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Abstract: We propose an iterative projection method for solving linear and nonlinear hypersingular
integral equations with non-Riemann integrable functions on the right-hand sides. We investigate
hypersingular integral equations with second order singularities. Today,hypersingular integral
equations of this type are widely used in physics and technology. The convergence of the proposed
method is based on the Lyapunov stability theory of solutions of ordinary differential equation
systems. The advantage of the method for linear equations is in simplicity of unique solvability
verification for the approximate equations system in terms of the operator logarithmic norm.
This makes it possible to estimate the norm of the inverse matrix for an approximating system.
The advantage of the method for nonlinear equations is that neither the existence or reversibility of
the nonlinear operator derivative is required. Examples are given illustrating the effectiveness of the
proposed method.

Keywords: hypersingular integral equations; iterative projection method; Lyapunov stability theory

1. Introduction

The importance of developing analytical and numerical methods for solving hypersingular
integral equations is determined by a variety of fields of mathematics and by applications that use
hypersingular integral equations.

Hadamard introduced the concept of a finite part of an integral, or the hypersingular integral in
modern terminology, when studying hyperbolic equations. The Riemann boundary problem leads
to hypersingular integral equations in exceptional cases. The boundary integral equations method
reduces the dimensions of partial differential equations; that leads to hypersingular integral equations.

Hypersingular integral equations, singular integral equations and Riemann boundary problem
are widely used in aerodynamics, electrodynamics, quantum physics, antennae theory and many other
fields of physics and engineering [1–5].

Analytical methods for solving singular and hypersingular integral equations are known only for
certain particular types of equations [6–8]. Thus, the importance of constructing numerical solutions
is clear.

Developing numerical methods for solving singular integral equations began in the middle of the
last century. By now, exhaustive results have been obtained for many types of equations. A detailed
account of numerical methods for solving singular integral equations as well as numerous bibliography
references can be found in [9–14].

Numerical methods for solving hypersingular integral equations have been developed to a
much lesser extent. Mostly numerical methods to solve hypersingular integral equations of the first
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kind have been developed. Numerical methods for solving hypersingular integral equations of the
second kind have been much less developed. Apparently, hypersingular integral equations of the first
kind are more common. Naturally, the equations of the first kind are widely used in aerodynamics
(one-dimensional [15] and multi-dimensional [5,16] Prandtl equation), electrodynamics, antennae
theory, etc.

The following methods are used in solving hypersingular integral equations of the first kind.
Collocations, mechanical quadratures and Galerkin methods were employed to solve equations

with p = 2 singularity [6,17–19].
Approximate methods for solving hypersingular integral equations having singularities of order

p = 2, 3, . . . , and defined on closed smooth integration contours are constructed in [20].
In [21,22] spline-collocation methods for solving hypersingular and polyhypersingular integral

equations of the second kind with odd and even singularities have been developed and justified.
The spline-collocation methods for solving nonlinear hypersingular and polyhypersingular integral
equations have been developed and justified in [23].

An iterative projection method for solving linear and nonlinear hypersingular integral equations,
and polyhyperpersingular and multidimensional hypersingular equations, was proposed in [24].

In [22] the unique solvability of hypersingular integral equations with even singularities
(p = 2, 4, . . . ) was proven. Meanwhile the convergence of approximate solution to the exact one
was not justified. In [24] a unique solvability of the spline-collocation method was proven. In addition,
for hypersingular integral equations with bounded right-hand sides the convergence of an approximate
solution sequence to the exact solution was proven under certain additional conditions.

The iterative projection method proposed here overcomes these limitations. It was shown that if
the exact equation has a solution for large enough N, where N is the dimension of an approximate
system of equations, an approximate solution converges to the exact one.

Hypersingular integral equations with bounded right-hand sides are a small subset of the
hypersingular integral equations family. Therefore, the problem arises of constructing and justifying
approximate methods for solutions for hypersingular integral equations with non-Riemann integrable
functions on the right-hand sides. This paper is devoted to those issues.

A large number of works are devoted to approximate methods for solving hypersingular integral
equations of the first kind

1∫
−1

x(τ)dτ

(τ − t)2 +

1∫
−1

h(t, τ)dτ = f (t). (1)

To solve the Equation (1), collocation and mechanical quadrature methods [17,18], the method of
orthogonal polynomials [25], the method of discrete vortices [19], the method of homotopy [26] and
others are used.

In the works [27–29] computational schemes for the approximate solution of the Equation (1) are
constructed and their justification is carried out under the assumption that the solution has the forms
x(t) = (1− t2)±1/2ω(t) or x(t) = ((1− t)/(1 + t))±1/2ω(t), where ω(t) is a smooth function.

The hypersingular integral equations

1
π

1∫
−1

x(τ)dτ

(τ − t)2 = f (t), −1 < t < 1, (2)

are widely used in aerodinamical problems and in the theory of antennae [30,31]. In the works [30,31]
the Equation (2) is investigated under the assumption that the right-hand side has the form
f (t) = 1/(t− c) or f (t) = δ(t− c), where δ(t) is the delta-function. An analytical solution of the
Equation (2) with the indicated right-hand sides is obtained under the assumption that it has the form
x(t) =

√
1− t2 ϕ(t).
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A fairly detailed review of analytical and numerical methods for solving hypersingular integral
equations is given in [32].

In this paper, we propose an approach to solving linear and nonlinear hypersingular integral
equations, the right parts of which contain functions with power features.

In particular, the right-hand sides of the form

f (t) = g(t)
1

t− c1

1
t− c2

· · · 1
t− cl

, l = 1, 2, . . . , −1 < c1 < · · · < cl < 1, (3)

are considered. Here g(t) is a smooth function.
Below, for simplicity of notation, we put l = 1 in (3).

Remark 1. It can be shown that if in the hypersingular integral Equation (1) of the first kind the right side
f (t) ∈ H, H is a Holder class, then the solution to this equation has the form x(t) = (1 − t2)±1/2 or
x(t) = ((1 + t)/(1− t))±1/2. For singular right-hand sides, the classes of solutions of (1) are unknown.

Below, when constructing and justifying the computational method, we assume that the Equation (1) with
a given right-hand side has a unique solution.

