

Article

On Grothendieck Sets

Juan Carlos Ferrando 1,*, Salvador López-Alfonso 2 and Manuel López-Pellicer 3

- 1 Centro de Investigación Operativa, Universidad Miguel Hernández, E-03202 Elche, Spain
- Depto. Construcciones Arquitectónicas, Universitat Politècnica de València, E-46022 Valencia, Spain; salloal@csa.upv.es
- Depto. de Matemática Aplicada and IMPA, Universitat Politècnica de València, E-46022 Valencia, Spain; mlopezpe@mat.upv.es
- * Correspondence: jc.ferrando@umh.es

Received: 1 February 2020; Accepted: 19 March 2020; Published: 24 March 2020

Abstract: We call a subset \mathcal{M} of an algebra of sets \mathcal{A} a *Grothendieck set* for the Banach space $ba(\mathcal{A})$ of bounded finitely additive scalar-valued measures on \mathcal{A} equipped with the variation norm if each sequence $\{\mu_n\}_{n=1}^{\infty}$ in $ba(\mathcal{A})$ which is pointwise convergent on \mathcal{M} is weakly convergent in $ba(\mathcal{A})$, i. e., if there is $\mu \in ba(\mathcal{A})$ such that $\mu_n(A) \to \mu(A)$ for every $A \in \mathcal{M}$ then $\mu_n \to \mu$ weakly in $ba(\mathcal{A})$. A subset \mathcal{M} of an algebra of sets \mathcal{A} is called a *Nikodým set* for $ba(\mathcal{A})$ if each sequence $\{\mu_n\}_{n=1}^{\infty}$ in $ba(\mathcal{A})$ which is pointwise bounded on \mathcal{M} is bounded in $ba(\mathcal{A})$. We prove that if Σ is a σ -algebra of subsets of a set Ω which is covered by an increasing sequence $\{\Sigma_n : n \in \mathbb{N}\}$ of subsets of Σ there exists $p \in \mathbb{N}$ such that Σ_p is a Grothendieck set for $ba(\mathcal{A})$. This statement is the exact counterpart for Grothendieck sets of a classic result of Valdivia asserting that if a σ -algebra Σ is covered by an increasing sequence $\{\Sigma_n : n \in \mathbb{N}\}$ of subsets, there is $p \in \mathbb{N}$ such that Σ_p is a Nikodým set for $ba(\Sigma)$. This also refines the Grothendieck result stating that for each σ -algebra Σ the Banach space $\ell_\infty(\Sigma)$ is a Grothendieck space. Some applications to classic Banach space theory are given.

Keywords: property (*G*); rainwater set; property (*N*); Nikodým set; property (*VHS*)

MSC: 28A33; 46B25

1. Introduction

With a different terminology, Valdivia showed in [1] that if a σ -algebra Σ of subsets of a set Ω is covered by an increasing sequence $\{\Sigma_n:n\in\mathbb{N}\}$ of subsets, there is $p\in\mathbb{N}$ such that Σ_p is a Nikodým set for $ba(\Sigma)$. We prove that if Σ is covered by an increasing sequence $\{\Sigma_n:n\in\mathbb{N}\}$ of subsets of Σ there is $p\in\mathbb{N}$ such that Σ_p is a Grothendieck set for ba(A) (definitions below). This statement is both the exact counterpart for Grothendieck sets of Valdivia's result for Nikodým sets and a refinement of Grothendieck's classic result stating that the Banach space $\ell_\infty(\Sigma)$ of bounded scalar-valued Σ -measurable functions defined on Ω equipped with the supremum-norm is a Grothendieck space. Our previous result applies easily to Banach space theory to extend some well-known results. For example, Phillip's lemma can be read as follows. If $\{\Sigma_n:n\in\mathbb{N}\}$ is an increasing sequence of subsets of Σ covering Σ , there is $p\in\mathbb{N}$ such that if $\{\mu_n\}_{n=1}^\infty\subseteq ba(\Sigma)$ verifies $\lim_{n\to\infty}\mu_n(A)=0$ for every $A\in\Sigma_p$ and $\{A_k:k\in\mathbb{N}\}$ is a sequence of pairwise disjoint elements of Σ , then $\lim_{n\to\infty}\sum_{k=1}^\infty|\mu_n(A_k)|=0$.

