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Abstract: In the paper we define classes of harmonic starlike functions with respect to symmetric
points and obtain some analytic conditions for these classes of functions. Some results connected to
subordination properties, coefficient estimates, integral representation, and distortion theorems are
also obtained.
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1. Introduction

We denote byH the class of complex-valued harmonic functions in the unit disc U := {z : |z| < r}.
Then f ∈ H if f = h + g, where h, g are functions analytic in U. LetH0 be the class of function f ∈ H
with the following normalization:

f (z) = z +
∞

∑
n=2

anzn +
∞

∑
n=2

bnzn (z ∈ U) (1)

and let SH denote the class of functions f ∈ H0, which are orientation preserving and univalent in U.
For functions f1, f2 ∈ H of the forms:

fk(z) =
∞

∑
n=0

ak,nzn +
∞

∑
n=1

bk,nzn (z ∈ U, k ∈ {1, 2}) (2)

by f1 ∗ f2 we denote the Hadamard product or convolution of f1 and f2, defined by:

( f1 ∗ f2) (z) =
∞

∑
n=0

a1,na2,nzn +
∞

∑
n=1

b1,nb2,nzn (z ∈ U) .

We say that a function f : U→ C is subordinate to a function F : U→ C, and write f (z) ≺ F(z)
(or simply f ≺ F), if there exists a complex-valued function ω which maps U into oneself with
ω(0) = 0, such that f = F ◦ω. In particular, if F is univalent in U, we have the following equivalence:

f (z) ≺ F(z)⇐⇒ [ f (0) = F(0) and f (U) ⊂ F(U)] .

In 1956 Sakaguchi [1] introduced the class S∗∗ of analytic univalent functions in U which are
starlike with respect to symmetrical points. An analytic function f is said to be starlike with respect to
symmetric points if:

Re
z f ′ (z)

f (z)− f (−z)
> 0 (z ∈ U) . (3)
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If f ∈ S∗∗ then the angular velocity of f (z) about the point f (−z) is positive as z traverses the circle
|z| = r in a positive direction.

Let A and B be two distinct complex parameters and let 0 ≤ α < 1. In [2] (see also [3]) it is defined
the class S∗H(A, B) of Janowski harmonic starlike functions f ∈ SH such that:

DH f (z)
f (z)

≺ 1 + Az
1 + Bz

, (4)

where,
DH f (z) := zh′ (z)− zg′ (z) (z ∈ U) .

The classes S∗H(α) := S∗H(2α − 1, 1) and S c
H(α) := S c

H(2α − 1, 1) are studied by Jahangiri [4]
(see also [5]). In particular, we obtain the classes S c

H := S c
H(0) and S∗H := S∗H(0) of functions

f ∈ SH which are convex in U (r) or starlike in U (r) , respectively, for any r ∈ (0, 1].
Motivated by Sakaguchi [1], we define the class S∗∗H (A, B) of functions f ∈ H0 such that:

2DH f (z)
f (z)− f (−z)

≺ 1 + Az
1 + Bz

. (5)

In particular, the class SH∗(α) := S∗∗H (2α − 1, 1) was introduced by Ahuja and Jahangiri [6]
(see also [7,8]). The classHS∗s (b, α) := S∗∗H (2b(α− 1) + 1, 1) was investigated by Janteng and Halim [9].

In the present paper we obtain some analytic conditions for defined classes of functions.
Some results connected to subordination properties, coefficient estimates, integral representation,
and distortion theorems are also obtained. These results generalize the results obtained in [6,9]
(see also [7,8]).

2. Analytic Criteria

Theorem 1. Let T f (z) := f (z)− f (−z) . If f ∈ S∗∗H (A, B), then T f ∈ S∗H(A, B).

Proof. Let f ∈ S∗∗H (A, B) and H (z) := 1+Az
1+Bz . Then:

2DH f (z)
f (z)− f (−z)

≺ H (z)

and
2DH (− f ) (z)
f (z)− f (−z)

=
2DH f (−z)

f (−z)− f (z)
≺ H (−z) ≺ H (z) .

