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Abstract: We call a subsetM of an algebra of sets A a Grothendieck set for the Banach space ba(A) of
bounded finitely additive scalar-valued measures on A equipped with the variation norm if each
sequence {µn}∞

n=1 in ba(A) which is pointwise convergent onM is weakly convergent in ba(A),
i. e., if there is µ ∈ ba (A) such that µn (A)→ µ (A) for every A ∈ M then µn → µ weakly in ba(A).
A subsetM of an algebra of sets A is called a Nikodým set for ba(A) if each sequence {µn}∞

n=1 in
ba(A) which is pointwise bounded onM is bounded in ba(A). We prove that if Σ is a σ-algebra
of subsets of a set Ω which is covered by an increasing sequence {Σn : n ∈ N} of subsets of Σ there
exists p ∈ N such that Σp is a Grothendieck set for ba(A). This statement is the exact counterpart
for Grothendieck sets of a classic result of Valdivia asserting that if a σ-algebra Σ is covered by an
increasing sequence {Σn : n ∈ N} of subsets, there is p ∈ N such that Σp is a Nikodým set for ba (Σ).
This also refines the Grothendieck result stating that for each σ-algebra Σ the Banach space `∞ (Σ) is
a Grothendieck space. Some applications to classic Banach space theory are given.
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1. Introduction

With a different terminology, Valdivia showed in [1] that if a σ-algebra Σ of subsets of a set
Ω is covered by an increasing sequence {Σn : n ∈ N} of subsets, there is p ∈ N such that Σp is
a Nikodým set for ba (Σ). We prove that if Σ is covered by an increasing sequence {Σn : n ∈ N}
of subsets of Σ there is p ∈ N such that Σp is a Grothendieck set for ba(A) (definitions below).
This statement is both the exact counterpart for Grothendieck sets of Valdivia’s result for Nikodým
sets and a refinement of Grothendieck’s classic result stating that the Banach space `∞ (Σ) of
bounded scalar-valued Σ-measurable functions defined on Ω equipped with the supremum-norm
is a Grothendieck space. Our previous result applies easily to Banach space theory to extend some
well-known results. For example, Phillip’s lemma can be read as follows. If {Σn : n ∈ N} is an
increasing sequence of subsets of Σ covering Σ, there is p ∈ N such that if {µn}∞

n=1 ⊆ ba (Σ) verifies
limn→∞ µn (A) = 0 for every A ∈ Σp and {Ak : k ∈ N} is a sequence of pairwise disjoint elements of
Σ, then limn→∞ ∑∞

k=1 |µn (Ak)| = 0.

2. Preliminaries

In what follow we use the notation of [2] (Chapter 5). LetR be a ring of subsets of a nonempty set
Ω, χA be the characteristic function of the set A ∈ R and let `∞

0 (R) = span {χA : A ∈ R} denote the
linear space of all K-valuedR-simple functions, K being the scalar field of real or complex numbers.
Since A ∩ B ∈ R and A ∆ B ∈ R whenever A, B ∈ R, for each f ∈ `∞

0 (R) there are pairwise disjoint
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sets A1, . . . , Am ∈ R and nonzero a1, . . . , am ∈ K, with ai 6= aj if i 6= j such that f = ∑m
i=1 ai χAi , with

f = χ∅ if f = 0. Unless otherwise stated we shall assume `∞
0 (R) equipped with the norm ‖ f ‖∞ =

sup {| f (ω)| : ω ∈ Ω}. If Q = abx{χA : A ∈ R} is the absolutely convex hull of {χA : A ∈ R}, an
equivalent norm is defined on `∞

0 (R) by the gauge of Q, namely ‖ f ‖Q = inf {λ > 0 : f ∈ λQ}. For if
f ∈ `∞

0 (R) with ‖ f ‖∞ ≤ 1, it can be shown that f ∈ 4Q (cf. [2] (Proposition 5.1.1)), hence ‖·‖∞ ≤
‖·‖Q ≤ 4 ‖·‖∞.