2. Preliminaries

In what follow we use the notation of [2] (Chapter 5). Let \mathcal{R} be a ring of subsets of a nonempty set Ω , χ_A be the characteristic function of the set $A \in \mathcal{R}$ and let $\ell_0^{\infty}(\mathcal{R}) = \operatorname{span} \{\chi_A : A \in \mathcal{R}\}$ denote the linear space of all \mathbb{K} -valued \mathcal{R} -simple functions, \mathbb{K} being the scalar field of real or complex numbers. Since $A \cap B \in \mathcal{R}$ and $A \Delta B \in \mathcal{R}$ whenever $A, B \in \mathcal{R}$, for each $f \in \ell_0^{\infty}(\mathcal{R})$ there are pairwise disjoint

Axioms 2020, 9, 34 2 of 7

sets $A_1,\ldots,A_m\in\mathcal{R}$ and nonzero $a_1,\ldots,a_m\in\mathbb{K}$, with $a_i\neq a_j$ if $i\neq j$ such that $f=\sum_{i=1}^m a_i\,\chi_{A_i}$, with $f=\chi_{\emptyset}$ if f=0. Unless otherwise stated we shall assume $\ell_0^{\infty}(\mathcal{R})$ equipped with the norm $\|f\|_{\infty}=\sup\{|f(\omega)|:\omega\in\Omega\}$. If $Q=\operatorname{abx}\{\chi_A:A\in\mathcal{R}\}$ is the absolutely convex hull of $\{\chi_A:A\in\mathcal{R}\}$, an equivalent norm is defined on $\ell_0^{\infty}(\mathcal{R})$ by the gauge of Q, namely $\|f\|_Q=\inf\{\lambda>0:f\in\lambda Q\}$. For if $f\in\ell_0^{\infty}(\mathcal{R})$ with $\|f\|_{\infty}\leq 1$, it can be shown that $f\in 4Q$ (cf. [2] (Proposition 5.1.1)), hence $\|\cdot\|_{\infty}\leq \|\cdot\|_Q\leq 4\|\cdot\|_{\infty}$.

The dual of $\ell_0^{\infty}(\mathcal{R})$ is the Banach space $ba(\mathcal{R})$ of bounded finitely additive scalar-valued measures on \mathcal{R} , which we shall assume to be equipped with the variation norm

$$|\mu| = \sup \sum_{i=1}^{n} |\mu(E_i)|,$$

where the supremum is taken over all finite sequences of pairwise disjoint members of \mathcal{R} . This is the dual of the supremum-norm $\|\cdot\|_{\infty}$ of $\ell_0^{\infty}(\mathcal{R})$. An equivalent norm is given by $\|\mu\|=\sup\{|\mu(A)|:A\in\mathcal{R}\}$, which is the dual norm of the gauge $\|\cdot\|_{\mathcal{Q}}$. We shall also consider the Banach space $ba(\mathcal{R})^*$ equipped with the bidual norm $\|\cdot\|$ of $\|\cdot\|_{\infty}$. The completion of the normed space $(\ell_0^{\infty}(\mathcal{R}),\|\cdot\|_{\infty})$ is the Banach space $\ell_{\infty}(\mathcal{R})$ of all bounded \mathcal{R} -measurable functions.

The Banach space $\ell_{\infty}(\mathcal{R})$ embeds isometrically into $ba(\mathcal{R})^*$, hence each characteristic function χ_A in $\ell_0^{\infty}(\mathcal{R})$ with $A \in \mathcal{R}$ can be considered as a bounded linear functional on $ba(\mathcal{R})$ defined by evaluation $\langle \chi_A, \mu \rangle = \mu(A)$. So, we may write $\{\chi_A : A \in \mathcal{R}\} \subseteq S_{ba(\mathcal{R})^*}$, where $S_{ba(\mathcal{R})^*}$ stands for the unit sphere of $ba(\mathcal{R})^*$, and the set $\{\chi_A : A \in \mathcal{R}\}$, regarded as a topological subspace of $ba(\mathcal{R})^*$ (weak*), is the same as $\{\chi_A : A \in \mathcal{R}\}$ regarded as a topological subspace of $\ell_0^{\infty}(\mathcal{R})$ (weak).

A subfamily F of an algebra of sets A is called a Nikodým set for ba (A) (cf. [3]) if each set { μ_{α} : $\alpha \in \Lambda$ } in ba (A) which is pointwise bounded on F is bounded in ba (A), i. e., if $\sup_{\alpha \in \Lambda} |\mu_{\alpha}(A)| < \infty$ for each $A \in F$ implies that $\sup_{\alpha \in \Lambda} |\mu_{\alpha}| < \infty$. The algebra A is said to have property (N) if the whole family A is a Nikodým set for ba(A). Nikodým's classic boundedness theorem establishes that every σ -algebra has property (N). An algebra A is said to have property (G) if $\ell_{\infty}(A)$ is a Grothendieck space, i. e., if each weak* convergent sequence in ba(A) is weakly convergent in the Banach space ba(A). The fact that every σ -algebra has property (G) is also due to Grothendieck. Every countable algebra lacks property (N), and the algebra \mathfrak{J} of Jordan-measurable subsets of the real interval [0,1] has property (N) but fails property (G) (cf. [4] (Propositions 3.2 and 3.3) and [5]). Let us recall that a sequence { μ_{n} } $_{n=1}^{\infty}$ in ba(A) is uniformly exhaustive if for each sequence { A_{i} : $i \in \mathbb{N}$ } of pairwise disjoint elements of A it holds that $\lim_{k\to\infty} \sup_{n\in\mathbb{N}} |\mu_{n}(A_{k})| = 0$. We shall use the following result, originally stated in [4] (2.3 Definition).