Thus, we have:
2DH f (z)

T f (z)
∈ H (U) and

2DH (− f ) (z)
T f (z)

∈ H (U) (z ∈ U) .

Since H is the convex function in U, we have:

1
2

2DH f (z)
T f (z)

+
1
2

2DH (− f ) (z)
T f (z)

=
DH (T f ) (z)

T f (z)
∈ H (U) (z ∈ U) ,

or equivalently:
DH (T f ) (z)

T f (z)
≺ H (z) ,

which implies that:
T f ∈ S∗H(A, B).
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Let V ⊂ H, U0 := U \ {0} . Due to Ruscheweyh [10] we define the dual set of V by:

V∗ :=

 f ∈ H0 :
∧

q∈V
( f ∗ q) (z) 6= 0 (z ∈ U0)

 .

Theorem 2. We have:
S∗∗H (A, B) =

{
ψξ : |ξ| = 1

}∗ ,

where,

ψξ (z) : = z
ξ (B− A) + (2 + Aξ + Bξ) z

(1 + z) (1− z)2 (6)

−z
2 + (A + B) ξ − (B_A) ξz

(1 + z) (1− z)2 (z ∈ U) .

Proof. Let f ∈ H0 be of the form (1). Then f ∈ S∗∗H (A, B) if and only if it satisfies Equation (5)
or equivalently:

2DH f (z)
f (z)− f (−z)

6= 1 + Aξ

1 + Bξ
(z ∈ U0, |ξ| = 1) . (7)

Since,

DHh (z) = h (z) ∗ z
(1− z)2 ,

h (z)− h (−z)
2

= h (z) ∗ z
1− z2

the above inequality yields:

(1 + Bξ) DH f (z)− (1 + Aξ)
f (z)− f (−z)

2

= (1 + Bξ) DHh (z)− (1 + Aξ)
h (z)− h (−z)

2

−
{
(1 + Bξ) DHg (z) + (1 + Aξ)

g (z)− g (−z)
2

}

= h (z) ∗
(
(1 + Bξ) z
(1− z)2 −

(1 + Aξ) z
1− z2

)
−g (z) ∗

(
(1 + Bξ) z
(1− z)2 +

(1 + Aξ) z
1− z2

)
= f (z) ∗ ψξ (z) 6= 0 (z ∈ U0, |ξ| = 1) .

Thus, f ∈ S∗∗H (A, B) if and only if f (z) ∗ ψξ (z) 6= 0 for z ∈ U0, |ξ| = 1, i.e., S∗∗H (A, B) ={
ψξ : |ξ| = 1

}∗.
Theorem 3. If a function f ∈ H of the form (1) satisfies the condition:

∞

∑
n=2

(|αn| |an|+ |βn| |bn|) ≤ B− A, (8)

where −B ≤ A < B ≤ 1 and

αn = n (1 + B)− (1 + A)
(
1− (−1)n) /2, βn = n (1 + B) + (1 + A)

(
1− (−1)n) /2, (9)

then f ∈ S∗H(A, B).
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Proof. The result of Lewy [11] gives that the f is orientation preserving and locally univalent if:∣∣h′ (z)∣∣ > ∣∣g′ (z)∣∣ (z ∈ U) . (10)

By Equation (9) we have:

|αn| /(B− A) ≥ n, |βn| /(B− A) ≥ n (n = 2, 3, · · · ). (11)

Therefore, by Equation (8) we obtain:

∞

∑
n=2

n (|an|+ |bn|) ≤ 1 (12)

and

∣∣h′ (z)∣∣− ∣∣g′ (z)∣∣ ≥ 1−
∞

∑
n=2

n |an| |z|n −
∞

∑
n=2

n |bn| |z|n ≥ 1− |z|
∞

∑
n=2

(n |an|+ n |bn|)

≥ 1− |z|
B− A

∞

∑
n=2

(|αn| |an|+ |βn| |bn|) ≥ 1− |z| > 0 (z ∈ U) .