The proposed method has the following advantages:

(1) It allows us to extend collocations and mechanical quadratures methods to hypersingular integral
equations with non-Riemann integrable right sides;

(2) For linear hypersingular integral equations, it allows one to verify the inverse operator existence
and estimate its norm quite easily;

(3) The method is stable with respect to the operator and right hand side perturbations;
(4) The method does not require the existence and reversibility of the nonlinear operator derivative.

The paper is organized as follows. The continuous method for linear and nonlinear operator
equations is explained in Section 2. The numerical method for solving hypersingular integral equations
is presented in Section 2.

2. Continuous Method and Its Convergence Properties

The method we employ in the next section for solving hypersingular integral equations is based
on the continuous method introduced in [33].

Continuous Method for Solving Operator Equations

The continuous method for solving operator equations is based on the Lyapunov theory
of stability.

Let x(t) be a solution of the differential equation in a Banach space B

dx
dt

= F(t, x) (4)

which is defined for all t ≥ t0. The solution x(t) is said to be stable if (i) for each ε > 0 there
is a corresponding δ = δ(ε) > 0 such that any solution x̃(t) of (4) which satisfies the inequality
|x̃(t0)− x(t0)| < δ exists and satisfies the inequality |x̃(t)− x(t)| < ε for all t ≥ t0.

It is said to be asymptotically stable if in addition (ii) |x̃(t) − x(t)| → 0 if t → ∞ whenever
|x̃(t0)− x(t0)| is sufficiently small.

We will use the following notation:

B(a, r) = {z ∈ B : ‖z − a‖ ≤ r}, S(a, r) = {z ∈ B : ‖z − a‖ = r}, Re(K) = <(K) = (K + K∗)/2,
Λ(K) = lim

h↓0
(‖I + hK‖ − 1)h−1.
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Here B is a Banach space, a ∈ B, K is a linear operator on B, Λ(K) is the logarithmic norm [34] of
the operator K, K∗ is the conjugate operator to K and I is the identity operator.

The analytical expressions for logarithmic norms are known for operators in many spaces.
We restrict ourselves to a description of the three norms.

Let A = {aij}, i, j = 1, 2, . . . , n, be a matrix.
In the n-dimensional space Rn of vectors x = (x1, . . . , xn) the following norms are often used:

octahedral- ‖x‖1 =
n
∑

i=1
|xi|; cubic- ‖x‖2 = max

1≤i≤n
|xi|;

spherical (Euclidean)- ‖x‖3 = (
n
∑

i=1
x2

i )
1/2.

Here are analytical expressions of the logarithmic norm of n× n matrix A = (aij), due to the
above norms of the vectors:

octahedral logarithmic norm Λ1

Λ1(A) = max
1≤j≤n

(
ajj + ∑

i 6=j
|aij|

)
;

cubic logarithmic norm Λ2

Λ2(A) = max
1≤i≤n

(
aii + ∑

j 6=i
|aij|

)
;

spherical (Euclidean) logarithmic norm Λ3

Λ3(A) = λmax

(
A + A∗

2

)
,

where A∗ is the conjugate matrix for A.
Note that the logarithmic norm of the same matrix can be positive in one space and negative

in another.
The logarithmic norm has the some properties which are very useful for numerical mathematics.
Let A, B be n × n matrices with complex elements; and x = (x1, . . . , xn), y = (y1, . . . , yn),

ξ = (ξ1, . . . , ξn) and η = (η1, . . . , ηn) are n-dimensional vectors with complex components. Let the
systems of algebraic equations Ax = ξ and By = η be given. The norm of a vector and its
subordinate operator norm of the matrix are agreed upon; the logarithmic norm Λ(A) corresponds to
the operator norm.

Theorem 1 ([35]). If Λ(A) < 0, the matrix A is non-singular and ‖A−1‖ ≤ 1/|Λ(A)|.

Theorem 2 ([35]). Let Ax = ξ, By = η and Λ(A) < 0, Λ(B) < 0. Then

‖x− y‖ ≤ ‖ξ − η‖
|Λ(B)| +

‖A− B‖
|Λ(A)Λ(B)| .

Some properties of the logarithmic norm in a Banach space, which are useful in numerical
mathematics, are given in [34].

Let us consider in a Banach space B, the Cauchy problem

dx(t)
dt

= A(x(t)), (5)

x(0) = x0. (6)

Let us assume that the nonlinear operator A has a Frechet derivative and A(0) = 0.
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The sufficiently satisfying conditions of asymptotically stability for the solution of the Cauchy
problem (5), (6) were obtained in [36,37].

Theorem 3. Let the integral
t∫

0
Λ(A′(ϕ(τ)))dτ be non-positive (respectively, be negative and satisfy

lim
t→+∞

1
t

t∫
0

Λ(A′(ϕ(τ)))dτ ≤ −αϕ, αϕ > 0) for any differentiable curve ϕ(t) lying in a ball B(0, r) of some

radius r. Then the trivial solution of Equation (5) is stable (respectively, asymptotically stable).

Remark 2. Additionally, the Theorem is valid under r = ∞.

Let us consider in a Banach space B a nonlinear operator equation

A(x)− f = 0, (7)

where operator A acts from B into B.
We associate Equation (7) with the Cauchy problem

dx(t)
dt

= A(x(t))− f , (8)

x(0) = x0. (9)

Let x∗ be a the solution of Equation (7). Let us make the change of variable x = x∗ + v in
Equation (8). This change reduces the Cauchy problem (8), (9) to the form

dv(t)
dt

= A(x∗ + v(t))− A(x∗), (10)

v(0) = x0 − x∗. (11)

It is easy to see that if the trivial solution of Equation (10) is globally asymptotically stable,
then limt→+∞ ‖v(t)‖ → 0. So, for any initial value the solution of the Cauchy problem (8), (9) tends to
x∗. It follows from the next assertions which were proven in [33].

Theorem 4. Let Equation(7) have a solution x∗, and let inequality

lim
t→+∞

1
t

t∫
0

Λ(A′(g(τ)))dτ ≤ −αg, αg > 0, (12)

be true on each differentiable curve g(t) lying in the Banach space B. Then the solution of the Cauchy
problem (8), (9) converges to the solution x∗ of Equation(7) for any initial value.

Theorem 5. Let Equation (7) have a solution x∗, and let the following conditions be satisfied on any differentiable
curve g(t) lying in the ball B(x∗, r).

