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Abstract: Industrial automation has been recognized as a fundamental key to build and 

keep manufacturing industries in developed countries. In most automation tasks, knowing 

the exact position of the objects to handle is essential. This is often done using a positional 

calibration system, such as a camera-based vision system. In this article, an alternative  

six-degrees-of-freedom work object positional calibration method using a robot-held 

proximity sensor, is presented. A general trigonometry-based measurement and calculation 

procedure, which, step-by-step, adjusts a work object coordinate system to the actual work 

object position, is explained. For suitable robot tasks and work object geometries, the 

benefits with the presented method include its robustness, large work area and low 

investment cost. Some drawbacks can be longer cycle time and its limited capacity to 

handle unsorted and complicated objects. To validate the presented method, it was 

implemented in an experimental robot setup. In this robot cell, it was used to calibrate the 

position of a stator section work object, which is used in the Uppsala University Wave 

Energy Converter generator. Hereby the function of the positional calibration procedure 

was validated. Sufficient positioning accuracy for the stator winding task was achieved and 

theoretically validated based on the experiments. 

Keywords: positional calibration; industrial robot; proximity sensor; manufacturing 

automation; electric machine assembly 
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1. Introduction 

Manufacturing automation in general, and industrial robotics in particular, have recently been 

recognized as an essential key to keep manufacturing industries in countries with high personnel  

costs [1,2]. The world-wide number of installed industrial robots has been rapidly increased during the 

past years and this growth is forecasted to continue within the following years (IFR Statistical 

Department. Executive Summary: World Robotics 2012 Industrial Robots. Retrieved 2013-05-30:  

http://www.worldrobotics.org/uploads/media/Executive_Summary_WR_2012.pdf). With robots being 

used for a wider spectrum of tasks and by a wider spectrum of users, the need for simple, cheap and 

robust robot equipment and support systems is also increasing. 

Positional calibration of work objects, i.e., finding the exact position of the object to handle, is a 

common problem in robot automation. There are several techniques that can be used for such 

measurements. Two examples of advanced commercial systems are camera-based vision systems and 

force feedback systems, but other sensors such as probes, laser sensors or proximity sensors can also 

be used [3–8]. Vision-based systems are also used for similar applications with humanoid and mobile 

robots [9,10]. For a robot to be able to handle an object with high precision, its absolute positioning 

accuracy is critical. In general, industrial robots are known for high positioning repeatability, but 

perform worse in absolute positioning. The absolute positioning accuracy can however be improved 

substantially through absolute calibration of the robot or with positioning feedback and compensation 

systems [11,12]. 

This paper presents a six-degrees-of-freedom (6-DOF) positional calibration method, using a  

robot-held proximity sensor. A general trigonometry-based measurement and calculation procedure 

has been developed for the positional calibration. This procedure is used to step-by-step find the 

position of different work objects. Compared to many existing commercial positional calibration 

systems, the presented method is a simple, inexpensive and robust solution. It might be beneficial for 

use in longer cycle-time tasks on rather large, medium complex, well defined work objects where a 

rough estimation of the present position is known. Another example could be in applications with 

special requirements, such as varying surrounding light and when it is not allowed to touch the surface 

of the work object. The presented calibration method is evaluated through experiments. In these 

experiments, the 6-DOF position and rotation of a medium complex geometry stator section prototype, 

used in a Wave Energy Converter (WEC) generator developed at Uppsala University (UU), is measured. 

The UU WEC Stator Section Example 

In the quest for more renewable energy sources in our global energy system, electric generators and 

motors are two examples of large machines that are likely to grow in numbers in the near future. 

Building these electric machines includes many repetitive assembly operations, such as stator stacking, 

stator winding and rotor assembly. Some of these operations may be suitable for industrial robot 

automation. Examples of such electric machine assembly automation can be found in [13–15]. 

An example of such new large generator design is the UU WEC generator [16,17]. This generator is 

linear, direct-driven, has a permanently magnetized translator and a cable wound stator, see Figure 1. 