The dual of `∞
0 (R) is the Banach space ba(R) of bounded finitely additive scalar-valued measures

onR, which we shall assume to be equipped with the variation norm

|µ| = sup
n

∑
i=1
|µ (Ei)| ,

where the supremum is taken over all finite sequences of pairwise disjoint members of R. This is
the dual of the supremum-norm ‖·‖∞ of `∞

0 (R). An equivalent norm is given by ‖µ‖ =

sup {|µ (A)| : A ∈ R}, which is the dual norm of the gauge ‖·‖Q. We shall also consider the Banach
space ba(R)∗ equipped with the bidual norm ‖·‖ of ‖·‖∞. The completion of the normed space
(`∞

0 (R), ‖·‖∞) is the Banach space `∞ (R) of all boundedR-measurable functions.
The Banach space `∞ (R) embeds isometrically into ba (R)∗, hence each characteristic function

χA in `∞
0 (R) with A ∈ R can be considered as a bounded linear functional on ba (R) defined

by evaluation 〈χA, µ〉 = µ (A). So, we may write {χA : A ∈ R} ⊆ Sba(R)∗ , where Sba(R)∗ stands
for the unit sphere of ba (R)∗, and the set {χA : A ∈ R}, regarded as a topological subspace of
ba (R)∗ (weak∗), is the same as {χA : A ∈ R} regarded as a topological subspace of `∞

0 (R) (weak).
A subfamily z of an algebra of sets A is called a Nikodým set for ba (A) (cf. [3]) if each set {µα :

α ∈ Λ} in ba (A) which is pointwise bounded on z is bounded in ba (A), i. e., if supα∈Λ |µα (A)| < ∞
for each A ∈ z implies that supα∈Λ |µα| < ∞. The algebra A is said to have property (N) if the whole
family A is a Nikodým set for ba(A). Nikodým’s classic boundedness theorem establishes that every
σ-algebra has property (N). An algebra A is said to have property (G) if `∞ (A) is a Grothendieck
space, i. e., if each weak* convergent sequence in ba(A) is weakly convergent in the Banach space
ba(A). The fact that every σ-algebra has property (G) is also due to Grothendieck. Every countable
algebra lacks property (N), and the algebra J of Jordan-measurable subsets of the real interval [0, 1]
has property (N) but fails property (G) (cf. [4] (Propositions 3.2 and 3.3) and [5]). Let us recall that a
sequence {µn}∞

n=1 in ba(A) is uniformly exhaustive if for each sequence {Ai : i ∈ N} of pairwise disjoint
elements of A it holds that limk→∞ supn∈N |µn (Ak)| = 0. We shall use the following result, originally
stated in [4] (2.3 Definition).

Theorem 1. An algebra of sets A has property (G) if and only if every bounded sequence {µn}∞
n=1 in ba (A)

which converges pointwise on A is uniformly exhaustive.

An algebraA is said to have property (VHS) if every sequence {µn}∞
n=1 in ba (A) which converges

pointwise on A is uniformly exhaustive. It should be mentioned that (VHS)⇔ (N) ∧ (G), where the
proof of the non-trivial implication can be found in [6] (see also [7] (Theorem 4.2)). For later use we
introduce the following definition.

Definition 1. A subfamily M of an algebra of sets A will be called a Grothendieck set for ba(A) if each
sequence {µn}∞

n=1 in ba(A) which is pointwise convergent onM is weakly convergent in ba(A), i. e., if there
is µ ∈ ba (A) such that µn (A)→ µ (A) for every A ∈ M then µn → µ weakly in ba(A).

If an algebra A contains a Grothendieck subset for ba(A), clearly A has property (G).
Grothendieck sets are closely related to the so-called Rainwater sets (defined below) for ba(A), and the
study of the Rainwater sets for ba(A) leads to Theorem 4 below, from which the following result is a
straightforward corollary.
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Theorem 2. If Σ is a σ-algebra of subsets of a set Ω which is covered by an increasing sequence {Σn : n ∈ N}
of subsets of Σ there exists p ∈ N such that Σp is a Grothendieck set for ba(Σ).