1. The inequality
t∫

0

Λ(A′(g(τ)))dτ ≤ 0

holds for all t(t > 0).
2. Inequality (12) is satisfied.

Then the solution of the Cauchy problem (8), (9) converges to the solution x∗ of Equation (7).



Axioms 2020, 9, 74 6 of 18

Remark 3. The sufficient condition for convergence of the Cauchy problem (8), (9) solution to the solution of
the operator Equation (7) is given above. It was obtained by analysing Lyapunov stability. One of the first basic
results in accretive operator theory was a relation between the solution of operator equation Au = 0, where A is
a locally Lipschitzian and accretive operator, and the differential equation du

dt = Au was obtained in [38].
Later, accretive operator theory and its applications for finding fixed points and constructing iterative

procedures were studied by many authors. Basic results and a detailed bibliography devoted to the subject may be
found in [39–42].

3. An Solution of Hypersingular Integral Equations with the Continuous Method

Let us consider the method of mechanical quadrature for solving hypersingular integral equation
of the types

a(t)x(t) +
∫ 1

−1

h(t, τ)x(τ)dτ

(τ − t)2 = f (t). (13)

and

a(t)x(t) +
∫ 1

−1

h(t, τ, x(τ))dτ

(τ − t)2 = f (t). (14)

It is assumed that in the Equations (13) and (14) the right-hand sides have features of the
following types

f (t) =
l

∑
i=1

gi(t) 1
t−ci

, f (t) = g(t)∏l
i=1

1
t−ci

,

where −1 < ci < 1, i = 1, 2, . . . , l, l = 1, 2, . . . ; g(t), gi(t), i = 1, 2, · · · , l,—are continuous functions.
In what follows, without loss of generality, we set l = 1.
Let us recall the Hadamard definition of hypersingular integrals [43].

Definition 1 ([43]). The integral of the type

∫ b

a

A(x) dx
(b− x)p+α

for an integer p and 0 < α < 1, is defined as

lim
x→b

[∫ x

a

A(t) dt
(b− t)p+α +

B(x)
(b− x)p+α−1

]
,

if A(x) has p derivatives in the neighborhood of the point b. Here B(x) is any function that satisfies the following
two conditions:

(i) The above limit exists;
(ii) B(x) has at least p derivatives in the neighborhood of the point x = b.

It is easy to see [43], that the conditions (i) and (ii) are sufficient for the existence of the limit.
Chikin in [44] introduced the following definition.

Definition 2 ([44]). The Cauchy–Hadamard principal value of the integral

∫ b

a

ϕ(τ) dτ

(τ − c)p , a < c < b, (15)

is defined as ∫ b

a

ϕ(τ) dτ

(τ − c)p = lim
v→0

[∫ c−v

a

ϕ(τ) dτ

(τ − c)p +
∫ b

c+v

ϕ(τ) dτ

(τ − c)p +
ξ(v)
vp−1

]
,

where ξ(v) is a function constructed so that the limit exists.
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3.1. An Approximate Solution of Linear Hypersingular Integral Equations with Second Order Singularity

Consider a one-dimensional hypersingular integral equation of the type

Kx ≡ a(t)x(t) +
∫ 1

−1

h(t, τ)x(τ)dτ

(τ − t)2 = f (t), (16)

where f (t) = g(t)/(t− c) or f (t) = g(t)/((1− t2)(t− c)), −1 < c < 1, g(t) ∈ C[−1, 1].
Divide the interval [−1, 1] into two subintervals [−1, c], [c, 1].
Let us fix a positive integer N0. Put h = 2/N0, N1 = d(1+ c)/he, N2 = d(1− c)/he, N = N1 + N2.
Divide the interval [−1, c] into N1 subintervals at the points tk = −1 + (c + 1)k/N1, k =

0, 1, . . . , N1.
Divide the interval [c, 1] into N2 subintervals at the points τk = c + (1− c)k/N2, k = 0, 1, . . . , N2.
Let us introduce the nodes t̄0 = t0 + 1/2(N1)

2, t̄k = tk, k = 1, 2, . . . , N1 − 1, t̄N1 = tN1 −
1/2(N1)

2; τ̄0 = τ0 + 1/2(N2)
2, τ̄k = τk, k = 1, 2, . . . , N2 − 1, τ̄N2 = 1− 1/2(N2)

2.
As an approximate solution of (16), we shall seek in the form of a continuous function

xN(t) =
N1

∑
k=0

αk ϕk(t) +
N2

∑
k=0

βkψk(t), (17)

where ϕk(t), k = 0, 1, . . . , N1, ψk(t), k = 0, 1, . . . , N2 is a family of basis functions.
For nodes tk, k = 1, . . . , N1 − 1, the corresponding basis elements are determined by

ϕk(t) =



0, tk−1 ≤ t ≤ tk−1 +
1

N2
1

,
N2

1
(1+c)N1−2 (t− tk−1)− 1

(1+c)N1−2 , tk−1 +
1

N2
1
≤ t ≤ tk − 1

N2
1

,

1, tk − 1
N2

1
≤ t ≤ tk +

1
N2

1
,

− N2
1

(1+c)N1−2 (t− tk − 1
N2

1
) + 1, tk +

1
N2

1
≤ t ≤ tk+1 − 1

N2
1

,

0, tk+1 − 1
N2

1
≤ t ≤ tk+1,

0, t ∈ [−1, 1]\[tk−1, tk+1].

(18)

For boundary nodes tk, k = 0 and k = N1 the corresponding basis elements are defined as

ϕ0(t) =



1, −1 ≤ t ≤ −1 + 1
N2

1
,

− N2
1

(1+c)N1−2 (t + 1− 1
N2

1
) + 1, −1 + 1

N2
1
≤ t ≤ t1 − 1

N2
1

,

0, t1 − 1
N2

1
≤ t ≤ t1,

0, [−1, 1]\[t0, t1];

(19)

and

ϕN1(t) =


0, −1 ≤ t ≤ tN1−1 +

1
N2

1
,

N2
1

(1+c)N1−2 (t− tN1−1)− 1
(1+c)N1−2 , tN1−1 +

1
N2

1
≤ t ≤ c− 1

N2
1

,

1, c− 1
N2

1
≤ t ≤ c.

