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Abstract: In this article, we discuss the existence and uniqueness of extremal solutions for
nonlinear initial value problems of fractional differential equations involving the ψ-Caputo derivative.
Moreover, some uniqueness results are obtained. Our results rely on the standard tools of functional
analysis. More precisely we apply the monotone iterative technique combined with the method of
upper and lower solutions to establish sufficient conditions for existence as well as the uniqueness of
extremal solutions to the initial value problem. An illustrative example is presented to point out the
applicability of our main results.
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1. Introduction

Fractional differential equations have been applied in many fields of engineering, physics, biology,
and chemistry see [1–4]. Moreover, to get a couple of developments about the theory of fractional
differential equations, one can allude to the monographs of Abbas et al. [5–7], Kilbas et al. [8],
Miller and Ross [9], Podlubny [10], and Zhou [11,12], as well as to the papers by Agarwal, et al. [13],
Benchohra, et al. [14–16], and the references therein. In the recent past, Almeida in [17] presented
a new fractional differentiation operator called by ψ-Caputo fractional operator. For more details
see [18–23], and the references given therein.

At the present day, different kinds of fixed point theorems are widely used as fundamental
tools in order to prove the existence and uniqueness of solutions for various classes of nonlinear
fractional differential equations for details, we refer the reader to a series of papers [24–30] and the
references therein, but here we focus on those using the monotone iterative technique, coupled with
the method of upper and lower solutions. This method is a very useful tool for proving the existence
and approximation of solutions to many applied problems of nonlinear differential equations and
integral equations (see [31–42]). However, as far as we know, there is no work yet reported on the
existence of extremal solutions for the Cauchy problem with ψ-Caputo fractional derivative. Motivated
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by this fact, in this paper we deal with the existence and uniqueness of extremal solutions for the
following initial value problem of fractional differential equations involving the ψ-Caputo derivative:{

cDα;ψ
a+ x(t) = f (t, x(t)), t ∈ J := [a, b],

x(a) = a∗,
(1)

where cDα;ψ
a+ is the ψ-Caputo fractional derivative of order α ∈ (0, 1], f : [a, b]×R −→ R is a given

continuous function and a∗ ∈ R.
The rest of the paper is organized as follows: in Section 2, we give some necessary definitions

and lemmas. The main results are given in Section 3. Finally, an example is presented to illustrate the
applicability of the results developed.

2. Preliminaries

In this section, we introduce some notations and definitions of fractional calculus and present
preliminary results needed in our proofs later.

We begin by defining ψ-Riemann-Liouville fractional integrals and derivatives. In what follows,

Definition 1 ([8,17]). For α > 0, the left-sided ψ-Riemann-Liouville fractional integral of order α for an
integrable function x : J −→ R with respect to another function ψ : J −→ R that is an increasing differentiable
function such that ψ′(t) 6= 0, for all t ∈ J is defined as follows

Iα;ψ
a+ x(t) =

1
Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1x(s)ds, (2)

where Γ is the classical Euler Gamma function.

Definition 2 ([17]). Let n ∈ N and let ψ, x ∈ Cn(J,R) be two functions such that ψ is increasing and
ψ′(t) 6= 0, for all t ∈ J. The left-sided ψ-Riemann–Liouville fractional derivative of a function x of order α is
defined by

Dα;ψ
a+ x(t) =

(
1

ψ′(t)
d
dt

)n
In−α;ψ
a+ x(t)

=
1

Γ(n− α)

(
1

ψ′(t)
d
dt

)n ∫ t

a
ψ′(s)(ψ(t)− ψ(s))n−α−1x(s)ds,

where n = [α] + 1.

Definition 3 ([17]). Let n ∈ N and let ψ, x ∈ Cn(J,R) be two functions such that ψ is increasing and
ψ′(t) 6= 0, for all t ∈ J. The left-sided ψ-Caputo fractional derivative of x of order α is defined by

cDα;ψ
a+ x(t) = In−α;ψ

a+

(
1

ψ′(t)
d
dt

)n
x(t),

where n = [α] + 1 for α /∈ N, n = α for α ∈ N.
To simplify notation, we will use the abbreviated symbol

x[n]ψ (t) =
(

1
ψ′(t)

d
dt

)n
x(t).
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From the definition, it is clear that

cDα;ψ
a+ x(t) =


∫ t

a
ψ′(s)(ψ(t)−ψ(s))n−α−1

Γ(n−α)
x[n]ψ (s)ds , if α /∈ N,

x[n]ψ (t) , if α ∈ N.
(3)

We note that if x ∈ Cn(J,R) the ψ-Caputo fractional derivative of order α of x is determined as

cDα;ψ
a+ x(t) = Dα;ψ

a+

x(t)−
n−1

∑
k=0

x[k]ψ (a)

k!
(ψ(t)− ψ(a))k

 .