Therefore, by Equation (10) the function f is locally univalent and sense-preserving in U. Moreover, if
z1, z2 ∈ U, z1 6= z2, then:∣∣∣∣ zn

1 − zn
2

z1 − z2

∣∣∣∣ =
∣∣∣∣∣ n

∑
l=1

zl−1
1 zn−l

2

∣∣∣∣∣ ≤ n

∑
l=1
|z1|l−1 |z2|n−l < n (n = 2, 3, · · · ).

Let f ∈ H0 be a function of the form (1). Without loss of generality, we can assume that f is not an
identity function. Then there exist n ∈ N2 such that an 6= 0 or bn 6= 0. Thus, by Equation (12) we get:

| f (z1)− f (z2)| ≥ |h (z1)− h (z2)| − |g (z1)− g (z2)|

=

∣∣∣∣∣z1 − z2 −
∞

∑
n=2

an (zn
1 − zn

2 )

∣∣∣∣∣−
∣∣∣∣∣ ∞

∑
n=2

bn
(
zn

1 − zn
2
)∣∣∣∣∣

≥ |z1 − z2| −
∞

∑
n=2
|an| |zn

1 − zn
2 | −

∞

∑
n=2
|bn| |zn

1 − zn
2 |

= |z1 − z2|
(

1−
∞

∑
n=2
|an|

∣∣∣∣ zn
1 − zn

2
z1 − z2

∣∣∣∣− ∞

∑
n=2
|bn|

∣∣∣∣ zn
1 − zn

2
z1 − z2

∣∣∣∣
)

> |z1 − z2|
(

1−
∞

∑
n=2

n |an| −
∞

∑
n=2

n |bn|
)
≥ 0.

This leads to the univalence of f , i.e., f ∈ SH. Therefore, f ∈ S∗∗H (A, B) if and only if there exists
a complex-valued function ω, ω(0) = 0, |ω(z)| < 1 (z ∈ U) such that:

2DH f (z)
f (z)− f (−z)

=
1 + Aω(z)
1 + Bω(z)

(z ∈ U) ,

or equivalently: ∣∣∣∣ 2DH f (z)− f (z) + f (−z)
2BDH f (z)− A ( f (z)− f (−z))

∣∣∣∣ < 1 (z ∈ U) . (13)
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Thus for z ∈ U\ {0} it suffices to show that:∣∣∣∣DH f (z)− f (z)− f (−z)
2

∣∣∣∣− ∣∣∣∣BDH f (z)− A
f (z)− f (−z)

2

∣∣∣∣ < 0.

Indeed, letting |z| = r (0 < r < 1) we have:∣∣∣∣DH f (z)− f (z)− f (−z)
2

∣∣∣∣− ∣∣∣∣BDH f (z)− A
f (z)− f (−z)

2

∣∣∣∣
=

∣∣∣∣∣ ∞

∑
n=2

(
n− 1− (−1)n

2

)
anzn −

∞

∑
n=2

(
n +

1− (−1)n

2

)
bnzn

∣∣∣∣∣
−
∣∣∣∣∣(B− A) z +

∞

∑
n=2

(
Bn− A

1− (−1)n

2

)
anzn +

∞

∑
n=2

(
Bn + A

1− (−1)n

2

)
bnzn

∣∣∣∣∣
≤

∞

∑
n=2

(
n− 1− (−1)n

2

)
|an| rn +

∞

∑
n=2

(
n +

1− (−1)n

2

)
|bn| rn − (B− A) r

+
∞

∑
n=2

(
Bn− A

1− (−1)n

2

)
|an| rn +

∞

∑
n=2

(
Bn + A

1− (−1)n

2

)
|bn| rn

≤ r

{
∞

∑
n=2

(|αn| |an|+ |βn| |bn|) rn−1 − (B− A)

}
< 0.

Hence f ∈ S∗∗H (A, B) .