(20)
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For nodes τk, k = 0, 1, . . . , N2, the corresponding basis elements ψk, k = 0, 1, . . . , N2,
are determined in a the similar way: For nodes τk, k = 1, . . . , N2 − 1, the corresponding basis elements
are determined by

ψk(t) =



0, τk−1 ≤ t ≤ τk−1 +
1

N2
2

,
N2

2
(1−c)N2−2 (t− τk−1)− 1

(1−c)N2−2 , τk−1 +
1

N2
2
≤ t ≤ τk − 1

N2
2

,

1, τk − 1
N2

2
≤ t ≤ τk +

1
N2

2
,

− N2
2

(1−c)N2−2 (t− τk − 1
N2

2
) + 1, τk +

1
N2

2
≤ t ≤ τk+1 − 1

N2
2

,

0, τk+1 − 1
N2

2
≤ t ≤ τk+1,

0, t ∈ [−1, 1]\[τk−1, τk+1].

(21)

For boundary nodes τk, k = 0 and k = N2 the corresponding basis elements are defined as

ψ0(t) =



1, c ≤ t ≤ c + 1
N2

1
,

− N2
2

(1−c)N2−2 (t− c− 1
N2

2
) + 1, c + 1

N2
2
≤ t ≤ τ1 − 1

N2
2

,

0, τ1 − 1
N2

2
≤ t ≤ τ1,

0, [−1, 1]\[c, τ1];

(22)

and

ψN2(t) =


0, −1 ≤ t ≤ τN2−1 +

1
N2

2
,

N2
2

(1−c)N2−2 (t− τN2−1)− 1
(1−c)N2−2 , τN2−1 +

1
N2

2
≤ t ≤ 1− 1

N2
2

,

1, 1− 1
N2

2
≤ t ≤ 1.

(23)

To simplify the description of computational scheme, we introduce the following notation:

(1) Unite the nodes tk, k = 0, 1, . . . , N1 and τl , l = 0, 1, . . . , N2, denoting them by vi, i =

0, 1, . . . , N∗, N∗ = N1 + N2;
(2) Unite the nodes t̄k, k = 0, 1, . . . , N1 and τ̄l, l = 0, 1, . . . , N2, denoting them by v̄i, i = 0, 1, . . . , N∗ + 1;
(3) Denote the family of basis functions {ϕk}, k = 0, 1, . . . , N1 , {ψl}, l = 0, 1, . . . , N2 by {ζ j}, j =

0, 1, . . . , N∗ + 1;
(4) Denote by {γk}, k = 0, 1, . . . , N∗ + 1, unknowns {αi}, i = 0, 1, . . . , N1 , {β j}, j = 0, 1, . . . , N2.

Here vi = ti, i = 0, 1, . . . , N1 , vN1+i = τi, i = 1, 2, . . . , N2,

γi = αi, i = 0, 1, . . . , N1 , γN1+1+i = βi, i = 0, 1, . . . , N2,
ζi = ϕi, i = 0, 1, . . . , N1 , ζN1+1+i = ψi, i = 0, 1, . . . , N2.

Let us recall that the points tN1 and τ0 coincide.
Applying the collocation method on the knots v̄k, k = 0, 1, . . . , N∗ + 1 to the Equation (16),

we obtain the following system of algebraic equations for finding unknown coefficients {γk} of the
polygon (17)

a(v̄k)γk +
N∗+1

∑
l=0

h(v̄k, vl)γl

1∫
−1

ζl(τ)

(τ − v̄k)2 dτ = f (v̄k), (24)

k = 0, 1, . . . , N∗ + 1.
Using the definition of hypersingular integrals, we receive:

vk+1∫
vk−1

ζk(τ)dτ

(τ − v̄k)2 = −2
N2

1
(1 + c)N1 − 2

ln((1 + c)N1 − 1), k = 1, 2, . . . , N1 − 1; (25)
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vk+1∫
vk−1

ζk+1(τ)dτ

(τ − v̄k)2 = −2
N2

2
(1− c)N2 − 2

ln((1− c)N2 − 1), k = N1 + 2, . . . , N∗ − 1; (26)

v1∫
−1

ζ0(τ)dτ

(τ + 1− 1
2N2

1
)2

= −2N2
1 − N2

1
ln(2(c + 1)N1 − 3)

(c + 1)N1 − 2
, (27)

vN1∫
vN1−1

ζN1(τ)dτ

(τ − vN1 +
1

2N2
1
)2

= −2N2
1 − N2

1
ln(2(c + 1)N1 − 3)

(c + 1)N1 − 2
, (28)

vN1+1∫
vN1

ζN1+1(τ)dτ

(τ − vN1 −
1

2N2
2
)2

= −2N2
2 − N2

2
ln(2(1− c)N2 − 3)

(1− c)N2 − 2
, (29)

1∫
vN∗−1

ζN∗+1(τ)dτ

(τ − 1 + 1
2N2 )2

= −2N2
2 − N2

2
ln(2(1− c)N2 − 3)

(1− c)N2 − 2
, (30)

1∫
−1

[
N∗+1

∑
l=1

ζl(τ)

]
dτ

(τ + 1− 1
2N2

1
)2

= −
2N2

1
4N2

1 − 1
+ N2

1
ln(2(1 + c)N1 − 3)

(1 + c)N1 − 2
, (31)

1∫
−1

[
N∗

∑
l=0

ζl(τ)

]
dτ

(τ − 1 + 1
2N2

2
)2

= −
2N2

2
4N2

2 − 1
+ N2

2
ln(2(1− c)N2 − 3)

(1− c)N2 − 2
, (32)

1∫
−1

[
N∗+1

∑
l=0

′ζl(τ)

]
dτ

(τ − (c− 1
2N2

1
))2

= −
2N2

1
4N2

1 − 1
+ N2

1
ln(2(1 + c)N1 − 3)

(1 + c)N1 − 2
, (33)

1∫
−1

[
N∗+1

∑
l=0

′′ζl(τ)

]
dτ

(τ − (c + 1
2N2

2
))2

= −
2N2

2
4N2

2 − 1
+ N2

2
ln(2(1 + c)N2 − 3)

(1 + c)N2 − 2
, (34)

1∫
−1

[
N∗+1

∑
l=0

′′′ϕl(τ)

]
dτ

(τ−vk)2 = − N1
(c+1)k −

N1
2N1−(c+1)k +

2N2
1

(1+c)N1−2 ln((c + 1)N1 − 1); (35)

1∫
−1

[
N∗+1

∑
l=0

′′′′ϕl(τ)

]
dτ

(τ−vk)2 = − N2
(1−c)k −

N2
2N2−(1−c)k +

2N2
2

(1−c)N2−2 ln((1− c)N2 − 1). (36)

Here ∑ ′l , ∑ ′′l , ∑ ′′′l , ∑ ′′′′l indicates a summation over l 6= N1, l 6= N1 + 1, l 6= k(1 ≤ k ≤ N1 − 1),
l 6= k(N1 + 2 ≤ k ≤ N∗ − 1), respectively. Detailed calculations are given in [23].