(see, for instance, [17], Theorem 3).

Lemma 1 ([20]). Let α, β > 0, and x ∈ L1(J,R). Then

Iα;ψ
a+ Iβ;ψ

a+ x(t) = Iα+β;ψ
a+ x(t), a.e. t ∈ J.

In particular, if x ∈ C(J,R), then Iα;ψ
a+ Iβ;ψ

a+ x(t) = Iα+β;ψ
a+ x(t), t ∈ J.

Lemma 2 ([20]). Let α > 0, The following holds:
If x ∈ C(J,R) then

cDα;ψ
a+ Iα;ψ

a+ x(t) = x(t), t ∈ J.

If x ∈ Cn(J,R), n− 1 < α < n. Then

Iα;ψ
a+

cDα;ψ
a+ x(t) = x(t)−

n−1

∑
k=0

x[k]ψ (a)

k!
[ψ(t)− ψ(a)]k , t ∈ J.

Lemma 3 ([8,20]). Let t > a, α ≥ 0, and β > 0. Then

• Iα;ψ
a+ (ψ(t)− ψ(a))β−1 = Γ(β)

Γ(β+α)
(ψ(t)− ψ(a))β+α−1,

• cDα;ψ
a+ (ψ(t)− ψ(a))β−1 = Γ(β)

Γ(β−α)
(ψ(t)− ψ(a))β−α−1,

• cDα;ψ
a+ (ψ(t)− ψ(a))k = 0, for all k ∈ {0, . . . , n− 1}, n ∈ N.

Definition 4 ([43]). The one-parameter Mittag–Leffler function Eα(·), is defined as:

Eα(z) =
∞

∑
k=0

zk

Γ(αk + 1)
, (z ∈ R, α > 0).

Definition 5 ([43]). The Two-parameter Mittag–Leffler function Eα,β(·), is defined as:

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, α, β > 0 and z ∈ R. (4)

Theorem 1 (Weissinger’s fixed point theorem [44]). Assume (E, d) to be a non empty complete metric space
and let β j ≥ 0 for every j ∈ N such that ∑n−1

j=0 β j converges. Furthermore, let the mapping T : E→ E satisfy
the inequality

d(Tju,Tjv) ≤ β jd(u, v),

for every j ∈ N and every u, v ∈ E. Then, T has a unique fixed point u∗. Moreover, for any v0 ∈ E, the sequence
{Tjv0}∞

j=1 converges to this fixed point u∗.
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3. Main Results

Let us recall the definition and lemma of a solution for problem (1). First of all, we define what
we mean by a solution for the boundary value problem (1).

Definition 6. A function x ∈ C(J,R) is said to be a solution of Equation (1) if x satisfies the equation
cDα;ψ

a+ x(t) = f (t, x(t)), for each t ∈ J and the condition

x(a) = a∗.

For the existence of solutions for problem (1) we need the following lemma for a general linear
equation of α > 0, that generalizes expression (3.1.34) in [8].

Lemma 4. For a given h ∈ C(J,R) and α ∈ (n− 1, n], with n ∈ N, the linear fractional initial value problem{
cDα;ψ

a+ x(t) + rx(t) = h(t), t ∈ J := [a, b],

x[k]ψ (a) = ak, k = 0, . . . , n− 1,
(5)

has a unique solution given by

x(t) =
n−1

∑
k=0

ak
k!

[ψ(t)− ψ(a)]k − rIα;ψ
a+ x(t) + Iα;ψ

a+ h(t)

=
n−1

∑
k=0

ak
k!

[ψ(t)− ψ(a)]k − r
Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1x(s)ds

+
1

Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1h(s)ds.

(6)

Moreover, the explicit solution of the Volterra integral equation (6) can be represented by

x(t) =
n−1

∑
k=0

ak [ψ(t)− ψ(a)]k Eα,k+1
(
−r(ψ(t)− ψ(a))α

)
+
∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1Eα,α

(
−r(ψ(t)− ψ(a))α

)
h(s)ds,

(7)

where Eα,β(·) is the two-parametric Mittag–Leffer function defined in (4).

Proof. Since α ∈ (n− 1, n], from Lemma 2 we know that the Cauchy problem (5) is equivalent to the
following Volterra integral equation

x(t) =
n−1

∑
k=0

ak
k!

[ψ(t)− ψ(a)]k − rIα;ψ
a+ x(t) + Iα;ψ

a+ h(t)

=
n−1

∑
k=0

ak
k!

[ψ(t)− ψ(a)]k − r
Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1x(s)ds

+
1

Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1h(s)ds.