Motivated by Silverman [12] we denote by T the class of functions f ∈ H0 of the form (1) such
that an = − |an| , bn = |bn| (n = 2, 3, · · · ), i.e.,

f = h + g, h(z) = z−
∞

∑
n=2
|an| zn, g(z) =

∞

∑
n=2
|bn| zn (z ∈ U) . (14)

Moreover, let us define:

S∗∗T (A, B) := T ∩ S∗∗H (A, B), −B ≤ A < B ≤ 1.

Now, we show that the condition (8) is also the sufficient condition for a function f ∈ T to be in the
class S∗∗T (A, B).

Theorem 4. Let f ∈ T be a function of the form (14). Then f ∈ S∗∗T (A, B) if and only if condition (8)
holds true.

Proof. In view of Theorem 3 we need only show that each function f ∈ S∗∗T (A, B) satisfies the
coefficient inequality of Equation (8). If f ∈ S∗∗T (A, B), then it satisfies Equation (13) or equivalently:∣∣∣∣∣∣∣∣

∞
∑

n=2

{(
n− 1−(−1)n

2

)
|an| zn +

(
n + 1−(−1)n

2

)
|bn| zn

}
(B− A) z−

∞
∑

n=2

{(
Bn− A 1−(−1)n

2

)
|an| zn +

(
Bn + A 1−(−1)n

2

)
|bn| zn

}
∣∣∣∣∣∣∣∣ < 1 (z ∈ U).

Therefore, putting z = r (0 ≤ r < 1) we obtain:

∞
∑

n=2

{(
n− 1−(−1)n

2

)
|an|+

(
n + 1−(−1)n

2

)
|bn| rn−1

}
(B− A)−

∞
∑

n=2

{(
Bn− A 1−(−1)n

2

)
|an|+

(
Bn + A 1−(−1)n

2

)
|bn| rn−1

} < 1. (15)
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It is clear that the denominator of the left hand side cannot vanish for r ∈ [0, 1) . Moreover, it is positive
for r = 0, and in consequence for r ∈ 〈0, 1) . Thus, by Equation (25) we have:

∞

∑
n=2

(αn |an|+ βn |bn|) rn−1 < B− A (0 ≤ r < 1). (16)

The sequence of partial sums {Sn} associated with the series
∞
∑

n=2
(αn |an|+ βn |bn|) is nondecreasing

sequence. Moreover, by Equation (16) it is bounded by B − A. Hence, the sequence {Sn} is
convergent and

∞

∑
n=2

(αn |an|+ βn |bn|) = lim
n→∞

Sn ≤ B− A,

which yields the assertion (8).

Example 1. For the function:

f (z) = z−
∞

∑
n=2

B− A
2nαn

zn −
∞

∑
n=2

B− A
2nβn

zn (z ∈ U)

we have,
∞

∑
n=2

(αn |an|+ βn |bn|) =
∞

∑
n=2

B− A
2n +

B− A
2n = (B− A)

∞

∑
n=1

1
2n = B− A.

Thus, f ∈ S∗∗T (A, B).

3. Topological Properties

Let us consider a metric on H in which a sequence { fn} in H converges to f if and only if it
converges to f uniformly on each compact subset of U. The metric induces the usual topology onH.
It is easy to verify that the obtained topological space is complete. Let B be a subset of the spaceH.

We say that a function f ∈ B is the extreme point of B if it cannot be presented as nontrivial convex
combination of two functions from B. We denote by EB the set of extreme points of B.

We say that B is locally uniformly bounded if for each r, 0 < r < 1, there exists K = K (r) > 0
such that:

| f (z)| ≤ K ( f ∈ B, |z| ≤ r) .

We say that a set B is convex if it includes all of convex combinations of two functions from B.
Let coB denote the closed convex hull of B i.e., the intersection of all closed convex subsets of H that
contain B.

Let B ⊂ H be a convex set and L be a real-valued functional on H. We say that L is convex
functional on B if:

L (a f + (1− a) g) ≤ aL ( f ) + (1− a)L (g) ( f , g ∈ B, 0 ≤ a ≤ 1) .

By using the Krein-Milman theorem (see [13]) we get the following lemma.