Indeed, in [1] (Theorem 1) Valdivia showed that if a σ-algebra Σ of subsets of a set Ω is covered
by an increasing sequence {Σn : n ∈ N} of subsets (subfamilies) of Σ, there exists some p ∈ N such
that Σp is a Nikodým set for ba (Σ) or, equivalently, that given an increasing sequence {En : n ∈ N} of
linear subspaces of `∞

0 (Σ) covering `∞
0 (Σ), there exists p ∈ N such that Ep is dense and barrelled (see

also [8] (Theorem 3)).
As a consequence of Theorem 4 we show that if a σ-algebra Σ is covered by an increasing sequence

{Σn : n ∈ N} of subsets, there exists some p ∈ N such that
{

χA : A ∈ Σp
}

, regarded as a subset of the
dual unit ball of ba (Σ), is also a Rainwater set for ba (Σ). This easily implies Theorem 2. In the last
section we give some applications of Theorem 2 to classic Banach space theory which seems to have
gone unnoticed so far. Let us point out that some results of this paper hold for Boolean algebras [9]
(Theorem 12.35).

3. Rainwater Sets for ba (A)

A subset X of the dual closed unit ball BE∗ of a Banach space E is called a Rainwater set for E
if every bounded sequence {xn}∞

n=1 of E that converges pointwise on X, i. e., such that x∗xn → x∗x
for each x∗ ∈ X, converges weakly in E (cf. [10]). Rainwater’s classic theorem [11] asserts that the
set of the extreme points of the closed dual unit ball of a Banach space E is a Rainwater set for E.
According to [12] (Corollary 11), each James boundary of E is a Rainwater set for E. As regards the
Banach space C (X) of real-valued continuous functions over a compact Hausdorff space X equipped
with the supremum norm, if K = Ext BC(X)∗ is the set of the extreme points of the compact subset
BC(X)∗ of C (X)∗ (weak∗), the Arens-Kelly theorem asserts that K = {± δx : x ∈ X} (see [13]). By the
Lebesgue dominated convergence theorem, if { fn}∞

n=1 is a norm-bounded sequence in C (X) (with
respect to the supremum-norm) then fn → f weakly in C (X) if and only if fn (x) → f (x) for every
x ∈ X, that is, 〈 fn, µ〉 → 〈 f , µ〉 for every µ ∈ C (X)∗ if and only if 〈 fn, δv〉 → 〈 f , δv〉 for each v ∈ K
(see [14] (IV.6.4 Corollary)). This is Rainwater’s theorem for C (X). In [10] the weak K-analyticity of the
Banach space Cb(X) of real-valued continuous and bounded functions defined on a completely regular
space X equipped with the supremum norm is characterized in terms of certain Rainwater sets for
Cb(X). The next theorem, based on [3] (Proposition 4.1), exhibits a connection between Rainwater sets
and property (G). We include it for future reference and provide a proof for the sake of completeness.

Theorem 3. Let A be an algebra of sets. The following are equivalent

1. A has property (G).
2. {χA : A ∈ A} is a Rainwater set for ba (A), considered as a subset of ba (A)∗.
3. The unit ball of `∞

0 (A) is a Rainwater set for ba (A).
4. The unit ball of `∞ (A) is a Rainwater set for ba (A).