We can rewrite the system (24) as

a(v̄k)γk − h(v̄k, v̄k)2N2
1

ln(N1−1)
(1+c)N1−2 γk +

N∗+1
∑

l=0

′γlh(v̄k, v̄l)
1∫
−1

ζl(τ)
dτ

(τ−v̄k)2

= f (v̄k), k = 1, . . . , N1 − 1;
(37)

a(v̄k)γk − h(v̄k, v̄k)2N2
2

ln(N2−1)
(1−c)N2−2 γk +

N∗+1
∑

l=0

′γlh(v̄k, v̄l)
1∫
−1

ζl(τ)
dτ

(τ−v̄k)2

= f (v̄k), k = N1 + 2, . . . , N∗;
(38)

a(v̄0)γ0 − h(v̄0, v̄0)(2N2
1 + N2

1
ln(2(1+c)N1−3)

(1+c)N1−2 )γ0

+
N∗+1

∑
l=1

γlh(v̄k, v̄l)
1∫
−1

ζl(τ)
dτ

(τ−v̄0)2 = f (v̄0);
(39)
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a(v̄N1)γN1 − h(v̄N1 , v̄N1)(2N2
1 + N2

1
ln(2(1+c)N1−3)

(1+c)N1−2 )γN1

+
N∗+1

∑
l=0

′′γlh(v̄N1 , v̄l)
1∫
−1

ζl(τ)
dτ

(τ−v̄N1 )
2 = f (v̄N1);

(40)

a(v̄N1+1)γN1+1 − h(v̄N1+1, v̄N1+1)(2N2
2 + N2

2
ln(2(1−c)N2−3)

(1−c)N2−2 )γN1+1

+
N∗+1

∑
l=0

′′′γlh(v̄N1+1, v̄l)
1∫
−1

ζl(τ)
dτ

(τ−v̄N1+1)2 = f (v̄N1);
(41)

a(v̄N∗+1)γN∗+1 − h(v̄N∗+1, v̄N∗+1)(2N2
2 + N2

2
ln(2(1−c)N2−3)

(1−c)N2−2 )γN∗+1

+
N∗

∑
l=0

γlh(v̄N∗+1, v̄l)
1∫
−1

ζl(τ)
dτ

(τ−v̄N∗−1)
2 = f (v̄N∗+1).

(42)

Here ∑ ′, ∑ ′′, ∑ ′′′ indicates a summation over l 6= k, l 6= N1, l 6= N1 + 1, respectively.
The system (37)–(42) is equivalent to the system

(sgn h(vk, vk))
(

a(v̄k)γk − h(v̄k, v̄k)2N2
1

ln(N1−1)
(1+c)N1−2 γk

+
N∗+1

∑
l=0

′γlh(v̄k, v̄l)
1∫
−1

ζl(τ)
dτ

(τ−v̄k)2

)
= (sgn h(tk, tk)) f (vk), k = 1, . . . , N1 − 1;

(43)

(sgn h(vk, vk))
(

a(v̄k)γk − h(v̄k, v̄k)2N2
2

ln(N2−1)
(1−c)N2−2 γk

+
N∗+1

∑
l=0

′γlh(v̄k, v̄l)
1∫
−1

ζl(τ)
dτ

(τ−v̄k)2

)
= (sgn h(tk, tk)) f (v̄k), k = N1 + 2, . . . , N∗;

(44)

(sgn h(v0, v0))
(

a(v̄0)γ0 − h(v̄0, v̄0)(2N2
1 + N2

1
ln(2(1+c)N1−3)

(1+c)N1−2 )γ0

+
N∗+1

∑
l=1

γlh(v̄k, v̄l)
1∫
−1

ζl(τ)
dτ

(τ−v̄0)2

)
= (sgn h(v0, v0)) f (v̄0);

(45)

(sgn h(vN1 , vN1))
(

a(v̄N1)γN1 − h(v̄N1 , v̄N1)(2N2
1 + N2

1
ln(2(1+c)N1−3)

(1+c)N1−2 )γN1

+
N∗+1

∑
l=0

′′γlh(v̄N1 , v̄l)
1∫
−1

ζl(τ)
dτ

(τ−v̄N1 )
2

)
= (sgn h(vN1 , vN1)) f (v̄N1);

(46)

(sgn h(vN1+1, vN1+1))
(
a(v̄N1+1)γN1+1 − h(v̄N1+1, v̄N1+1)(2N2

2

+N2
2

ln(2(1−c)N2−3)
(1−c)N2−2 )γN1+1 +

N∗+1
∑

l=0

′′′γlh(v̄N1 , v̄l)
1∫
−1

ζl(τ)
dτ

(τ−v̄N1+1)2

)
= (sgn h(vN1 , vN1)) f (v̄N1);

(47)

(sgn h(vN∗+1, vN∗+1)) (a(v̄N∗+1)γN∗+1 − h(v̄N∗+1, v̄N∗+1)

(2N2
2 + N2

2
ln(2(1−c)N2−3)

(1−c)N2−2 )γN∗+1 +
N∗

∑
l=0

γlh(v̄N∗−1, v̄l)
1∫
−1

ζl(τ)
dτ

(τ−v̄N∗+1)
2

)
= (sgn h(vN∗+1, vN∗+1)) f (v̄N∗+1).