Note that the above equation can be written in the following form

x(t) = T x(t),
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where the operator T is defined by

T x(t) =
n−1

∑
k=0

ak
k!

[ψ(t)− ψ(a)]k − rIα;ψ
a+ x(t) + Iα;ψ

a+ h(t).

Let n ∈ N and x, y ∈ C(J,R). Then, we have

|T n(x)(t)− T n(y)(t)| =
∣∣∣−rIα;ψ

a+

(
T n−1x(t)− T n−1y(t)

)∣∣∣
=

∣∣∣−rIα;ψ
a+

(
−rIα;ψ

a+

(
T n−2x(t)− T n−2y(t)

))∣∣∣
...

=
∣∣∣(−r)nInα;ψ

a+ (x(t)− y(t))
∣∣∣

≤
(
r(ψ(b)− ψ(a))α

)n

Γ(nα + 1)
‖x− y‖.

Hence, we have

‖T n(x)− T n(y)‖ ≤ rn(ψ(b)− ψ(a))nα

Γ(nα + 1)
‖x− y‖.

It’s well known that

∞

∑
n=0

rn(ψ(b)− ψ(a))nα

Γ(nα + 1)
= Eα

(
r(ψ(b)− ψ(a))α

)
,

it follows that the mapping T n is a contraction. Hence, by Weissinger’s fixed point theorem, T has a
unique fixed point. That is (5) has a unique solution.

Now we apply the method of successive approximations to prove that the integral Equation (6)
can be expressed by

x(t) =
n−1

∑
k=0

ak [ψ(t)− ψ(a)]k Eα,k+1
(
−r(ψ(t)− ψ(a))α

)
+
∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1Eα,α

(
−r(ψ(t)− ψ(a))α−1)h(s)ds.

For this, we set 
x0(t) =

n−1

∑
k=0

ak
k!

[ψ(t)− ψ(a)]k

xm(t) = x0(t)− r
Γ(α)

∫ t
a ψ′(s)(ψ(t)− ψ(s))α−1xm−1(s)ds

+ 1
Γ(α)

∫ t
a ψ′(s)(ψ(t)− ψ(s))α−1h(s)ds.

(8)

It follows from Equation (8) and Lemma 3 that

x1(t) = x0(t)− rIα;ψ
a+ x0(t) + I

α;ψ
a+ h(t)

=
n−1

∑
k=0

ak
k!

[ψ(t)− ψ(a)]k − r
n−1

∑
k=0

ak
Γ(α + k + 1)

[ψ(t)− ψ(a)]α+k + Iα;ψ
a+ h(t). (9)
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Similarly, Equations (8) and (9) and Lemmas 1 and 3 yield

x2(t) =x0(t)− rIα;ψ
a+ x1(t) + I

α;ψ
a+ h(t)

=
n−1

∑
k=0

ak
k!

[ψ(t)− ψ(a)]k − rIα;ψ
a+

(
n−1

∑
k=0

ak
k!

[ψ(t)− ψ(a)]k

−r
n−1

∑
k=0

ak
Γ(α + k + 1)

[ψ(t)− ψ(a)]α+k + Iα;ψ
a+ h(t)

)
+ Iα;ψ

a+ h(t)

=
n−1

∑
k=0

ak
k!

[ψ(t)− ψ(a)]k − r
n−1

∑
k=0

ak
Γ(α + k + 1)

[ψ(t)− ψ(a)]α+k

+ r2
n−1

∑
k=0

ak
Γ(2α + k + 1)

[ψ(t)− ψ(a)]2α+k − rI2α;ψ
a+ h(t) + Iα;ψ

a+ h(t)

=
2

∑
l=0

n−1

∑
k=0

(−r)l ak
Γ(lα + k + 1)

[ψ(t)− ψ(a)]lα+k +
∫ t

a
ψ′(s)

1

∑
l=0

(−r)l−1(ψ(t)− ψ(s))lα+α−1

Γ(lα + α)
h(s)ds.

Continuing this process, we derive the following relation

xm(t) =
m

∑
l=0

n−1

∑
k=0

(−r)l ak
Γ(lα + k + 1)

[ψ(t)− ψ(a)]lα+k +
∫ t

a
ψ′(s)

m−1

∑
l=0

(−r)l−1(ψ(t)− ψ(s))lα+α−1

Γ(lα + α)
h(s)ds.

Taking the limit as n → ∞, we obtain the following explicit solution x(t) to the integral
Equation (6):

x(t) =
∞

∑
l=0

n−1

∑
k=0

(−r)l ak
Γ(lα + k + 1)

[ψ(t)− ψ(a)]lα+k +
∫ t

a
ψ′(s)

∞

∑
l=0

(−r)l−1(ψ(t)− ψ(s))lα+α−1

Γ(lα + α)
h(s)ds

=
n−1

∑
k=0

ak (ψ(t)− ψ(a))k
∞

∑
l=0

(−r)l

Γ(lα + k + 1)
[ψ(t)− ψ(a)]lα

+
∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1

∞

∑
l=0

(−r)l−1(ψ(t)− ψ(s))lα

Γ(lα + α)
h(s)ds.

