U < α + β

(
1 +

β

α

)
.

Thus, and from 2βγ
(
α2 + αβ + β2)2

< α6, we get

βγ
(

L2 + U2
)

< 2βγ

(
α + β

(
1 +

β

α

))2

=
2
α2 βγ

(
α2 + αβ + β2

)2

< α4

< L2U2.

Since γ > β, we find

βγ
(

L2 + U2)+ β
(

L2U + LU2 + γLU
)

L2U2 + γ (L2U + LU2 + γLU)
< 1. (20)

From (19) and (20), we obtain L = U. From Theorem 1.4.5 in [24], we have that all solution of (1)
converges to Je. The proof of the theorem is complete.

4. Application and Discussion

In Equation (1), if α = 0 and γ = 1, we get the May’s Host Parasitoid Model

Jn+1 =
βJ2

n
(1 + Jn) Jn−1

. (21)

By using Theorems 1 and 5 and Lemma 2, respectively, we get the following corollaries:

Corollary 1. Model (21) does not have positive period two solutions.

Corollary 2. Assume that β > 1. The positive equilibrium point of equation Je = (β− 1) of model (21) is
locally asymptotically stable and sink.

Corollary 3. If β > 1, then every solution of model (21) is bounded.

Remark 2. Note that, Corollaries 1–3 gave some qualitative behaviors of the model (21). Moreover, Corollary 3
confirms the Conjecture 1.



Axioms 2019, 8, 131 9 of 11

Example 1. Let the equation

Jn+1 = α +
3J2

n
(0.5 + Jn) Jn−1

. (22)

Figure 1 shows the dynamics of (22) with J−1 = 1.5 and J0 = 0.1. Let Ne be the first value of n in which the
solution is stable (by approximation 10−6), for example, let α = 1, we have

n ... 89 90 91 92 ...

Jn ... 3.63746 3.63745 3.63745 3.63745 ...

So, Ne = 90. Note that,

α 0.5 1 3 7

Ne 150 90 43 28

Je 3.08114 3.63745 5.76040 9.85514
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4. Application and Discussion

In equation (E), if α = 0 and γ = 1, we get the May’s Host Parasitoid Model

Jn+1 =
βJ2n

(1 + Jn) Jn−1
. (4.1)

By using Theorems 2.1 and 3.2 and Lemma 3.2, respectively, we get the following
corollaries:

Corollary 4.1. Model (4.1) does not have positive period two solutions.

Corollary 4.2. Assume that β > 1. The positive equilibrium point of equation
Je = (β − 1) of model (4.1) is locally asymptotically stable and sink.

Corollary 4.3. If β > 1, then every solution of model (4.1) is bounded.

Remark 4.1. Note that, Corollaries 4.1 - 4.3 gave some qualitative behaviors
of the model (4.1). Moreover, Corollary 4.3 confirms the Conjecture 1.

Example 4.1. Let the equation

Jn+1 = α+
3J2n

(0.5 + Jn) Jn−1
. (4.2)

Figure 1 shows the dynamics of (4.2) with J−1 = 1.5 and J0 = 0.1. Let Ne be the
first value of n in which the solution is stable (by approximation 10−6), for example,
let α = 1, we have

n ... 89 90 91 92 ...
Jn ... 3.63746 3.63745 3.63745 3.63745 ...

So, Ne = 90. Note that,

α 0.5 1 3 7
Ne 150 90 43 28
Je 3.08114 3.63745 5.76040 9.85514

Figure 1.
Figure 1. The stable solution of Equation (22) when α = 0.5, 1, 3 and 7.

Remark 3. Note that, when the value of α increases, stability occurs faster.
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