(48)

Here ∑ ′, ∑ ′′, ∑ ′′′ indicates a summation over l 6= k, l 6= N1, l 6= N1 + 1, respectively.
Let us write the system (43)–(48) in a matrix form

DX = F,

where D = {dkl}, k, l = 0, 1, . . . , N∗ + 1, X = (x0, x1, . . . , xN∗+1), F = ( f0, f1, . . . , fN∗+1). The values
{dkl}, {xk}, and { fk} are obvious.
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The diagonal elements in the left-hand side of the system of Equations (43)–(48) have the
following forms

dkk = (sgn h(v̄k, v̄k))

(
a(v̄k)− h(v̄k, v̄k)2N2

1
ln(N1 − 1)

(1 + c)N1 − 2

)
k = 1, 2, . . . , N1 − 1,

dkk = (sgn h(v̄k, v̄k))

(
a(v̄k)− h(v̄k, v̄k)2N2

1
ln(N1 − 1)

(1 + c)N1 − 2

)
,

k = N1 + 2, . . . , N∗,

d00 = (sgn h(v̄0, v̄0))

(
a(v̄0)− h(v̄0, v̄0)(2N2

1 + N2
1

ln(2(1 + c)N1 − 3)
(1 + c)N1 − 2

)
,

dN1,N1 = (sgn h(vN1 , vN1))
(

a(v̄N1)− h(v̄N1 , v̄N1)(2N2
1

+N2
1

ln(2(1 + c)N1 − 3)
(1 + c)N1 − 2

)

)
,

dN1+1,N1+1 = (sgn h(vN1+1, vN1+1))
(
a(v̄N1+1)− h(v̄N1+1, v̄N1+1)

(2N2
2 + N2

2
ln(2(1− c)N2 − 3)

(1− c)N2 − 2
)

)
,

dN∗+1,N∗+1 = (sgn h(vN∗+1, vN∗+1)) (a(v̄N∗+1)− h(v̄N∗+1, v̄N∗+1)

((2N2
2 + N2

2
ln(2(1− c)N2 − 3)

(1− c)N2 − 2
))

)
.

The cubic logarithmic norm of the matrix D is equal to

Λ2(D) = max

(
max

1≤k≤N1−1

(
dkk +

N∗+1
∑

l=0

′|h(v̄k, v̄l)|
1∫
−1

ζl(τ)dτ
(τ−v̄k)2

)
,

max
N1+2≤k≤N∗

(
dkk +

N∗+1
∑

l=0

′|h(v̄k, v̄l)|
1∫
−1

ζl(τ)dτ
(τ−v̄k)2

)
,(

d00 +
N∗+1

∑
l=1
|h(v̄0, v̄l)|

1∫
−1

ζl(τ)dτ
(τ−v̄0)2

)
,(

dN1 N1 +
N∗+1

∑
l=0

′′|h(v̄N1 , v̄l)|
1∫
−1

ζl(τ)dτ
(τ−v̄N1 )

2

)
,(

dN1+1,N1+1 +
N∗+1

∑
l=0

′′′|h(v̄N1+1, v̄l)|
1∫
−1

ζl(τ)dτ
(τ−v̄N1+1)2

)
,(

dN∗+1,N∗+1 +
N∗

∑
l=0
|h(v̄N∗+1, v̄l)|

1∫
−1

ζl(τ)dτ
(τ−v̄N∗+1)

2

)
.

From (25)–(36) it follows that for sufficiently large N Λ2(D) < 0 occurs. By Theorem 2 it is clear
that the system (43)–(48) (and (37)–(42)) has a unique solution x∗N(t) and ‖D−1‖ ≤ 1/|Λ2(D)|.

Let x∗(t) and x∗N be solutions of (16 ) and (37)–(42), respectivety.
We recall the following definitions.

Definition 3. The class Wr(M, [a, b]), r = 1, 2, . . . , consists of all functions f ∈ C([a, b]), which have an
absolutely continuous derivative f (r−1)(x) and piecewise derivative f (r)(x) with | f (r)(x)| ≤ M.
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Definition 4. Denote by Wr( f : f1, f2; M, c), r = 1, 2, . . . , a set of functions f (x), x ∈ [a, b],
such that f (x) = f1(x), x ∈ [a, c), f (x) = f2(x), x ∈ (c, b], where f1(x) ∈ Wr(M, [a, c]), f2(x) ∈
Wr(M, [c, b]), f1(c) 6= f2(c), c ∈ (a, b).

Repeating the proof presented in [24] we see that the approximation of f (t) ∈W1(( f : f1, f2; M, c))
by piecewise linear functions constructed on the basis ζk(t), k = 0, 1, . . . , N∗ + 1, has the error
C
N max(ω( f (1)1 , 1

N ), ω( f (1)1 , 1
N )) for f (t) ∈ W1(( f : f1, f2; M, c)), and C

N2 for f (t) ∈ W2(( f :
f1, f2; M, c)).

In this paper, we denote the constants that do not depend on N by C.
Let x∗(t) ∈ W2((x∗ : x∗1 , x∗2 ; M, c)), and ‖x∗(1)1 (t)‖C ≤ M1, t ∈ [a, c], ‖x∗(1)2 (t)‖C ≤ M2, t ∈ [c, b],

M = max(M1, M2), 0 < M < ∞, where M is a bounded constant.
Repeating the arguments given in [24], we arrive at the following statement.

Theorem 6. Let the following conditions be fulfilled:

(1) Equation (16) has the unique solution x∗(t) ∈W2(x∗1 , x∗2 ; M, c),−1 < c < 1, M = const.
(2) For all t ∈ [−1, 1] the function h(t, t) 6= 0.
(3) Λ2(D) < 0.

Then the system of Equations (37)–(42) has a unique solution x∗N(t) and the following estimate holds:
||x∗ − x∗N ||1 ≤ CN−1 ln N.

3.2. Nonlinear Hypersingular Integral Equations

Consider the nonlinear hypersingular integral equation:

a(t)x(t) +
1∫
−1

h(t, τ, x(τ))dτ

(τ − t)2 = f (t) . (49)

The approximate solution of the Equation (49) we shall seek as a continuous function (17)
with the coefficients γk. The coefficients γk are determined by the following system of nonlinear
algebraic equations

a(v̄k)γk +
N∗+1

∑
l=0

h(v̄k, vl , γl)

1∫
−1

ζl(τ)

(τ − v̄k)2 dτ = f (v̄k), k = 0, 1, . . . , N∗ + 1. (50)

Remark 4. Note that the set γk, k = 0, 1, . . . , N∗ + 1, is union of sets αk, k = 0, 1, . . . , N1, and βk, k =

0, 1, . . . , N2.