Taking into account (4), we get

x(t) =
n−1

∑
k=0

ak [ψ(t)− ψ(a)]k Eα,k+1
(
−r(ψ(t)− ψ(a))α

)
+
∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1Eα,α

(
−r(ψ(t)− ψ(s))α

)
h(s)ds.

Then the proof is completed.

Lemma 5 (Comparison result). Let α ∈ (0, 1] be fixed and r ∈ R. If ρ ∈ C(J,R) satisfies the
following inequalities {

cDα;ψ
a+ ρ(t) ≥ −rρ(t), t ∈ [a, b],

ρ(a) ≥ 0,
(10)

then ρ(t) ≥ 0 for all t ∈ J.

Proof. Using the integral representation (7) and the fact that, Eα,1(z) ≥ 0 and Eα,α(z) ≥ 0 for all
α ∈ (0, 1] and z ∈ R, (see [45]) it suffices to take h(t) = cDα;ψ

a+ ρ(t) + rρ(t) ≥ 0 with initial conditions
ρ(a) = a∗ ≥ 0.
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Definition 7. A function x0 ∈ C(J,R) is said to be a lower solution of the problem (1), if it satisfies{
cDα;ψ

a+ x0(t) ≤ f (t, x0), t ∈ (a, b],

x0(a) ≤ a∗.
(11)

Definition 8. A function y0 ∈ C(J,R) is called an upper solution of problem (1), if it satisfies{
cDα;ψ

a+ y0(t) ≥ f (t, y0), t ∈ (a, b],

y0(a) ≥ a∗.
(12)

Theorem 2. Let the function f ∈ C(J×R,R). In addition assume that:

(H1) There exist x0, y0 ∈ C(J,R) such that x0 and y0 are lower and upper solutions of problem (1), respectively,
with x0(t) ≤ y0(t), t ∈ J.

(H2) There exists a constant r ∈ R such that

f (t, y)− f (t, x) ≥ −r(y− x) for x0 ≤ x ≤ y ≤ y0.

Then there exist monotone iterative sequences {xn} and {yn}, which converge uniformly on the interval J
to the extremal solutions of (1) in the sector [x0, y0], where

[x0, y0] = {z ∈ C(J,R) : x0(t) ≤ z(t) ≤ y0(t), t ∈ J}.

Proof. First, for any x0(t), y0(t) ∈ C(J,R), we consider the following linear initial value problems of
fractional order: {

cDα;ψ
a+ xn+1(t) = f (t, xn(t))− r(xn+1(t)− xn(t)), t ∈ J,

xn+1(a) = a∗,
(13)

and {
cDα;ψ

a+ yn+1(t) = f (t, yn(t))− r(yn+1(t)− yn(t)), t ∈ J,

yn+1(a) = a∗.
(14)

By Lemma 4, we know that (13) and (14) have unique solutions in C(J,R) which are defined
as follows:

xn+1(t) = a∗Eα,1
(
−r(ψ(t)− ψ(a))α

)
+
∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1Eα,α

(
−r(ψ(t)− ψ(s))α

)(
f (s, xn(s)) + rxn(s)

)
ds, t ∈ J,

(15)

yn+1(t) = a∗Eα,α
(
−r(ψ(t)− ψ(a))α

)
+
∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1Eα,α

(
−r(ψ(t)− ψ(s))α

)(
f (s, yn(s)) + ryn(s)

)
ds, t ∈ J.

(16)

We will divide the proof into three steps.
Step 1: We show that the sequences xn(t), yn(t)(n ≥ 1) are lower and upper solutions of problem (1),
respectively and the following relation holds

x0(t) ≤ x1(t) ≤ · · · ≤ xn(t) ≤ · · · ≤ yn(t) ≤ · · · ≤ y1(t) ≤ y0(t), t ∈ J. (17)
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First, we prove that

x0(t) ≤ x1(t) ≤ y1(t) ≤ y0(t), t ∈ J. (18)

Set ρ(t) = x1(t)− x0(t). From (13) and Definition 7, we obtain

cDα;ψ
a+ ρ(t) = cDα;ψ

a+ x1(t)− cDα;ψ
a+ x0(t)

≥ f
(
t, x0(t)

)
− r(x1(t)− x0(t))− f

(
t, x0(t)

)
= −rρ(t).

Again, since
ρ(a) = x1(a)− x0(a) = a∗ − x0(a) ≥ 0.