Theorem 1. An algebra of sets A has property (G) if and only if every bounded sequence $\{\mu_n\}_{n=1}^{\infty}$ in ba (A) which converges pointwise on A is uniformly exhaustive.

An algebra \mathcal{A} is said to have *property* (VHS) if every sequence $\{\mu_n\}_{n=1}^{\infty}$ in ba (\mathcal{A}) which converges pointwise on \mathcal{A} is uniformly exhaustive. It should be mentioned that $(VHS) \Leftrightarrow (N) \land (G)$, where the proof of the non-trivial implication can be found in [6] (see also [7] (Theorem 4.2)). For later use we introduce the following definition.

Definition 1. A subfamily \mathcal{M} of an algebra of sets \mathcal{A} will be called a Grothendieck set for $ba(\mathcal{A})$ if each sequence $\{\mu_n\}_{n=1}^{\infty}$ in $ba(\mathcal{A})$ which is pointwise convergent on \mathcal{M} is weakly convergent in $ba(\mathcal{A})$, i. e., if there is $\mu \in ba(\mathcal{A})$ such that $\mu_n(\mathcal{A}) \to \mu(\mathcal{A})$ for every $\mathcal{A} \in \mathcal{M}$ then $\mu_n \to \mu$ weakly in $ba(\mathcal{A})$.

If an algebra \mathcal{A} contains a Grothendieck subset for $ba(\mathcal{A})$, clearly \mathcal{A} has property (G). Grothendieck sets are closely related to the so-called Rainwater sets (defined below) for $ba(\mathcal{A})$, and the study of the Rainwater sets for $ba(\mathcal{A})$ leads to Theorem 4 below, from which the following result is a straightforward corollary.

Axioms **2020**, *9*, 34

Theorem 2. If Σ is a σ -algebra of subsets of a set Ω which is covered by an increasing sequence $\{\Sigma_n : n \in \mathbb{N}\}$ of subsets of Σ there exists $p \in \mathbb{N}$ such that Σ_p is a Grothendieck set for $ba(\Sigma)$.

Indeed, in [1] (Theorem 1) Valdivia showed that if a σ -algebra Σ of subsets of a set Ω is covered by an increasing sequence $\{\Sigma_n : n \in \mathbb{N}\}$ of subsets (subfamilies) of Σ , there exists some $p \in \mathbb{N}$ such that Σ_p is a Nikodým set for ba (Σ) or, equivalently, that given an increasing sequence $\{E_n : n \in \mathbb{N}\}$ of linear subspaces of ℓ_0^{∞} (Σ) covering ℓ_0^{∞} (Σ), there exists $p \in \mathbb{N}$ such that E_p is dense and barrelled (see also [8] (Theorem 3)).

As a consequence of Theorem 4 we show that if a σ -algebra Σ is covered by an increasing sequence $\{\Sigma_n : n \in \mathbb{N}\}$ of subsets, there exists some $p \in \mathbb{N}$ such that $\{\chi_A : A \in \Sigma_p\}$, regarded as a subset of the dual unit ball of ba (Σ), is also a Rainwater set for ba (Σ). This easily implies Theorem 2. In the last section we give some applications of Theorem 2 to classic Banach space theory which seems to have gone unnoticed so far. Let us point out that some results of this paper hold for Boolean algebras [9] (Theorem 12.35).