By computing the hypersingular integrals in (50), we can rewrite the system of Equation (50) as

a(v̄k)γk − h(v̄k, v̄k, γk)2N2
1

ln(N1−1)
(1+c)N1−2 +

N∗+1
∑

l=0

′h(v̄k, v̄l , γl)
1∫
−1

ζl(τ)
dτ

(τ−v̄k)2

= f (v̄k), k = 1, . . . , N1 − 1;
(51)

a(v̄k)γk − h(v̄k, v̄k, γk)2N2
2

ln(N2−1)
(1−c)N2−2 +

N∗+1
∑

l=0

′γlh(v̄k, v̄l , γl)
1∫
−1

ζl(τ)
dτ

(τ−v̄k)2

= f (v̄k), k = N1 + 2, . . . , N∗;
(52)

a(v̄0)γ0 − h(v̄0, v̄0, γ0)(2N2
1 + N2

1
ln(2(1+c)N1−3)

(1+c)N1−2 )

+
N∗+1

∑
l=1

h(v̄k, v̄l , γl)
1∫
−1

ζl(τ)
dτ

(τ−v̄0)2 = f (v̄0);
(53)



Axioms 2020, 9, 74 13 of 18

a(v̄N1)γN1 − h(v̄N1 , v̄N1 , γN1)(2N2
1 + N2

1
ln(2(1+c)N1−3)

(1+c)N1−2 )

+
N∗+1

∑
l=0

′′h(v̄N1 , v̄l)
1∫
−1

ζl(τ)
dτ

(τ−v̄N1 )
2 = f (v̄N1);

(54)

a(v̄N1+1)γN1+1 − h(v̄N1+1, v̄N1+1, γN1+1)(2N2
2 + N2

2
ln(2(1−c)N2−3)

(1−c)N2−2 )

+
N∗+1

∑
l=0

′′′h(v̄N1+1, v̄l , γl)
1∫
−1

ζl(τ)
dτ

(τ−v̄N1+1)2 = f (v̄N1+1);
(55)

a(v̄N∗+1)γN∗+1 − h(v̄N∗+1, v̄N∗+1, γN∗+1)(2N2
2 + N2

2
ln(2(1−c)N2−3)

(1−c)N2−2 )

+
N∗

∑
l=0

′′′h(v̄N∗+1, v̄l , γl)
1∫
−1

ζl(τ)
dτ

(τ−v̄N∗+1)
2 = f (v̄N∗+1).

(56)

Here ∑ ′, ∑ ′′, ∑ ′′′ indicate summations over l 6= k, l 6= N1, l 6= N1 + 1, respectively.
The Frechet derivative on a vector (α0, α1, · · · , αN∗+1) in the space RN∗+1 is equal to(

a(v̄k)γk − h′3(v̄k, v̄k, γ̄k)2N2
1

ln(N1−1)
(1+c)N1−2 γk

+
N∗+1

∑
l=0

′h′3(v̄k, v̄l , γ̄l)γl

1∫
−1

ζl(τ)
dτ

(τ−v̄k)2 , k = 1, . . . , N1 − 1;

a(v̄k)γk − h′3(v̄k, v̄k, γ̄k)2N2
2

ln(N2−1)
(1−c)N2−2 γk

+
N∗+1

∑
l=0

h′3(v̄k, v̄l , γ̄l)γl

1∫
−1

ζl(τ)
dτ

(τ−v̄k)2 , k = N1 + 2, . . . , N∗;

a(v̄0)γ0 − h′3(v̄0, v̄0, γ̄0)γ0(2N2
1 + N2

1
ln(2(1+c)N1−3)

(1+c)N1−2 )

+
N∗+1

∑
l=1

h′3(v̄0, v̄l , γ̄l)γl

1∫
−1

ζl(τ)
dτ

(τ−v̄0)2 ;

a(v̄N1)γN1 − h′3(v̄N1 , v̄N1 , γ̄N1)γN1(2N2
1 + N2

1
ln(2(1+c)N1−3)

(1+c)N1−2 )

+
N∗+1

∑
l=0

h′3(v̄N1 , v̄l , γ̄l)γl

1∫
−1

ζl(τ)
dτ

(τ−v̄N1 )
2 ;

a(v̄N1+1)γN1+1 − h′3(v̄N1+1, v̄N1+1, γ̄N1+1)γN1+1(2N2
2 + N2

2
ln(2(1−c)N2−3)

(1−c)N2−2 )

+
N∗+1

∑
l=0

′′′h′3(v̄N1+1, v̄l , γ̄l)γl

1∫
−1

ζl(τ)
dτ

(τ−v̄N1+1)2 ;

a(v̄N∗+1)γN∗+1 − h′3(v̄N∗+1, v̄N∗+1, γ̄N∗+1)γN∗+1(2N2
2 + N2

2
ln(2(1−c)N2−3)

(1−c)N2−2 )

+
N∗

∑
l=0

h′3(v̄N∗+1, v̄l , γ̄l)γl

1∫
−1

ζl(τ)
dτ

(τ−v̄N∗+1)
2

)
.

(57)

Here ∑ ′, ∑ ′′ ∑ ′′′ indicate summations over l 6= k, l 6= N1, l 6= N1 + 1, respectively.
The notation h′3(t, τ, u) = δh(t,τ,u)

δu is used here.
Let the Equation (49) has the unique solution x∗(t) inside the ball B(x∗, δ). We shall assume that the

Frechet derivative (57) in the ball RN∗+1(x∗, δ) satisfies the conditions of Theorem 5. Thus, according to
statements of the Theorem 5, the solution of the system of differential equations

dαl(σ)
dσ = a(t̄l)αl(σ)−

N∗+1
∑

k=0
h(t̄l , t̄k, αk(σ))N

(
1

2l−2k+1 −
1

2l−2k−1

)
− f (t̄l), l = 0, 1, · · · , N∗ + 1,

(58)

converges to the solution of the Equation (49).
Thus, we have proven the following statement.

Theorem 7. Let the following conditions hold:

(1) Equation (49) has a unique solution x∗(t) inside some ball B(x∗, δ), x∗ ∈W2(x∗ : x∗1 , x∗2 ; M, c);
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(2) The Frechet derivative (57) in the ball RN∗+1(x∗, δ) satisfies the conditions of Theorem 5.