Lemma 1. Let B be a non-empty compact set on the spaceH. Then EB is non-empty and coEB = coB.

Motivated by Hallenbeck and MacGregor ([14], p. 45) we can formulate the following lemma.

Lemma 2. Let B be a non-empty convex compact set on the space H and let L be a real-valued, convex, and
continuous functional on B. Then max {L( f ) : f ∈ B} = max {L( f ) : f ∈ EB} .
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Proof. We observe that there exists max {L( f ) : f ∈ B} =: K, since J is the continuous functional
on the compact set B. Thus, the set H := { f ∈ B : L ( f ) = K} is non-empty compact subset of B and,
by Lemma 1, we get that H has an extreme point f0. Let,

f0 = a f1 + (1− a) f2,

where f1, f2 ∈ B and 0 < a < 1. Thus,

K = L( f0) ≤ aL( f1) + (1− a)L( f2) = aK + (1− a)K = K

and, in consequence, L( f1) = L( f2) = K, i.e., f1, f2 ∈ H. Since f0 is an extreme point of H we get
f1 = f2 = f0 ∈ EB. Thus, we obtain that there exists max {L( f ) : f ∈ EB} = K, and the proof is
complete.

We observe thatH is a complete metric space. Therefore, by Montel’s theorem (see [15]) we get
the following lemma.

Lemma 3. A set B is compact onH if and only if B is locally uniformly bounded and closed onH.

Theorem 5. The class S∗∗T (A, B) is compact and convex subset onH.

Proof. Let fk ∈ S∗∗T (A, B) be functions of the form:

fk(z) = z−
∞

∑
n=2

(∣∣ak,n
∣∣ zn −

∣∣bk,n
∣∣ zn) (z ∈ U, k = 1, 2, . . .) (17)

and let 0 ≤ γ ≤ 1. Since,

γ f1(z) + (1− γ) f2 (z) = z−
∞

∑
n=2
{(γ |a1,n|+ (1− γ) |a2,n|) zn − (γ |b1,n|+ (1− γ) |b2,n|) zn} ,

and by Theorem 4 we have:

∞

∑
n=2
{αn (γ |a1,n|+ (1− γ) |a2,n|) + βn (γ |b1,n|+ (1− γ) |b2,n|)}

= γ
∞

∑
n=2
{αn |a1,n|+ βn |b1,n|}+ (1− γ)

∞

∑
n=2
{αn |a2,n|+ βn |b2,n|}

≤ γ (B− A) + (1− γ) (B− A) = B− A,

the function φ = γ f1 + (1 − γ) f2 belongs to the class S∗∗T (A, B). Hence, the class is convex.
Furthermore, for f ∈ S∗∗T (A, B), |z| ≤ r, 0 < r < 1, we have:

| f (z)| ≤ r +
∞

∑
n=2

(|an|+ |bn|) rn ≤ r +
∞

∑
n=2

(αn |an|+ βn |bn|) ≤ r + (B− A) . (18)

Thus, we conclude that the class S∗∗T (A, B) is locally uniformly bounded. By Lemma 3, we only need
to show that it is closed, i.e., if fk ∈ S∗∗T (A, B) (k ∈ N) and fk → f , then f ∈ S∗∗T (A, B). Let fk and f
are given by Equations (17) and (14), respectively. Using Theorem 4 we have:

∞

∑
n=2

(
αn
∣∣ak,n

∣∣+ βn
∣∣bk,n

∣∣) ≤ B− A (k ∈ N) . (19)
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Since fk → f , we conclude that
∣∣ak,n

∣∣ → |an| and
∣∣bk,n

∣∣ → |bn| as k → ∞ (n ∈ N). The sequence

of partial sums {Sn} associated with the series
∞
∑

n=2
(αn |an|+ βn |bn|) is nondecreasing sequence.

Moreover, by Equation (19) it is bounded by B− A. Therefore, the sequence {Sn} is convergent and

∞

∑
n=2

(αn |an|+ βn |bn|) = lim
n→∞

Sn ≤ B− A.