3. Rainwater Sets for ba(A)

A subset X of the dual closed unit ball B_{E^*} of a Banach space E is called a Rainwater set for E if every *bounded* sequence $\{x_n\}_{n=1}^{\infty}$ of *E* that converges pointwise on *X*, i. e., such that $x^*x_n \to x^*x$ for each $x^* \in X$, converges weakly in E (cf. [10]). Rainwater's classic theorem [11] asserts that the set of the extreme points of the closed dual unit ball of a Banach space E is a Rainwater set for E. According to [12] (Corollary 11), each James boundary of E is a Rainwater set for E. As regards the Banach space C(X) of real-valued continuous functions over a *compact Hausdorff space* X equipped with the supremum norm, if $K = \operatorname{Ext} B_{C(X)^*}$ is the set of the extreme points of the compact subset $B_{C(X)^*}$ of $C(X)^*$ (weak*), the Arens-Kelly theorem asserts that $K = \{\pm \delta_x : x \in X\}$ (see [13]). By the Lebesgue dominated convergence theorem, if $\{f_n\}_{n=1}^{\infty}$ is a norm-bounded sequence in C(X) (with respect to the supremum-norm) then $f_n \to f$ weakly in C(X) if and only if $f_n(x) \to f(x)$ for every $x \in X$, that is, $\langle f_n, \mu \rangle \to \langle f, \mu \rangle$ for every $\mu \in C(X)^*$ if and only if $\langle f_n, \delta_v \rangle \to \langle f, \delta_v \rangle$ for each $v \in K$ (see [14] (IV.6.4 Corollary)). This is Rainwater's theorem for C(X). In [10] the weak K-analyticity of the Banach space $C^b(X)$ of real-valued continuous and bounded functions defined on a completely regular space X equipped with the supremum norm is characterized in terms of certain Rainwater sets for $C^{p}(X)$. The next theorem, based on [3] (Proposition 4.1), exhibits a connection between Rainwater sets and property (*G*). We include it for future reference and provide a proof for the sake of completeness.

Theorem 3. Let A be an algebra of sets. The following are equivalent

- 1. A has property (G).
- 2. $\{\chi_A : A \in A\}$ is a Rainwater set for ba (A), considered as a subset of ba $(A)^*$.
- 3. The unit ball of $\ell_0^{\infty}(A)$ is a Rainwater set for ba (A).
- 4. The unit ball of $\ell_{\infty}(A)$ is a Rainwater set for ba (A).

Proof. $1 \Rightarrow 2$. Assume that \mathcal{A} has property (G) and let $\{\mu_n\}_{n=1}^{\infty}$ be a bounded sequence in $ba(\mathcal{A})$ and $\mu \in ba(\mathcal{A})$ such that $\langle \chi_A, \mu_n \rangle \to \langle \chi_A, \mu \rangle$ for each $A \in \mathcal{A}$. i. e., such that $\mu_n(A) \to \mu(A)$ for each $A \in \mathcal{A}$. By Theorem 1 the sequence $M = \{\mu_n : n \in \mathbb{N}\}$ is (bounded and) uniformly exhaustive on \mathcal{A} , so [15] (Corollary 5.2) produces a nonnegative real-valued finitely-additive measure λ on \mathcal{A} such that $\lim_{\lambda(E)\to 0} \sup_{n\in\mathbb{N}} |\mu_n(E)| = 0$. Hence, [14] (4.9.12 Theorem]) shows that M is relatively weakly sequentially compact. Given that $\mu_n(A) \to \mu(A)$ for each $A \in \mathcal{A}$, necessarily μ is the only possible weakly adherent point of the sequence $\{\mu_n\}_{n=1}^{\infty}$. So we get that $\mu_n \to \mu$ weakly in $ba(\mathcal{A})$, which shows that $\{\chi_A : A \in \mathcal{A}\}$ is a Rainwater set for $ba(\mathcal{A})$.

 $2 \Rightarrow 3$. If $B_{ba(\mathcal{A})^*}$ denotes the second dual ball of the closed unit ball $B_{\ell_{\infty}(\mathcal{A})}$ of $\ell_{\infty}(\mathcal{A})$ and B_0 stands for the unit ball of $\ell_0^{\infty}(\mathcal{A})$, from the relations $\{\chi_A : A \in \mathcal{A}\} \subseteq B_0 \subseteq B_{ba(\mathcal{A})^*}$ it follows that B_0 is a also Rainwater set for $ba(\mathcal{A})$.

 $3 \Rightarrow 4$ is obvious.

Axioms **2020**, *9*, 34 4 of 7

 $4 \Rightarrow 1$. If $\mu_n \to \mu$ in ba (\mathcal{A}) under the weak* topology σ (ba (\mathcal{A}), ℓ_{∞} (\mathcal{A})) of ba (\mathcal{A}) then $\{\mu_n\}_{n=1}^{\infty}$ is a bounded sequence in ba (\mathcal{A}). Given that $\langle \mu_n, f \rangle \to \langle \mu, f \rangle$ for every $f \in \mathcal{B}_{\ell_{\infty}(\mathcal{A})}$ and given the hypothesis that $\mathcal{B}_{\ell_{\infty}(\mathcal{A})}$ is a Rainwater set for ba (\mathcal{A}), we have that $\mu_n \to \mu$ weakly in ba (\mathcal{A}). Consequently \mathcal{A} has property (\mathcal{G}). \square

Example 1. If \mathcal{Z} stands for the algebra generated by the sets of density zero in \mathbb{N} , then $\{\chi_A : A \in \mathcal{Z}\}$ is not a Rainwater set for ba (\mathcal{Z}) . This follows from the previous theorem and from the fact that \mathcal{Z} does not have property (G) (see [16]).