Figure 2 shows the stator design and defines some key parts of the stator. A robotized automation 
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solution for cable winding of the UU WEC stator is currently being developed at UU [18]. This robot 

cell uses four industrial robots, all equipped with cable feeder tools which has been designed and 

constructed for the specific task, see Figure 3. By cooperating, it is estimated that the robots can 

complete the cable winding of a UU WEC stator section in 215 minutes. The corresponding cycle time 

for manual cable winding with four personnel is about 20 hours. 

Figure 1. (a) A simplified model of the Uppsala University (UU) Wave Energy Converter 

(WEC) generator design. (b) A cable wound UU WEC stator section mounted inside a UU 

WEC generator housing. One UU WEC stator is built up from four stator sections, together 

forming an octagonal shape. 

  

(a) (b) 

Figure 2. Definition of some key parts of the UU WEC stator section design. 
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Figure 3. A simulation snapshot of the suggested robotized cable winding cell, created in 

ABB RobotStudio. 

 

The proposed cable winding automation starts as a new stator section is transported into the 

winding cell and positioned between the industrial robots. For the winding automation to function, it is 

necessary that the robots know the exact position of the stator section. In particular, the exact position 

of the stator section slot holes must be known. The positioning must have the same high precision 

every time a new stator section is positioned in the robot cell. Due to inevitable tolerances in the initial 

positioning of the stator section and because the geometry of the stator section itself can vary 

somewhat, a suitable positioning calibration method must be found and used to calibrate the robot 

movements to the actual work object position. 

2. Experimental Setup and Method 

The developed positional calibration method was validated in an experimental setup for robotized 

cable winding, see Figure 4. In this robot cell, an ABB IRB4400/60 kg M2000 S4C+ robot was 

equipped with a cable feeder tool. On top of the robot tool, an 18 mm diameter cylindrical, shielded 

proximity sensor, with 8 mm sensing distance, was mounted, see Figure 5a. This sensor was used for 

the work object positional calibration measurements. To facilitate positioning of the robot while 

measuring the work object position, a Tool Centre Point Coordinate System (TCPCS) was created at 

the sensing distance in front of the proximity sensor. For positioning the feeder against the stator 

section during robotized cable winding, two other TCPCSs were created on the cable guiding ends of 

the cable feeder tool. All TCPCSs are shown in Figure 5b. 

The work object in the robot cell was a UU WEC stator section prototype. While a full size UU 

WEC stator section is 2 m long, the stator section prototype was built up from left over stator sheets 

which were cut into 0.5 m long parts. Hence, the short side of the stator section was quite rough and 

some slot holes had to be used for bayonet pins and tightening bolts. In robotized winding of a full 

length UU WEC stator section, however, with the robots working in pairs, each robot must reach over 

about 1 m length of the stator side surface. 
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Figure 4. The cable winding experimental robot cell setup. Two ABB IRB4400/60 kg 

S4C+ M2000 robots, equipped with cable feeder tools, are performing cable winding 

through a 0.5 m long UU WEC stator section prototype. 

 

Figure 5. (a) A proximity sensor was mounted on top of a cable feeder robot tool and used 

to take positional measurements on the stator section. (b) The three Tool Centre Point 

Coordinate Systems (TCPCSs) created at the cable feeder tool and used for positioning the 

robot. One TCPCS is placed at the sensing distance from the detecting surface of the 

proximity sensor and two are placed on the ends of the cable guiding tubes. 

 

In the positional calibration procedure, the robot used the proximity sensor to measure the stator 

section position in some predefined points on the stator section surface, see Figure 6. By combining a 

number of such measurements, 6-DOF positional calibration was achieved. The positional calibration 

was repeated several times for the same stator section prototype position and the results were 

compared to each other. By assuming that the mean value of these measurements was adjusted to the 

actual stator section geometry, the positioning accuracy for each measurement was calculated. These 

measurements were then repeated 20 times for 20 different stator section positions. The maximum 

displacement of the stator section between the measurements was more than 20 mm and more than 

3 degrees. These measurements were then used to evaluate the positional calibration method by 

calculating the standard deviation of the positional calibration results. Since the positional calibration 
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includes the rotation of the stator section, the experimental results must also take into account that the 

positioning error depends on against which slot hole the robot is positioned. This error is likely to 

increase with the distance to the WOCS origin. 