By Lemma 5, ρ(t) ≥ 0, for t ∈ J. That is, x0(t) ≤ x1(t). Similarly, we can show that
y1(t) ≤ y0(t), t ∈ J.

Now, let ρ(t) = y1(t)− x1(t). From (13), (14) and (H2), we get

cDα;ψ
a+ ρ(t) = cDα;ψ

a+ y1(t)− cDα;ψ
a+ x1(t)

= f
(
t, y0(t)

)
− r
(
y1(t)− y0(t)

)
− f

(
t, x0(t)

)
+ r
(
x1(t)− x0(t)

)
= f

(
t, y0(t)

)
− f

(
t, x0(t)

)
− r
(
y1(t)− y0(t)

)
+ r
(
x1(t)− x0(t)

)
≥ −r

(
y0(t)− x0(t)

)
− r
(
y1(t)− y0(t)

)
+ r
(
x1(t)− x0(t)

)
= −rρ(t).

Since, ρ(a) = x1(a)− y1(a) = a∗ − a∗ = 0. By Lemma 5, we get x1(t) ≤ y1(t), t ∈ J.
Secondly, we show that x1(t), y1(t) are lower and upper solutions of problem (1), respectively.

Since x0 and y0 are lower and upper solutions of problem (1), by (H2), it follows that

cDα;ψ
a+ x1(t) = f

(
t, x0(t)

)
− r
(

x1(t)− x0(t)
)
≤ f

(
t, x1(t)

)
,

also x1(a) = a∗. Therefore, x1(t) is a lower solution of problem (1). Similarly, it can be obtained that
y1(t) is an upper solution of problem (1).

By the above arguments and mathematical induction, we can show that the sequences
xn(t), yn(t), (n ≥ 1) are lower and upper solutions of problem (1), respectively and the following
relation holds

x0(t) ≤ x1(t) ≤ · · · ≤ xn(t) ≤ · · · ≤ yn(t) ≤ · · · ≤ y1(t) ≤ y0(t), t ∈ J.

Step 2: The sequences {xn(t)}, {yn(t)} converge uniformly to their limit functions
x∗(t), y∗(t), respectively.

Note that the sequence {xn(t)} is monotone nondecreasing and is bounded from above by y0(t).
Since the sequence {yn(t)} is monotone nonincreasing and is bounded from below by x0(t), therefore
the pointwise limits exist and these limits are denoted by x∗ and y∗. Moreover, since {xn(t)}, {yn(t)}
are sequences of continuous functions defined on the compact set [a, b], hence by Dini’s theorem [46],
the convergence is uniform. This is

lim
n→∞

xn(t) = x∗(t) and lim
n→∞

yn(t) = y∗(t),

uniformly on t ∈ J and the limit functions x∗, y∗ satisfy problem (1). Furthermore, x∗ and y∗ satisfy
the relation

x0 ≤ x1 ≤ · · · ≤ xn ≤ x∗ ≤ y∗ ≤ · · · ≤ yn ≤ · · · ≤ y1 ≤ y0.
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Step 3: We prove that x∗ and y∗ are extremal solutions of problem (1) in [x0, y0].
Let z ∈ [x0, y0] be any solution of (1). We assume that the following relation holds for some n ∈ N:

xn(t) ≤ z(t) ≤ yn(t), t ∈ J. (19)

Let ρ(t) = z(t)− xn+1(t). We have

cDα;ψ
a+ ρ(t) = cDα;ψ

a+ z(t)− cDα;ψ
a+ xn+1(t)

= f
(
t, z(t)

)
− f

(
t, xn(t)

)
+ r
(

xn+1(t)− xn(t)
)

≥ −r
(
z(t)− xn(t)

)
+ r
(
xn+1(t)− xn(t)

)
= −rρ(t).

Furthermore, ρ(a) = z(a)− xn+1(a) = a∗ − a∗ = 0. By Lemma 5, we obtain ρ(t) ≥ 0, t ∈ J,
which means

xn+1(t) ≤ z(t), t ∈ J.

Using the same method, we can show that

z(t) ≤ yn+1(t), t ∈ J.

Hence, we have
xn+1(t) ≤ z(t) ≤ yn+1(t), t ∈ J.

Therefore, (19) holds on J for all n ∈ N. Taking the limit as n→ ∞ on both sides of (19), we get

x∗ ≤ z ≤ y∗.

Therefore x∗, y∗ are the extremal solutions of (1) in [x0, y0]. This completes the proof.

Now, we shall prove the uniqueness of the solution of the system (1) by monotone
iterative technique.