Theorem 4. Assume that A is an algebra of sets. Let M be a Nikodým subset for ba (A) and let $\{M_n : n \in \mathbb{N}\}$ be an increasing covering of M by subsets of M. If $\{\chi_A : A \in M\}$ is a Rainwater set for ba (A), there exists some $p \in \mathbb{N}$ such that $\{\chi_A : A \in M_p\}$ is a Rainwater set for ba (A).

Proof. Assume that $\{\chi_A : A \in \mathcal{M}\}$ is a Rainwater set for ba(A). First we claim that

$$\{\chi_A: A \in \mathcal{A}\} \subseteq \bigcup_{n=1}^{\infty} n \cdot \overline{\operatorname{abx}\{\chi_A: A \in \mathcal{M}_n\}}^{\|\cdot\|_{\infty}}$$

Let us proceed by contradiction. Assume otherwise that there exists $B \in \mathcal{A}$ such that $\chi_B \notin n \cdot \overline{abx} \{\chi_A : A \in \mathcal{M}_n\}^{\|\cdot\|_{\infty}}$ for all $n \in \mathbb{N}$. In this case the separation theorem provides $\mu_n \in ba(\mathcal{A})$ with $|\mu_n(B)| = 1$ such that

$$\sup \left\{ |\langle f, \mu_n \rangle| : f \in \overline{\operatorname{abx} \left\{ \chi_A : A \in \mathcal{M}_n \right\}}^{\|\cdot\|_{\infty}} \right\} \le \frac{1}{n}$$

So, in particular it holds that

$$\sup \{ |\mu_n(A)| : A \in \mathcal{M}_n \} \le \frac{1}{n}$$

for every $n \in \mathbb{N}$. If $M \in \mathcal{M}$ there is $k \in \mathbb{N}$ such that $M \subseteq \mathcal{M}_n$ for every $n \geq k$. Consequently $|\mu_n(M)| \leq \frac{1}{n}$ for $n \geq k$, which shows that $\mu_n(M) \to 0$. Since \mathcal{M} is a Nikodým set and $\{\mu_n\}_{n=1}^{\infty}$ is pointwise bounded on \mathcal{M} , it follows that $\{\mu_n\}_{n=1}^{\infty}$ is bounded in $ba(\mathcal{A})$. So, the fact that $\mu_n(M) \to 0$ for all $M \in \mathcal{M}$ along with the assumption that \mathcal{M} is a Rainwater set leads to $\mu_n \to 0$ weakly in $ba(\mathcal{A})$. This is a contradiction, since $\langle \chi_B, \mu_n \rangle = \mu_n(B) = 1$ for every $n \in \mathbb{N}$. The claim is proved.

Set $Q := \{\chi_A : A \in A\}$. Since we are assuming that \mathcal{M} is a Nikodým set for ba(A), the larger set \mathcal{A} is also a Nikodým set for ba(A), which implies that $\ell_0^{\infty}(A)$ is a metrizable barrelled space, hence a Baire-like space (see [17]). On the other hand, as a consequence of the previous claim, the family $\{W_n\}_{n=1}^{\infty}$ with

$$W_n := n \cdot \overline{\operatorname{abx} \left\{ \chi_A : A \in \mathcal{M}_n \right\}}^{\|\cdot\|_{\infty}}$$

is an increasing sequence of closed absolutely convex sets covering $\ell_0^{\infty}(A)$. So, there exists $p \in \mathbb{N}$ such that

$$Q \subseteq p \cdot \overline{\operatorname{abx}\left\{\chi_A : A \in \mathcal{M}_p\right\}}^{\|\cdot\|_{\infty}},$$

which shows that

$$\overline{\operatorname{abx}\left\{\chi_A:A\in\mathcal{M}_p\right\}}^{\|\cdot\|_{\infty}}$$

is a Rainwater set for ba(A).