Proof. 1 ⇒ 2. Assume that A has property (G) and let {µn}∞
n=1 be a bounded sequence in ba (A)

and µ ∈ ba (A) such that 〈χA, µn〉 → 〈χA, µ〉 for each A ∈ A. i. e., such that µn (A)→ µ (A) for each
A ∈ A. By Theorem 1 the sequence M = {µn : n ∈ N} is (bounded and) uniformly exhaustive on
A, so [15] (Corollary 5.2) produces a nonnegative real-valued finitely-additive measure λ on A such
that limλ(E)→0 supn∈N |µn (E)| = 0. Hence, [14] (4.9.12 Theorem]) shows that M is relatively weakly
sequentially compact. Given that µn (A)→ µ (A) for each A ∈ A, necessarily µ is the only possible
weakly adherent point of the sequence {µn}∞

n=1. So we get that µn → µ weakly in ba (A), which shows
that {χA : A ∈ A} is a Rainwater set for ba (A).

2 ⇒ 3. If Bba(A)∗ denotes the second dual ball of the closed unit ball B`∞(A) of `∞ (A) and B0
stands for the unit ball of `∞

0 (A), from the relations {χA : A ∈ A} ⊆ B0 ⊆ Bba(A)∗ it follows that B0 is
a also Rainwater set for ba (A).

3⇒ 4 is obvious.
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4⇒ 1. If µn → µ in ba (A) under the weak* topology σ (ba (A) , `∞ (A)) of ba (A) then {µn}∞
n=1

is a bounded sequence in ba (A). Given that 〈µn, f 〉 → 〈µ, f 〉 for every f ∈ B`∞(A) and given
the hypothesis that B`∞(A) is a Rainwater set for ba (A), we have that µn → µ weakly in ba (A).
Consequently A has property (G).

Example 1. If Z stands for the algebra generated by the sets of density zero in N, then {χA : A ∈ Z} is not a
Rainwater set for ba (Z). This follows from the previous theorem and from the fact that Z does not have property
(G) (see [16]).

Theorem 4. Assume thatA is an algebra of sets. LetM be a Nikodým subset for ba (A) and let {Mn : n ∈ N}
be an increasing covering ofM by subsets ofM. If {χA : A ∈ M} is a Rainwater set for ba (A), there exists
some p ∈ N such that

{
χA : A ∈ Mp

}
is a Rainwater set for ba (A).

Proof. Assume that {χA : A ∈ M} is a Rainwater set for ba (A). First we claim that

{χA : A ∈ A} ⊆
∞⋃

n=1

n · abx {χA : A ∈ Mn}
‖·‖∞

Let us proceed by contradiction. Assume otherwise that there exists B ∈ A such that χB /∈
n · abx {χA : A ∈ Mn}

‖·‖∞ for all n ∈ N. In this case the separation theorem provides µn ∈ ba (A)
with |µn (B)| = 1 such that

sup
{
|〈 f , µn〉| : f ∈ abx {χA : A ∈ Mn}

‖·‖∞

}
≤ 1

n

So, in particular it holds that

sup {|µn (A)| : A ∈ Mn} ≤
1
n

for every n ∈ N. If M ∈ M there is k ∈ N such that M ⊆ Mn for every n ≥ k. Consequently
|µn (M)| ≤ 1

n for n ≥ k, which shows that µn (M) → 0. SinceM is a Nikodým set and {µn}∞
n=1 is

pointwise bounded onM, it follows that {µn}∞
n=1 is bounded in ba (A). So, the fact that µn (M)→ 0

for all M ∈ M along with the assumption thatM is a Rainwater set leads to µn → 0 weakly in ba (A).
This is a contradiction, since 〈χB, µn〉 = µn (B) = 1 for every n ∈ N. The claim is proved.