Then the system of Equations (51)–(56) has a unique solution inside the ball B(x∗, δ), and the solution of
Equation (58) converges to this solution.

The effectiveness of the presented algorithms is illustrated by solving two hypersingular integral
equations modeling aerodynamics problems.

Example 1. Let us illustrate the effectiveness of continuous method by solving the following linear
hypersingular equation ∫ 1

−1

x(τ)
(τ − t)2 dτ = f (γ1, γ2, t), (59)

where f (γ1, γ2, t) is the given right-hand side of the equation:

f (γ1, γ2; t) = γ1 − γ2 + (a1 − a2)
1
t − (a1 + γ1t) 1

1+t
−(a2 + γ2t) 1

1−t + γ1 ln | t
1+t |+ γ2 ln | 1−t

t |.

The exact solution of the equation is x(t) = (x1(t), x2(t)); xi(t) = ai + γit, i = 1, 2.

To solve the Equation (59) numerically we use the continuous method for solving operator
equations and arrive to the following evolution equation

dαk(σ)

dσ
=

N∗+1

∑
l=0

Nαl(σ)(
1

2k + 2l − 1
− 1

2k + 2l + 1
)− f (γ1, γ2; v̄k), k = 0, 1, . . . , N∗ + 1.

Nodes vk, v̄k, k = 0, 1, . . . , N∗ + 1, have been entered above.
In Figure 1 we show the trajectories of the exact solution of the Equation (59); its approximate

solution, received with continuous method; and values of error.

Figure 1. Numerical solutions for the linear hypersingular equation with a discontinuous right-hand
side example.

Here a1 = 1, a2 = 1.5, γ1 = 0.5, γ2 = 0.3.
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Example 2. Let us illustrate the effectiveness of the continuous method for the solutions of nonlinear
hypersingular equations ∫ 1

−1

x2(τ)

(τ − t)2 dτ = f (γ1, γ2, t) (60)

where f (γ1, γ2, t) is the given right-hand side of the equation:

f (γ1, γ2; t) = γ2
1 + 2γ1a1 + γ2

1t + a2
1
t + (2γ1a1 + 2γ2

1t) ln | t
1+t |

−(a2
1 + 2γ1a1t + γ2

1t2) 1
1+t + γ2

2 − 2a2γ2 − γ2
2t− a2

2
t − (a2

2 + 2a2γ2t
+γ2

2t2) 1
1−t + (2a2γ2 + 2γ2

2t) ln | 1−t
t |.

The exact solution of the equation is x(t) = (x1(t), x2(t)); xi(t) = ai + γit, i = 1, 2.
It easy to see that, if x(t) is a solution of the Equation (60), then functions−x(t), |x(t)| and−|x(t)|

are solutions of this equation too.
To solve the Equation (60) numerically we use the continuous method and receive the following

evolution equation

dαk(σ)

dσ
=

N∗+1

∑
l=0

Nα2
l (σ)(

1
2k + 2l − 1

− 1
2k + 2l + 1

)− f (γ1, γ2, v̄l),

k = 0, 1, . . . , N∗ + 1.
At first, we take αk(0) = 0.0 as an initial condition in order to demonstrate applicability of our

method in cases of the Newton–Kantorovich method, the minimal residual method and other numerical
methods; using in their construction the derivative of nonlinear operator is not applicable. Indeed, in
this case the Frechet derivative (57) is not only degenerate—and, therefore, not invertable—but is an
identical zero.

In Figure 2 we put a1 = 1, a2 = 1.4, γ1 = 0.5, γ2 = −0.4.

Figure 2. Numerical solution for the nonlinear hypersingular equation with a discontinuous right-hand
side example.

In Figure 2 we show the trajectories of the exact solution of the Equation (60), its approximate
solution, received with continuous method and values of error.
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The exact solution at t = 0 has a jump discontinuity of h = 0.4. The slopes of the exact solution
also change at t = 0. In Figure 2 we demonstrate that the numerical solution approximates the exact
one at [−1, 0) well. At t = 0 the approximate solution has a jump h̃ = 0.15.

4. Summary and Discussion

An iterative projection method for solving linear and nonlinear hypersingular integral equations
has been proposed. The method is based on the use of sufficient conditions for asymptotic stability of
ODE systems. Stability conditions are expressed in terms of the logarithmic norms of the corresponding
matrices. In a number of spaces often used in computational mathematics, the calculation of logarithmic
norms does not cause difficulties, even for large-dimensional matrices.

What are the advantages of the presented method?

(1) The method is applicable for solving linear and nonlinear hypersingular integral equations,
whose right-hand sides contain non-Riemann integrable functions.

(2) In Section 3.1 the continuous method is applied to linear hypersingular integral equations with
the singularities of the second order. The conditions for the unique solvability of the constructed
computing scheme are obtained and the convergence of the sequence of approximate solutions to
the exact one is proven. It is shown that for linear hypersingular integral equations, the method
converges for sufficiently large N and for b(t) 6= 0, t ∈ [−1, 1].

(3) In Section 3.2 the continuous method is applied to nonlinear hypersingular integral equations
with the singularities of the second order. Conditions are given for the convergence of the
constructed iterative spline-collocation method to the solution of a nonlinear hypersingular
integral equation. It should be noted that the method is applicable to hypersingular integral
equations of the first and second kinds.

The detailed bibliography of approximation methods of hypersingular integral equations of
the first and the second kinds is given in [32]. The bibliography on solving hypersingular integral
equations of the first kind is presented in [45].

Mostly, papers devoted to hypersingular integral equations of the first kind focused to seek
solutions in the class of functions

√
1− t2φ(t), where φ(t) is a smooth function. The presented method

provides solutions in a general form.
The theoretical justification of the method is based on Lyapunov stability theory. It connects

convergence of the method to the sign of the approximate system matrix logarithmic norm.
Said justification has advantages that allow us

1. To obtain a set of convergence conditions owing to logarithmic norm values in various spaces;
2. To determine the norm of the inverse matrix of an approximate system;
3. To determine stability boundaries for solutions with respect to variations of kernels and

right-hand sides of the equations.

The major advantage of the method for nonlinear equations is as follows.
The Newton–Kantorovich method requires the Frechet derivative reversibility at each iteration

step. Similar conditions are required when using other iteration methods. Our method lacks such a
deficiency. It does not put any restrictions on the Frechet derivative of the nonlinear operator.
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