We claim that this implies that $\{\chi_A: A \in \mathcal{M}_p\}$ is a Rainwater set for ba (\mathcal{A}) . In order to establish the claim it suffices to show that $\mathrm{abx}\,\{\chi_A: A \in \mathcal{M}_p\}$ is a Rainwater set for ba (\mathcal{A}) . So, let $\{\lambda_n\}_{n=1}^\infty$ be a bounded sequence in ba (\mathcal{A}) such that $\langle u, \lambda_n \rangle \to 0$ for every $u \in \mathrm{abx}\,\{\chi_A: A \in \mathcal{M}_p\}$. Let us show that $\langle v, \lambda_n \rangle \to 0$ for each $v \in \overline{\mathrm{abx}\,\{\chi_A: A \in \mathcal{M}_p\}}^{\|\cdot\|_\infty}$. If $v \in \overline{\mathrm{abx}\,\{\chi_A: A \in \mathcal{M}_p\}}^{\|\cdot\|_\infty}$ there exists a

Axioms 2020, 9, 34 5 of 7

sequence $\{u_k\}_{k=1}^{\infty}$ in abx $\{\chi_A : A \in \mathcal{M}_p\}$ such that $\|u_k - v\|_{\infty} \to 0$. Consequently, given $\epsilon > 0$ there is $k(\epsilon) \in \mathbb{N}$ with

$$\left\|u_{k(\epsilon)}-v\right\|_{\infty}<\frac{\epsilon}{2\left(1+\sup_{n\in\mathbb{N}}\left|\lambda_{n}\right|\right)}.$$

Let $n(\epsilon) \in \mathbb{N}$ be such that

$$\left|\left\langle u_{k(\epsilon)},\lambda_{n}\right
angle
ight|<rac{\epsilon}{2}$$

for every $n \ge n$ (ϵ). Consequently, one has

$$|\langle v, \lambda_n \rangle| \le \left| \left\langle v - u_{k(\epsilon)}, \lambda_n \right\rangle \right| + \left| \left\langle u_{k(\epsilon)}, \lambda_n \right\rangle \right| \le \left\| u_{k(\epsilon)} - v \right\|_{\infty} |\lambda_n| + \left| \left\langle u_{k(\epsilon)}, \lambda_n \right\rangle \right| < \epsilon$$

for all $n \geq n_0(\epsilon)$. This proves that $\langle v, \lambda_n \rangle \to 0$ for each $v \in \overline{\operatorname{abx} \{\chi_A : A \in \mathcal{M}_p\}}^{\|\cdot\|_\infty}$. Since we have shown before that $\overline{\operatorname{abx} \{\chi_A : A \in \mathcal{M}_p\}}^{\|\cdot\|_\infty}$ is a Rainwater set for $ba(\mathcal{A})$, we get that $\lambda_n \to 0$ weakly in $ba(\mathcal{A})$. Therefore the absolutely convex set $abx\{\chi_A : A \in \mathcal{M}_p\}$ is a Rainwater set for $ba(\mathcal{A})$, a stated. \square

Corollary 1. Let A be an algebra of sets with property (VHS). If $\{A_n : n \in \mathbb{N}\}$ is an increasing covering of A consisting of subsets of A, there is some $p \in \mathbb{N}$ such that $\{\chi_A : A \in A_p\}$ is a Rainwater set for ba (A).

Proof. This is a straightforward consequence of the Theorem 4 for $\mathcal{M} = \mathcal{A}$, since as mentioned earlier an algebra \mathcal{A} has property (VHS) if and only if \mathcal{A} has both properties (N) and (G) (this also can be found in [7] (Theorem 4.2)). So, on the one hand \mathcal{A} is a Nikodým set for ba (\mathcal{A}) and, on the other hand, according to Theorem 3, the family $\{\chi_{\mathcal{A}} : A \in \mathcal{A}\}$ is a Rainwater set for ba (\mathcal{A}). \square

Proof of Theorem 2. If Σ is a σ -algebra of subsets of a set Ω which is covered by an increasing sequence $\{\Sigma_n : n \in \mathbb{N}\}$ of subsets of Σ , Corollary 1 and Valdivia's result [1] provide an index $p \in \mathbb{N}$ such that Σ_p is a Nikodým set for $ba(\Sigma)$ at the same time that $\{\chi_A : A \in \Sigma_p\}$ is a Rainwater set for $ba(\Sigma)$. If $\{\mu_n\}_{n=1}^{\infty}$ verifies that $\mu_n(A) \to \mu(A)$ for every $A \in \Sigma_p$, the sequence $\{\mu_n\}_{n=1}^{\infty}$ is bounded in $ba(\Sigma)$ since Σ_p is a Nikodým set for $ba(\Sigma)$. But then $\mu_n \to \mu$ weakly in $ba(\Sigma)$ due to $\{\chi_A : A \in \Sigma_p\}$ is a Rainwater set for $ba(\Sigma)$. Consequently Σ_p is a Grothendieck for $ba(\Sigma)$ and we are done. \square

Corollary 2. If $\{\Lambda_n : n \in \mathbb{N}\}$ is an increasing sequence of subsets of $\Sigma = 2^{\mathbb{N}}$ covering $2^{\mathbb{N}}$, there exists some $p \in \mathbb{N}$ such that each sequence $\{\mu_n\}_{n=1}^{\infty}$ in ba $(2^{\mathbb{N}})$ that converges pointwise on Λ_p converges weakly in ba $(2^{\mathbb{N}}) = \ell_{\infty}^*$.