Figure 6. (a) The proximity sensor mounted on top of the cable feeder tool is used to 

measure the position of the stator section surface in one point. (b) A close-up of the  

robot-held proximity sensor while used to measure the position of the stator section over a 

stator tooth. 

 

3. Positional Calibration Procedure 

3.1. General Positional Calibration Calculations 

From the positional measurements with the proximity sensor, the work object position in the Robot 

Base Coordinate System (RBCS) can be calculated. A Work Object Coordinate System (WOCS) is 

then created in the RBCS and adjusted to the work object geometry and position, e.g., positioned at a 

corner and aligned with one or more edges of the work object. Knowing the work object geometry and 

assuming high geometrical accuracy, the WOCS can thereby be used to create different robot targets 

on and thereby position the robot against the work object surface. Working in the WOCS instead of the 

RBCS will thus facilitate programming of the robot considerably. It also improves the flexibility of the 

robot programming, as all programmed robot targets are related to the WOCS, which can easily be 

adjusted in both position and rotation if needed. 

The general algebraic solution of the work object positional calibration method is based on a series 

of trigonometric calculations, which in turn are based on the measured points on the work object. 

These calculations start from an assumption of the work object position and are then repeated until a 

satisfying positional calibration is achieved. Figure 7 shows the positions of the measured points, the 

vectors used in the positional calibration calculations and the calibrated WOCS on a general work 

object geometry. 
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Figure 7. A general work object, showing the positions of measurements P1-P6, the 

vectors used in the positional calibration calculations and the position and rotation of the 

calibrated Work Object Coordinate System (WOCS). 

 

Starting with the three points P1R, P2R and P3R, two vectors in the yz-plane of the sought WOCS, 

V1R and V2R, are calculated in the RBCS. V1R is calculated from P1R to P2R using that 
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and V2R is calculated from P2R to P3R using that 
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A normal vector to the yz-plane, XR, directed in the positive x-axis direction of the sought WOCS, 

is then calculated in the RBCS as the cross product between V1R and V2R, knowing that 
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Assuming that two of the points on the work object side, P1R and P2R, are placed parallel to the y-

axis direction of the sought WOCS, V1R can be used as vector YR, which is thus directed in the 

positive y-axis direction of the sought WOCS. A third vector, ZR, which is perpendicular to XR and YR 

and directed in the positive z-axis direction of the sought WOCS, can now be calculated as the cross 

product between XR and YR, knowing that 
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These three vectors, XR, YR and ZR, describe the orientation of the work object relative to the RBCS. 

Hence, the WOCS orientation can now be aligned with the work object orientation. This is done by 

first transforming XR, YR and ZR to unit vectors 
U
XR, 

U
YR and 

U
ZR. Then the rotational matrix from 
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RBCS to WOCS, RRW, is calculated from the unit vectors of the RBCS and the unit vectors from  

the WOCS, both described in the RBCS. The unit vectors of the RBCS, 
U
XR0, 

U
YR0 and 

U
ZR0, are 

defined as 
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The elements in RRW can now be calculated using the dot product, knowing that 
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Now the orientation of the WOCS relative to the RBCS can be described in Tait-Bryan z-y’-x’’ 

angles, α, β and γ, which can be used in the robot programming, knowing that 
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Finally three new points, P4W, P5W and P6W, measured in the orientation-adjusted WOCS and 

placed on three sides of the work object, are used. Thus, the WOCS origin can be adjusted and 

expressed in the earlier preliminary WOCS. This is done by using the x-coordinate of P4W, the  

y-coordinate of P5W and the z-coordinate of P6W, all expressed in the assumed WOCS. The WOCS 

origin is then expressed in the RBCS, by using the rotational matrix from RBCS to WOCS, RRW, and 

knowing that 
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3.2. The UU WEC Stator Section Example 

In order for the cable winding automation to run smoothly, the maximum absolute positioning error 

at a stator slot hole should be about 1.0 mm with a 99.99% confidence level. This would result in about 

50 positioning errors above 1.0 mm during one year of continuous production in one robot cell. 