Theorem 3. Suppose that (H1) and (H2) are satisfied. Furthermore, we impose that:

(H3) There exists a constant r∗ ≥ −r such that

f (t, y)− f (t, x) ≤ r∗(y− x),

for every x0 ≤ x ≤ y ≤ y0, t ∈ J. Then problem (1) has a unique solution between x0 and y0.

Proof. From the Theorem 2, we know that x∗(t) and y∗(t) are the extremal solutions of the IVP (1) and
x∗(t) ≤ y∗(t), t ∈ J. It is sufficient to prove x∗(t) ≥ y∗(t), t ∈ J. In fact, let ρ(t) = x∗(t)− y∗(t), t ∈ J,
in view of (H3), we have

cDα;ψ
a+ ρ(t) = cDα;ψ

a+ x∗(t)− cDα;ψ
a+ y∗(t)

= f
(
t, x∗(t)

)
− f

(
t, y∗(t)

)
≥ r∗

(
x∗(t)− y∗(t)

)
= r∗ρ(t).

Furthermore, ρ(a) = x∗(a)− y∗(a) = a∗ − a∗ = 0. From Lemma 5, it follows that ρ(t) ≥ 0, t ∈ J.
Hence, we obtain

x∗(t) ≥ y∗(t), t ∈ J.

Therefore, x∗ ≡ y∗ is the unique solution of the Cauchy problem (1) in [x0, y0]. This ends the
proof of Theorem 3.
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As a direct consequence of the previous result, we arrive at the following one

Corollary 1. Suppose that (H1) is satisfied and that f ∈ C(E,R), is differentiable with respect to x and
∂ f /∂x ∈ C(E,R), with

E = {(t, x) ∈ R2, such that x0(t) ≤ x ≤ y0(t)}.

Then problem (1) has a unique solution between x0 and y0.

Proof. The proof follows immediately from the fact that E is a compact set and, as a consequence,
∂ f /∂x is bounded in E.

4. An Example

Example 1. Consider the following problem:cD
1
2
0+x(t) = 1− x2(t) + 2t, t ∈ J := [0, 1],

x(0) = 1
(20)

Note that, this problem is a particular case of IVP (1), where

α =
1
2

, a = 0, b = 1, a∗ = 1, ψ(t) = t,

and f : J×R −→ R given by

f (t, x) = 1− x2 + 2t, for t ∈ J, x ∈ R.

Taking x0(t) ≡ 0 and y0(t) = 1 + t, it is not difficult to verify that x0, y0 are lower and upper solutions
of (20), respectively, and x0 ≤ y0. So (H1) of Theorem 2 holds

On the other hand, it is clear that the function f is continuous and satisfies∣∣∣∣ f (t, x)
∂x

(t, x)
∣∣∣∣ = | − 2x| ≤ 4 for all t ∈ [0, 1] and 0 ≤ x ≤ t + 1.

Hence, by Corollary 1, the initial value problem (20) has a unique solution u∗ and there exist monotone
iterative sequences {xn} and {yn} converging uniformly to u∗. Furthermore, we have the following
iterative sequences

xn+1(t) = E 1
2 ,1

(
−4
√

t
)
+
∫ t

0
(t− s)−1/2E 1

2 , 1
2

(
−4
√

t− s
)(

1− x2
n(s) + 2s + 4xn(s)

)
ds, t ∈ J,

yn+1(t) = E 1
2 ,1

(
−4
√

t
)
+
∫ t

0
(t− s)−1/2E 1

2 , 1
2

(
−4
√

t− s
)(

1− y2
n(s) + 2s + 4yn(s)

)
ds, t ∈ J.

We notice that the sequences are obtained by solving a recurrence formula of the type vn+1 = A vn, with A
a suitable integral operator and v0 given. So, by a simple numerical procedure, it is not difficult to represent
some iterates of the recurrence sequence. We plot in Figure 1 the four first iterates of each sequence. We point out
that the unique solution is lying within x3 and y3 which gives us a good approximation of such a solution.
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1

1

0

y0

y1
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Figure 1. First four iterates for problem (20).

5. Conclusions

In previous sections, we have presented the existence and uniqueness of extremal solutions to a
Cauchy problem with ψ-Caputo fractional derivative. Moreover, some uniqueness results are obtained.
The proof of the existence results is based on the monotone iterative technique combined with the
method of upper and lower solutions. Moreover, an example is presented to illustrate the validity of
our main results. Our results are not only new in the given configuration but also correspond to some
new situations associated with the specific values of the parameters involved in the given problem.
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7. Abbas, S.; Benchohra, M.; N’Guŕékata, G.M. Advanced Fractional Differential and Integral Equations; Nova Sci.