Proof. Apply Theorem 2 to the σ -algebra $2^{\mathbb{N}}$. \square

We complete our study of Rainwater sets for ba(A) with the following result. Note that if \overline{X}^{w^*} (weak* closure) with $X \subseteq B_{ba(A)^*}$ is a Rainwater set for ba(A) then X could not be a Rainwater set for ba(A). However the following property holds.

Theorem 5. Let A be an algebra of sets. Assume that $\{\chi_A : A \in A\}$ is a Grothendieck set for ba (A). If $\{\chi_A : A \in M\}$ is a G_δ -dense subset of $\{\chi_A : A \in A\}$ under the relative weak* topology of ba $(A)^*$ or, which is the same, under the relative weak topology of $\ell_0^\infty(A)$, then $\{\chi_A : A \in M\}$ is a Grothendieck set for ba (A).

Proof. Let $\{\mu_n\}_{n=1}^{\infty}$ be a sequence in ba (\mathcal{A}) such that μ_n (Q) $\to 0$ for every $Q \in \mathcal{M}$. Given $B \in \mathcal{A}$, let us define $G_n := \{\chi_C : C \in \mathcal{A}, \mu_n$ (C) $= \mu_n$ (B) $\}$. Then one has that $\chi_B \in \bigcap_{n=1}^{\infty} G_n$, so that $G := \bigcap_{n=1}^{\infty} G_n$ is a nonempty intersection of countably many zero-sets of $\{\chi_A : A \in \mathcal{A}\}$, hence a non-empty G_δ -set in $\{\chi_A : A \in \mathcal{A}\}$ in the relative weak topology of ℓ_0^∞ (A). According to the hypothesis G meets $\{\chi_A : A \in \mathcal{M}\}$. Hence there exists $M_B \in \mathcal{M}$ such that $\chi_{M_B} \in G \cap \{\chi_A : A \in \mathcal{M}\}$, which means that μ_n (M_B) $= \mu_n$ (B) for every $n \in \mathbb{N}$. Since μ_n (M_B) $\to 0$, it follows that μ_n (B) $\to 0$. So, we conclude

Axioms **2020**, *9*, 34 6 of 7

that $\mu_n(B) \to 0$ for every $B \in \mathcal{A}$. Putting together that (i) { $\chi_A : A \in \mathcal{A}$ } is a Grothendieck set for $ba(\mathcal{A})$, and (ii) $\mu_n(B) \to 0$ for all $B \in \mathcal{A}$, we get that $\mu_n \to 0$ weakly in $ba(\mathcal{A})$. Thus { $\chi_A : A \in \mathcal{M}$ } is a Grothendieck set for $ba(\mathcal{A})$. \square

4. Application to Banach Spaces

Theorem 2 facilitates the extension of various classic theorems of Banach space theory. As a sample, we include three of them: namely, the Phillips lemma about convergence in ba (Σ), Nikodým's pointwise convergence theorem in ca (Σ) and the usual characterization of weak convergence in ca (Σ), the linear subspace of ba (Σ) consisting of the countably additive measures in Σ (see [18] (Chapter 7)).

Proposition 1. Let Σ be a σ -algebra of subsets of a set Ω . If $\{\Sigma_n : n \in \mathbb{N}\}$ is an increasing sequence of subsets of Σ covering Σ , there exists some $p \in \mathbb{N}$ enjoying the following property. If $\{\mu_n\}_{n=1}^{\infty} \subseteq ba(\Sigma)$ verifies $\lim_{n\to\infty} \mu_n(A) = 0$ for every $A \in \Sigma_p$ and $\{A_k : k \in \mathbb{N}\}$ is a sequence of pairwise disjoint elements of Σ , then

$$\lim_{n\to\infty}\sum_{k=1}^{\infty}|\mu_n\left(A_k\right)|=0. \tag{1}$$

Proof. According to Theorem 2 there is $p \in \mathbb{N}$ such that Σ_p is Grothendieck set for $ba(\Sigma)$. So, if $\lim_{n\to\infty} \mu_n(A) = 0$ for every $A \in \Sigma_p$, then $\mu_n \to 0$ weakly in $ba(\Sigma)$. In particular, $\mu_n(A) \to 0$ for every $A \in \Sigma$. Hence, (1) holds by Phillip's classic theorem. \square

Proposition 2. Let Σ be a σ -algebra of subsets of a set Ω . If $\{\Sigma_n : n \in \mathbb{N}\}$ is an increasing sequence of subsets of Σ covering Σ , there exists some $p \in \mathbb{N}$ such that if $\{\mu_n\}_{n=1}^{\infty} \subseteq ca(\Sigma)$ verifies that $\mu_n(A) \to \mu(A)$ for every $A \in \Sigma_p$ then the set $\{\mu_n : n \in \mathbb{N}\}$ is uniformly exhaustive and $\mu \in ca(\Sigma)$.