Furthermore, the positional calibration method must be robust in terms of reasonable changes in the 
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surrounding environment. It would also be favorably if the calibration method is fairly inexpensive and 

simple enough to be used with older robot models. 

If the WOCS is positioned at a corner of the stator section and aligned with the stator section 

geometry, the absolute positioning error of the cable feeder tool after the positional calibration, relative 

to the stator section, will depend also on the rotational accuracy of the WOCS. Hence the absolute 

positioning error will increase with the distance to the WOCS origin. During the cable winding task, 

the absolute positioning error will therefore be largest at the slot hole being furthest away from the 

WOCS origin, ε, see Figure 8a. Another reason for limiting the orientation error of the calibration is 

the importance of feeding the cable straight into the slot holes. In order for the cable winding 

automation to run smoothly, the maximum rotational error, around the WOCS x-, y- and z-axes 

respectively, at a stator slot hole should be about 1.0° with a 99.99% confidence level. 

Figure 8. (a) The position of the measured points A–H on the stator section surface, the 

position of ε and the position and rotation of the calibrated WOCS. The tightening bolts, 

here preliminary placed in slots number 3, 15 and 31 together with bayonet pins and short 

cable parts, deforms the stator section somewhat in the x-direction of the WOCS.  

(b) The proximity sensor while positioned to search for the edge between the stator section 

side and top side by moving upwards over a stator tooth while being within the sensing 

distance to the stator section side. 

 

In the cable winding robot cell, a stator section is automatically transported and positioned between 

the robots. A high precision fixture design is used to support the stator section, which is stacked from 

about 500 high precision stator sheets and held together by tightening bolts. Hence, the geometrical 

accuracy between the stator section slot holes is high while the thickness of the stacked stator section 

can vary somewhat. The position of the stator section in the robot cell can be assumed to vary only a 

few millimeters and less than one degree. However, when measuring the stator section geometry even 

a positioning deviation of less than a few millimeters might result in a measurement being taken with 

the proximity sensor positioned over a stator section slot hole. Since less ferromagnetic material is then 

available, the measurement might be incorrect relative to measurements taken over a solid part of the 

stator section. 
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Another problem is that the stator section side becomes a bit deformed by the tightening bolts which 

are used to hold together the stator section plates, see Figure 8a. This deformation arises mainly in the 

x-direction of the WOCS and can be neglected in the y- and z-directions. 

Due to the desired robot model and placement relative to the stator section, to the cable feeder tool 

design and to the stator section geometry, the robot reach for taking measurements with the proximity 

sensor was somewhat limited. As a consequence, measurements could not be taken on the top side of 

the stator section. In order to get the required measurements, the proximity sensor was instead moved 

upwards over the stator section side, within the sensing distance to the stator section, searching for the 

edge between the stator section side and the top side, see Figure 8b. 

In the UU WEC stator section positional calibration procedure, in total eight points on the stator 

section geometry are measured, see Figure 8a. The positional calibration starts from an approximation 

of the stator section position in a preliminary WOCS. This approximation is first used to measure 

points A and B. In order to avoid that the measurements are disturbed by, e.g., slot holes on the stator 

section side, the measurements are taken on the yoke of the stator section. Knowing that the stator 

section is placed on a high precision fixture and table, measurements A and B are assumed to be placed 

parallel to the y-axis direction of the sought WOCS. Hence measurement A can be used as P1R and 

measurement B can be used as P2R. P3R is calculated as a point 50 mm above B at the stator section 

side surface by first calculating the WOCS rotation around the z-axis, α1, from A and B and assuming 

the inclination of the stator side relative to the RBCS, β1, to be 15°. We get 
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As a result, a preliminary calculation of the WOCS rotation can be made using Equations (1)–(9) a 

(11) and (12) and B can be used as P4W with Equation 10 to preliminary adjust the x-axis origin of  

the WOCS. 