This gives the condition (8), and, in consequence, f ∈ S∗∗T (A, B), which completes the proof.

Theorem 6. We have:

ES∗∗T (A, B)= {hn : n ∈ N} ∪ {gn : n ∈ {2, 3 . . .}} ,

where,

h1(z) = z, hn(z) = z− B− A
αn

zn, gn(z) = z +
B− A

βn
zn (20)

(n = 2, 3, ...; z ∈ U).

Proof. Let 0 < a < 1 and gn = a f1 + (1− a) f2,where f1, f2 ∈ S∗∗T (A, B) are given by Equation (17).
Thus, by Equation (8) we get |b1,n| = |b2,n| = (B− A) /βn, and consequently a1,k = a2,k = 0
(k ∈ {2, 3 . . .}) and b1,k = b2,k = 0 (k ∈ {2, 3 . . .} \ {n}) . Thus, gn = f1 = f2, and, in consequence,
gn ∈ ES∗∗T (A, B). In the same way, we prove that the functions hn of the form (20) are the extreme
points of the class S∗∗T (A, B). Suppose that f ∈ ES∗∗T (A, B) and f is not of the form (20). Then there
exists k ∈ {2, 3, ...} such that:

0 < |ak| < (B− A) /αn or 0 < |bk| < (B− A) /βn.

If 0 < |ak| < (B− A) /αn and

a =
|ak| αk
B− A

, ϕ =
1

1− a
( f − ahk) ,

then we obtain 0 < a < 1, hk, ϕ ∈ S∗∗T (A, B), hk 6= ϕ, and

f = ahk + (1− a) ϕ.

Therefore, f /∈ ES∗∗T (A, B). Similarly, if 0 < |bk| < (B− A) /βn and

a =
|bk| βk
B− A

, φ (z) =
1

1− a
( f − agk) ,

then we obtain 0 < a < 1, gk, ϕ ∈ S∗∗T (A, B), gk 6= φ and

f = agk + (1− a) φ.

Thus we get f /∈ ES∗∗T (A, B), which completes the proof of Theorem 6.

4. Applications

It is clear that if the class:
F = { fn ∈ H : n ∈ N}
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is locally uniformly bounded, then:

coF =

{
∞

∑
n=1

γn fn :
∞

∑
n=1

γn = 1, γn ≥ 0 (n ∈ N)
}

. (21)

Corollary 1.

S∗∗T (A, B) =

{
∞

∑
n=1

(γnhn + δngn) :
∞

∑
n=1

(γn + δn) = 1, δ1 = 0, γn, δn ≥ 0 (n ∈ N)
}

, (22)

where hn, gn are defined by Equation (20).

Proof. By Theorem 5 and Lemma 1 we have:

S∗∗T (A, B) = coS∗∗T (A, B) = coES∗∗T (A, B).

Thus, by Theorem 6 and Equation (21) we have Equation (22).

We observe, that the following real-valued functionals are convex and continuous onH:

L ( f ) = |an| , L ( f ) = |bn| , L ( f ) = | f (z)| , L ( f ) = |DH f (z)| ( f ∈ H) ,

and

L ( f ) =

 1
2π

2π∫
0

∣∣∣ f (reiθ
)∣∣∣γ dθ

1/γ

( f ∈ H, 0 < r < 1, γ ≥ 1) .

Thus, by using Theorem 6 and Lemma 2 we obtain the following two corollaries.

Corollary 2. If f ∈ S∗∗T (A, B) is a function of the form (14), then:

|an| ≤
B− A

αn
, |bn| ≤

B− A
βn

(n = 2, 3, . . .), (23)

with αn, βn defined by Equation (9). The result is sharp. The functions hn, gn of the form (20) are the
extremal functions.

Proof. Since For the extremal functions hn and gn we have |an| = B−A
αn

and |bn| = B−A
βn

. Thus,
by Lemma 2 we have Equation (23).

Example 2. In particular, since B−A+1
α3

> B−A
α3

the polynomial:

w (z) = z− z2 − B− A + 1
α3

z3 (z ∈ U)

does not belong to the class S∗∗T (A, B).