Proposition 3. Let Σ be a σ -algebra of subsets of a set Ω . If $\{\Sigma_n : n \in \mathbb{N}\}$ is an increasing sequence of subsets of Σ covering Σ , there exists some $p \in \mathbb{N}$ such that $\mu_n \to \mu$ weakly in ca (Σ) if and only if $\mu_n(A) \to \mu(A)$ for every $A \in \Sigma_p$.

Author Contributions: The authors (J.C.F., S.-L.A., M.-L.P.) contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by grant PGC2018-094431-B-I00 of Ministry of Scence, Innovation and universities of Spain.

Acknowledgments: The authors wish to thank the referees for valuable comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Valdivia, M. On certain barrelled normed spaces. Ann. Inst. Fourier (Grenoble) 1979, 29, 39–56. [CrossRef]
- 2. Ferrando, J. C.; López-Pellicer, M.; Sánchez Ruiz, L. M. *Metrizable Barrelled Spaces*; Number 332 in Pitman Research Notes in Mathematics; Longman: London, UK; John Wiley & Sons Inc.: New York, NY, USA, 1995.
- 3. Ferrando, J. C.; López-Alfonso, S.; López-Pellicer, M. On Nikodým and Rainwater sets for $ba(\mathcal{R})$ and a problem of M. Valdivia. *Filomat* **2019**, 33, 2409–2416. [CrossRef]
- 4. Schachermayer, W. On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras. *Diss. Math. (Rozprawy Mat.)* **1982**, 214, 1–33.
- 5. López-Alfonso, S. On Schachermayer and Valdivia results in algebras of Jordan measurable sets. *RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.* **2016**, 110, 799–808. [CrossRef]
- 6. Diestel, J.; Faires, B.; Huff, R. Convergence and boundedness of measures in non σ -complete algebras. unpublished.
- 7. Ferrando, J.C.; Sánchez Ruiz, L.M. A survey on recent advances on the Nikodým boundedness theorem and spaces of simple functions. *Rocky Mount. J. Math.* **2004**, *34*, 139–172. [CrossRef]

Axioms **2020**, *9*, 34 7 of 7

8. Valdivia, M. On Nikodým boundedness property. *RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.* **2013**, 107, 355–372. [CrossRef]

- 9. Groenewegen, G.L.M.; Van Rooij, A.C.M. *Spaces of Continuous Functions*; Atlantis Studies in Mathematics **4**; Atlantis Press: Paris, France, 2016.
- 10. Ferrando, J. C.; Kąkol, J.; López-Pellicer, M. On spaces $C^b(X)$ weakly K-analytic. *Math. Nachr.* **2017**, 290, 2612–2618. [CrossRef]
- 11. Rainwater, J. Weak convergence of bounded sequences. Proc. Am. Math. Soc. 1963, 14, 999. [CrossRef]
- 12. Simons, S. A convergence theorem with boundary. Pac. J. Math. 1972, 40, 703–708. [CrossRef]
- 13. Arens, R.F.; Kelley, J.L. Characterizations of the space of continuous functions over a compact Hausdorff space. *Trans. Am. Math. Soc.* **1947**, 62, 499–508.
- 14. Dunford, N.; Schwartz, J.T. *Linear Operators. Part I: General Theory*; John Wiley and Sons Inc.: Hoboken, NJ, USA, 1988.
- 15. Diestel, J.; Uhl, J.J. Vector Measures; Math. Surveys and Monographs 15; AMS: Providence, RI, USA, 1977.
- 16. Drewnowski, L.; Florencio, M.; Paúl, P.J. Barrelled subspaces of spaces with subseries decompositions of Boolean rings of projections. *Glasgow Math. J.* **1994**, *36*, 57–69. [CrossRef]
- 17. Saxon, S.A. Nuclear and product spaces, Baire-like spaces and the strongest locally convex topology. *Math. Ann.* **1972**, 197, 87–106. [CrossRef]
- 18. Diestel, J. Sequences and Series in Banach Spaces; GTU 92; Springer-Verlag: New York, NY, USA, 1984.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).