Next, measurement C is performed in the adjusted WOCS on the short side of the stator section and 

used as P5W with Equation (10) to preliminary adjust the y-axis origin of the WOCS. 

Assuming that the WOCS rotation around the x-axis differs very little from the start approximation, 

measurements D and E can now be taken with high accuracy over a stator section tooth and used as 

P3R and P2R. By combining measurements A, B, D and E, the WOCS yz-plane can be adjusted to the 

side of the stator section. The previously calculated V1R is then used with the new P2R and P3R and 

Equations (2)–(9) to adjust the rotation of the WOCS, which is thereby adjusted around the WOCS  

y- and z-axes. Since measurement E is taken at a better defined position on the stator section side,  

this measurement can be used as P5W with Equation (10) to improve the position of the WOCS  

x-axis origin. 
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Next, point F is measured by moving the proximity sensor upwards, in the positive z-axis direction 

of the WOCS, over a stator section tooth within the sensing distance to the stator section side, 

beginning a few millimeters offset in the positive WOCS x-axis from point E. The edge is found as the 

end of the side surface is reached and the sensor stops detecting. Next, point G is measured and used as 

starting point in measuring point H, using the same procedure as for point F. The final WOCS rotation 

is now calculated using H as P1R, F as P2R and D as P3R with Equations (1)–(9), by inverting the 

direction of V2R. Finally, measurement H is used as P6W
z
 and measurements C and D are retaken and 

used as P5W
y
 and P4W

x
 with Equation (10) to decide the final position of the WOCS origin. 

As the WOCS adjustment to the stator section geometry is finished, the varying x-direction offset of 

the stator section side surface is measured and calculated. This is done by using the x-component of 

the offset measurement, PXW
x
, expressed in the WOCS, and repeating the measurement for every 

second stator tooth at two different slot hole levels on the stator section side. By combining these 

measurement results, the x-offset for each slot hole position can be estimated. These x-offset results 

are saved in a m × n-matrix, MXW, where the rows represent the slot hole layers and the columns 

represent the slot number. Thus, with i and j representing the slot hole layer and the slot number for an 

individual slot hole and k and l representing the slot hole level and the slot tooth number for an 

individual x-offset measurement, we get 
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Using the adjusted WOCS and the x-offset matrix, all slot hole positions can easily be calculated 

from knowing the stator section dimensions. To facilitate positioning during robotized cable winding, a 

new function is created in the robot programming. If given the desired slot number and slot hole layer, 

this function returns a robot target fitted at to the specified slot hole. The rotation of the robot target is 

aligned with the WOCS, while the position of the robot target is calculated as a geometrical offset in 

the y- and z-axes directions, and adjusted by the x-offset matrix in the x-axis direction, relative to the 

WOCS origin. If desired the function can create a robot target with a user defined distance and rotation 

relative to a slot hole. Hence, by using the presented positional calibration method and the described 

programming function, creating robot targets for positioning the cable feeder tool against different slot 

holes is very straightforward. 

4. Experimental Results 

The positional calibration method, including the algebraic solution and robot programming 

described in Section 3, was implemented in the experimental robot cell setup described in Section 2. 

Robotized cable winding experiments, using the stator section positional calibration method, were 

performed successfully in this setup. Hereby the function of the presented positional calibration 
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method was validated, as it provided sufficient positioning accuracy for the robot relative to the stator 

section slot holes, see Figure 9. 

Figure 9. The robot-held cable feeder tool is positioned with one end of the cable guiding 

tube against a slot hole on the stator section prototype side, using the calibrated WOCS. 

 

Figure 10 shows the positions of the calibrated WOCS origins for the 400 stator section positional 

calibrations, relative to the mean value of these measurements. In Figure 11, the corresponding 

calculated positions of ε in the calibrated WOCS are shown. The distance from ε to the WOCS origin 

is set to 1,000 mm in the negative y-direction and 100 mm in the negative z-direction. 

Figure 10. The calibrated positions of the WOCS origins are marked with blue crosses, 

while the assumed correct position of the UU WEC stator section corner is shown in red. 