Corollary 3. Let f ∈ S∗∗T (A, B), |z| = r < 1. Then,

r− B− A
2 (1 + B)

r2 ≤ | f (z)| ≤ r +
B− A

2 (1 + B)
r2 (24)

and
r− B− A

1 + B
r2 ≤ |DH f (z)| ≤ r +

B− A
1 + B

r2. (25)
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The result is sharp. The function h2 of the form (20) is the extremal function.

Proof. For the extremal functions hn and gn of the form (20) we have:

|hn (z)| ≤ r +
B− A

αn
rn ≤ r +

B− A
2 (1 + B)

r2 (n = 2, 3 . . .) ,

|gn (z)| ≤ r +
B− A

βn
rn ≤ r +

B− A
2 (1 + B)

r2 (n = 2, 3 . . .) ,

|hn (z)| ≥ r− B− A
αn

rn ≥ r− B− A
2 (1 + B)

r2 (n = 2, 3 . . .) ,

|gn (z)| ≥ r− B− A
βn

rn ≥ r− B− A
2 (1 + B)

r2 (n = 2, 3 . . .) .

Thus, by Lemma 2 we have Equation (24). Similarly, we prove Equation (25).

Due to Littlewood [16] we consider the integral means inequalities for functions from the class
S∗∗T (A, B).

Lemma 4. [16] Let f ,g ∈ A. If f ≺ g, then,

2π∫
0

∣∣∣ f (reiθ)
∣∣∣γ dθ ≤

2π∫
0

∣∣∣g(reiθ)
∣∣∣γ dθ (0 < r < 1, γ > 0) .

Lemma 5. Let 0 < r < 1, γ > 0. Then,

1
2π

2π∫
0

∣∣∣hn(reiθ)
∣∣∣γ dθ ≤ 1

2π

2π∫
0

∣∣∣h2(reiθ)
∣∣∣γ dθ (n = 1, 2, · · · ) (26)

and
1

2π

2π∫
0

∣∣∣gn(reiθ)
∣∣∣γ dθ ≤ 1

2π

2π∫
0

∣∣∣h2(reiθ)
∣∣∣γ dθ (n = 2, 3, · · · ), (27)

where hn and gn are defined by Equation (20).

Proof. Let hn and gn are defined by Equation (20) and let g̃n(z) = z + B−A
βn

zn (n = 2, 3, · · · ). Since
hn(z)

z ≺ h2(z)
z and g̃(z)

z ≺
h2(z)

z , by Lemma 4 we have:

2π∫
0

∣∣∣hn

(
reiθ
)∣∣∣γ dθ ≤

2π∫
0

∣∣∣h2

(
reiθ
)∣∣∣γ dθ,

2π∫
0

∣∣∣gn

(
reiθ
)∣∣∣γ dθ =

2π∫
0

∣∣∣g̃n

(
reiθ
)∣∣∣γ dθ ≤

2π∫
0

∣∣∣h2

(
reiθ
)∣∣∣γ dθ,

which complete the proof.

Corollary 4. If f ∈ S∗∗T (A, B) then:

1
2π

2π∫
0

∣∣∣ f (reiθ)
∣∣∣γ dθ ≤ 1

2π

2π∫
0

∣∣∣h2(reiθ)
∣∣∣γ dθ
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and
1

2π

2π∫
0

∣∣∣DH f (reiθ)
∣∣∣γ dθ ≤ 1

2π

2π∫
0

∣∣∣DHh2(reiθ)
∣∣∣γ dθ,

where γ ≥ 1, 0 < r < 1 and h2 is the function defined by Equation (20).

Remark 1. Some new and also well-known results can be obtained by choosing the parameters A, B in the
defined classes of functions (see for example [6–9]). In particular, for A = 2α− 1, B = 1 we have results
obtained by Ahuja and Jahangiri [6] (see also [7,8]), for A = 2b(α− 1) + 1, B = 1 we have results obtained by
Janteng and Halim [9].
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