Set Q := {χA : A ∈ A}. Since we are assuming thatM is a Nikodým set for ba (A), the larger set
A is also a Nikodým set for ba (A), which implies that `∞

0 (A) is a metrizable barrelled space, hence
a Baire-like space (see [17]). On the other hand, as a consequence of the previous claim, the family
{Wn}∞

n=1 with

Wn := n · abx {χA : A ∈ Mn}
‖·‖∞

is an increasing sequence of closed absolutely convex sets covering `∞
0 (A). So, there exists p ∈ N

such that
Q ⊆ p · abx

{
χA : A ∈ Mp

}‖·‖∞ ,

which shows that
abx

{
χA : A ∈ Mp

}‖·‖∞

is a Rainwater set for ba (A).
We claim that this implies that

{
χA : A ∈ Mp

}
is a Rainwater set for ba (A). In order to establish

the claim it suffices to show that abx
{

χA : A ∈ Mp
}

is a Rainwater set for ba (A). So, let {λn}∞
n=1 be

a bounded sequence in ba (A) such that 〈u, λn〉 → 0 for every u ∈ abx
{

χA : A ∈ Mp
}

. Let us show

that 〈v, λn〉 → 0 for each v ∈ abx
{

χA : A ∈ Mp
}‖·‖∞ . If v ∈ abx

{
χA : A ∈ Mp

}‖·‖∞ there exists a
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sequence {uk}∞
k=1 in abx

{
χA : A ∈ Mp

}
such that ‖uk − v‖∞ → 0. Consequently, given ε > 0 there

is k (ε) ∈ N with ∥∥∥uk(ε) − v
∥∥∥

∞
<

ε

2
(
1 + supn∈N |λn|

) .

Let n (ε) ∈ N be such that ∣∣∣〈uk(ε), λn

〉∣∣∣ < ε

2

for every n ≥ n (ε). Consequently, one has

|〈v, λn〉| ≤
∣∣∣〈v− uk(ε), λn

〉∣∣∣+ ∣∣∣〈uk(ε), λn

〉∣∣∣ ≤ ∥∥∥uk(ε) − v
∥∥∥

∞
|λn|+

∣∣∣〈uk(ε), λn

〉∣∣∣ < ε

for all n ≥ n0 (ε). This proves that 〈v, λn〉 → 0 for each v ∈ abx
{

χA : A ∈ Mp
}‖·‖∞ . Since we

have shown before that abx
{

χA : A ∈ Mp
}‖·‖∞ is a Rainwater set for ba (A), we get that λn → 0

weakly in ba (A). Therefore the absolutely convex set abx
{

χA : A ∈ Mp
}

is a Rainwater set for ba (A),
a stated.

Corollary 1. Let A be an algebra of sets with property (VHS). If {An : n ∈ N} is an increasing covering of
A consisting of subsets of A, there is some p ∈ N such that

{
χA : A ∈ Ap

}
is a Rainwater set for ba (A).

Proof. This is a straightforward consequence of the Theorem 4 forM = A, since as mentioned earlier
an algebra A has property (VHS) if and only if A has both properties (N) and (G) (this also can be
found in [7] (Theorem 4.2)). So, on the one hand A is a Nikodým set for ba (A) and, on the other hand,
according to Theorem 3, the family {χA : A ∈ A} is a Rainwater set for ba (A).

Proof of Theorem 2. If Σ is a σ-algebra of subsets of a set Ω which is covered by an increasing sequence
{Σn : n ∈ N} of subsets of Σ, Corollary 1 and Valdivia’s result [1] provide an index p ∈ N such that
Σp is a Nikodým set for ba (Σ) at the same time that

{
χA : A ∈ Σp

}
is a Rainwater set for ba (Σ).

If {µn}∞
n=1 verifies that µn (A)→ µ (A) for every A ∈ Σp, the sequence {µn}∞

n=1 is bounded in ba (Σ)
since Σp is a Nikodým set for ba (Σ). But then µn → µ weakly in ba (Σ) due to

{
χA : A ∈ Σp

}
is a

Rainwater set for ba (Σ). Consequently Σp is a Grothendieck for ba (Σ) and we are done.

Corollary 2. If {Λn : n ∈ N} is an increasing sequence of subsets of Σ = 2N covering 2N, there exists some
p ∈ N such that each sequence {µn}∞

n=1 in ba
(
2N
)

that converges pointwise on Λp converges weakly in
ba
(
2N
)
= `∗∞.