Publ.: New York, NY, USA, 2014.
8. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; vol. 204 of

North-Holland Mathematics Sudies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006.
9. Miller, K.S.; Ross, B. An Introduction to Fractional Calculus and Fractional Differential Equations; Wiley: New York,

NY, USA, 1993.
10. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999.

http://dx.doi.org/10.1016/j.advengsoft.2008.12.012


Axioms 2020, 9, 57 12 of 13

11. Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014.
12. Zhou, Y. Fractional Evolution Equations and Inclusions; Analysis and Control; Elsevier, Acad. Press: Cambridge,

MA, USA, 2016.
13. Agarwal, R.P.; Benchohra, M.; Hamani, S. A survey onexistence results for boundary value problems of

nonlinear fractional differential equations and inclusions. Acta Appl. Math. 2010, 109, 973–1033. [CrossRef]
14. Benchohra, M.; Graef, J.R.; Hamani, S. Existence results for boundary value problems with non-linear

fractional differential equations. Appl. Anal. 2008, 87, 851–863. [CrossRef]
15. Benchohra, M.; Hamani, S.; Ntouyas, S.K. Boundary value problems for differential equations with fractional

order and nonlocal conditions. Nonlinear Anal. 2009, 71, 2391–2396. [CrossRef]
16. Benchohra, M.; Lazreg, J.E. Existence results for nonlinear implicit fractional differential equations.

Surv. Math. Appl. 2014, 9, 79–92.
17. Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear

Sci. 2017, 44, 460–481. [CrossRef]
18. Abdo, M.S.; Panchal, S.K.; Saeed, A.M. Fractional boundary value problem with ψ-Caputo fractional

derivative. Proc. Math. Sci. 2019, 129, 14. [CrossRef]
19. Almeida, R. Fractional Differential Equations with Mixed Boundary Conditions. Bull. Malays. Math. Sci. Soc.

2019, 42, 1687–1697. [CrossRef]
20. Almeida, R.; Malinowska, A.B.; Monteiro, M.T.T. Fractional differential equations with a Caputo derivative

with respect to a kernel function and their applications. Math. Meth. Appl. Sci. 2018, 41, 336–352. [CrossRef]
21. Almeida, R.; Malinowska, A.B.; Odzijewicz, T. Optimal Leader-Follower Control for the Fractional Opinion

Formation Model. J. Optim. Theory Appl. 2019, 182, 1171–1185. [CrossRef]
22. Almeida, R.; Jleli, M.; Samet, B. A numerical study of fractional relaxation-oscillation equations involving

ψ-Caputo fractional derivative. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2019, 113,
1873–1891. [CrossRef]

23. Samet, B.; Aydi, H. Lyapunov-type inequalities for an anti-periodic fractional boundary value problem
involving ψ-Caputo fractional derivative. J. Inequal. Appl. 2018, 2018, 286. [CrossRef] [PubMed]

24. Abbas, S.; Benchohra, M.; Samet, B.; Zhou, Y. Coupled implicit Caputo fractional q-difference systems.
Adv. Diff. Equ. 2019, 2019, 527. [CrossRef]

25. Abbas, S.; Benchohra, M.; Hamidi, N.; Henderson, J. Caputo–Hadamard fractional differential equations in
Banach spaces. Fract. Calc. Appl. Anal. 2018, 21, 1027–1045. [CrossRef]

26. Abbas, S.; Benchohra, M.; Hamani, S.; Henderson, J. Upper and lower solutions method for
Caputo-Hadamard fractional differential inclusions. Math. Morav. 2019, 23, 107–118. [CrossRef]

27. Aghajani, A.; Pourhadi, E.; Trujillo, J.J. Application of measure of noncompactness to a Cauchy problem for
fractional differential equations in Banach spaces. Fract. Calc. Appl. Anal. 2013, 16, 962–977. [CrossRef]

28. Kucche, K.D.; Mali, A.D.; Sousa, J.V.C. On the nonlinear Ψ-Hilfer fractional differential equations. Comput.
Appl. Math. 2019, 38, 25. [CrossRef]

29. Wu, G.C.; Zeng, D.Q.; Baleanu, D. Fractional impulsive differential equations: Exact solutions, integral
equations and short memory case. Fract. Calc Appl. Anal. 2019, 22, 180–192. [CrossRef]

30. Wu, G.C.; Deng, Z.G.; Baleanu, D.; Zeng, D.Q. New variable order fractional chaotic systems for fast image
encryption. Chaos 2019, 29, 11. [CrossRef]

31. Ali, S.; Shah, K.; Jarad, F. On stable iterative solutions for a class of boundary value problem of nonlinear
fractional order differential equations. Math. Methods Appl. Sci. 2019, 42, 969–981. [CrossRef]

32. Al-Refai, M.; Ali Hajji, M. Monotone iterative sequences for nonlinear boundary value problems of fractional
order. Nonlinear Anal. 2011, 74, 3531–3539. [CrossRef]

33. Chen, C.; Bohner, M.; Jia, B. Method of upper and lower solutions for nonlinear Caputo fractional difference
equations and its applications. Fract. Calc. Appl. Anal. 2019, 22, 1307–1320. [CrossRef]

34. Dhaigude, D.; Rizqan, B. Existence and uniqueness of solutions of fractional differential equations with
deviating arguments under integral boundary conditions. Kyungpook Math. J. 2019, 59, 191–202.