Proof. Apply Theorem 2 to the σ-algebra 2N.

We complete our study of Rainwater sets for ba (A) with the following result. Note that if Xw∗

(weak* closure) with X ⊆ Bba(A)∗ is a Rainwater set for ba (A) then X could not be a Rainwater set for
ba (A). However the following property holds.

Theorem 5. Let A be an algebra of sets. Assume that {χA : A ∈ A} is a Grothendieck set for ba (A).
If {χA : A ∈ M} is a Gδ-dense subset of {χA : A ∈ A} under the relative weak* topology of ba (A)∗ or, which
is the same, under the relative weak topology of `∞

0 (A), then {χA : A ∈ M} is a Grothendieck set for ba (A).

Proof. Let {µn}∞
n=1 be a sequence in ba (A) such that µn (Q)→ 0 for every Q ∈ M. Given B ∈ A, let

us define Gn := {χC : C ∈ A, µn (C) = µn (B)}. Then one has that χB ∈
⋂∞

n=1 Gn, so that G :=
⋂∞

n=1 Gn
is a nonempty intersection of countably many zero-sets of {χA : A ∈ A}, hence a non-empty Gδ-set
in {χA : A ∈ A} in the relative weak topology of `∞

0 (A). According to the hypothesis G meets
{χA : A ∈ M}. Hence there exists MB ∈ M such that χMB ∈ G ∩ {χA : A ∈ M}, which means that
µn (MB) = µn (B) for every n ∈ N. Since µn (MB) → 0, it follows that µn (B) → 0. So, we conclude
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that µn (B) → 0 for every B ∈ A. Putting together that (i) {χA : A ∈ A} is a Grothendieck set for
ba (A), and (ii) µn (B)→ 0 for all B ∈ A, we get that µn → 0 weakly in ba (A). Thus {χA : A ∈ M}
is a Grothendieck set for ba (A).

4. Application to Banach Spaces

Theorem 2 facilitates the extension of various classic theorems of Banach space theory. As a
sample, we include three of them: namely, the Phillips lemma about convergence in ba (Σ), Nikodým’s
pointwise convergence theorem in ca (Σ) and the usual characterization of weak convergence in ca (Σ),
the linear subspace of ba (Σ) consisting of the countably additive measures in Σ (see [18] (Chapter 7)).

Proposition 1. Let Σ be a σ-algebra of subsets of a set Ω. If {Σn : n ∈ N} is an increasing sequence of subsets
of Σ covering Σ, there exists some p ∈ N enjoying the following property. If {µn}∞

n=1 ⊆ ba (Σ) verifies
limn→∞ µn (A) = 0 for every A ∈ Σp and {Ak : k ∈ N} is a sequence of pairwise disjoint elements of Σ, then

lim
n→∞

∞

∑
k=1
|µn (Ak)| = 0. (1)

Proof. According to Theorem 2 there is p ∈ N such that Σp is Grothendieck set for ba (Σ).
So, if limn→∞ µn (A) = 0 for every A ∈ Σp, then µn → 0 weakly in ba (Σ). In particular, µn (A) → 0
for every A ∈ Σ. Hence, (1) holds by Phillip’s classic theorem.

Proposition 2. Let Σ be a σ-algebra of subsets of a set Ω. If {Σn : n ∈ N} is an increasing sequence of subsets
of Σ covering Σ, there exists some p ∈ N such that if {µn}∞

n=1 ⊆ ca (Σ) verifies that µn (A)→ µ (A) for every
A ∈ Σp then the set {µn : n ∈ N} is uniformly exhaustive and µ ∈ ca (Σ).

Proposition 3. Let Σ be a σ-algebra of subsets of a set Ω. If {Σn : n ∈ N} is an increasing sequence of subsets
of Σ covering Σ, there exists some p ∈ N such that µn → µ weakly in ca (Σ) if and only if µn (A)→ µ (A) for
every A ∈ Σp.
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