35. Fazli, H.; Sun, H.; Aghchi, S. Existence of extremal solutions of fractional Langevin equation involving
nonlinear boundary conditions. Int. J. Comput. Math. 2020. [CrossRef]

36. Lin, X.; Zhao, Z. Iterative technique for a third-order differential equation with three-point nonlinear
boundary value conditions. Electron. J. Qual. Theory Differ. Equ. 2016, 12, 10. [CrossRef]

http://dx.doi.org/10.1007/s10440-008-9356-6
http://dx.doi.org/10.1080/00036810802307579
http://dx.doi.org/10.1016/j.na.2009.01.073
http://dx.doi.org/10.1016/j.cnsns.2016.09.006
http://dx.doi.org/10.1007/s12044-019-0514-8
http://dx.doi.org/10.1007/s40840-017-0569-6
http://dx.doi.org/10.1002/mma.4617
http://dx.doi.org/10.1007/s10957-018-1363-9
http://dx.doi.org/10.1007/s13398-018-0590-0
http://dx.doi.org/10.1186/s13660-018-1850-4
http://www.ncbi.nlm.nih.gov/pubmed/30839796
http://dx.doi.org/10.1186/s13662-019-2433-5
http://dx.doi.org/10.1515/fca-2018-0056
http://dx.doi.org/10.5937/MatMor1901107A
http://dx.doi.org/10.2478/s13540-013-0059-y
http://dx.doi.org/10.1007/s40314-019-0833-5
http://dx.doi.org/10.1515/fca-2019-0012
http://dx.doi.org/10.1063/1.5096645
http://dx.doi.org/10.1002/mma.5407
http://dx.doi.org/10.1016/j.na.2011.03.006
http://dx.doi.org/10.1515/fca-2019-0069
http://dx.doi.org/10.1080/00207160.2020.1720662
http://dx.doi.org/10.14232/ejqtde.2016.1.12


Axioms 2020, 9, 57 13 of 13

37. Ma, K.; Han, Z.; Sun, S. Existence and uniqueness of solutions for fractional q-difference Schrödinger
equations. J. Appl. Math. Comput. 2020, 62, 611–620. [CrossRef]

38. Mao, J.; Zhao, Z.; Wang, C. The unique iterative positive solution of fractional boundary value problem with
q-difference. Appl. Math. Lett. 2020, 100, 106002. [CrossRef]

39. Meng, S.; Cui, Y. The extremal solution to conformable fractional differential equations involving integral
boundary condition. Mathematics 2019, 7, 186. [CrossRef]

40. Wang, G.; Sudsutad, W.; Zhang, L.; Tariboon, J. Monotone iterative technique for a nonlinear fractional
q-difference equation of Caputo type. Adv. Diff. Equ. 2016, 2016, 211. [CrossRef]

41. Yang, W. Monotone iterative technique for a coupled system of nonlinear Hadamard fractional differential
equations. J. Appl. Math. Comput. 2019, 59, 585–596. [CrossRef]

42. Zhang, S. Monotone iterative method for initial value problem involving Riemann-Liouville fractional
derivatives. Nonlinear Anal. 2009, 71, 2087–2093. [CrossRef]

43. Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag–Leffler Functions, Related Topics and Applications;
Springer: New York, NY, USA, 2014.

44. Diethelm, K.; Ford, N.J. Analysis of fractional differential equations. J. Math. Anal. Appl. 2002, 265, 229–248.
[CrossRef]

45. Nieto, J.J. Maximum principles for fractional differential equations derived from Mittag-Leffler functions.
Appl. Math. Lett. 2010, 23, 1248–1251. [CrossRef]

46. Royden, H.L. Real Analysis, 3rd ed.; Macmillan Publishing Company: New York, NY, USA, 1988.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s12190-019-01299-2
http://dx.doi.org/10.1016/j.aml.2019.106002
http://dx.doi.org/10.3390/math7020186
http://dx.doi.org/10.1186/s13662-016-0938-8
http://dx.doi.org/10.1007/s12190-018-1192-x
http://dx.doi.org/10.1016/j.na.2009.01.043
http://dx.doi.org/10.1006/jmaa.2000.7194
http://dx.doi.org/10.1016/j.aml.2010.06.007
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Main Results
	An Example
	Conclusions
	References