The figure is based on 400 measurements. 

 

It can be seen in Figures 10 and 11 that a large contribution to the absolute positioning error at ε 

comes from rotational errors in the WOCS. It can also be observed that the absolute error in the  

x-direction of the WOCS makes a significant contribution to the total xyz-space error. However, since 

additional x-offset values are measured and because absolute positioning errors in this direction are 

less important for the cable winding, the x-direction offset in these results can be neglected. The 

important positioning error is therefore in the yz-plane of the WOCS. 
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Figure 11. The calculated positions of ε are marked with blue crosses, while the correct 

UU WEC stator section slot position is shown in red. The figure is based on 

400 measurements. 

 

From the 400 calibrations, normal distributions of the positioning errors were calculated. The 

normal distributions were divided into positioning errors in the yz-plane and in the xyz-space at the 

WOCS origin, into positioning errors in the yz-plane and in the xyz-space at ε, into positioning errors 

of the WOCS origin in the x-, y- and z-axis and into rotational errors of the WOCS around the x-,  

y- and z-axis. By using each measured WOCS to calculate the position of all 500 slot holes on one 

stator section, 200,000 different robot targets were created for the 400 WOCS calibrations. Comparing 

these robot target positions to the assumed correct positions gives a normal distribution of the absolute 

positioning error for all stator section slot holes on the stator section side. 

In calculating normal distributions in the yz-plane and in the xyz-space, the displacement is defined 

as positive if the displacement is positive in the x-axis of the WOCS. The resulting normal distributions 

and confidence intervals for different confidence levels are shown in Figure 12 and Table 1. 

The cycle time for the full stator section calibration was about 100 s for calibrating the WOCS and 

150 s for measuring the x-offset matrix over a full size stator side. 

Figure 12. Normal distributions of the calculated absolute positioning errors from the UU 

WEC stator section positional calibration experiments, based on 400 measurements. 
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Table 1. Confidence intervals for the calculated absolute positioning errors from the UU 

WEC stator section positional calibration experiments, based on 400 measurements. The 

frequency number represents approximately how often an error outside the confidence 

interval will occur in one cable winding robot cell in full operation during one year. 

Normal distribution 
Confidence Level 

[%] 

Frequency 

[times/year] 

Confidence 

Interval 

WOCS origin x-axis 95.5 22 500 ±0.10 mm 

WOCS origin y-axis 95.5 22 500 ±0.08 mm 

WOCS origin z-axis 95.5 22 500 ±0.16 mm 

WOCS rotation x-axis 95.5 22 500 ±0.0002° 

WOCS rotation y-axis 95.5 22 500 ±0.0018° 

WOCS rotation z-axis 95.5 22 500 ±0.0003° 

WOCS rotation x-axis 99.99 50 ±0.0004° 

WOCS rotation y-axis 99.99 50 ±0.0035° 

WOCS rotation z-axis 99.99 50 ±0.0006° 

WOCS yz-plane origin 95.5 45 ±0.18 mm 

WOCS yz-plane origin 99 10 ±0.23 mm 

WOCS yz-plane origin 99.9 1 ±0.30 mm 

WOCS yz-plane at ε 95.5 45 ±0.40 mm 

WOCS yz-plane at ε 99 10 ±0.51 mm 

WOCS yz-plane at ε 99.9 1 ±0.66 mm 

WOCS yz-plane stator side 95.5 22 500 ±0.28 mm 

WOCS yz-plane stator side 99.99 50 ±0.55 mm 

WOCS yz-plane stator side 99.999 5 ±0.62 mm 

WOCS yz-plane stator side 99.9999 0.5 ±0.69 mm 

5. Discussion 

The function of the presented 6-DOF positional calibration method, including the trigonometry-based 

measurement and calculation procedure, was validated through experiments with a UU WEC stator 

section prototype. In theses experiments, the examined work object was shaped like a large, 

rectangular parallelepiped and its front side was penetrated by a pattern of stator slots. The same 

calibration method can be easily be implemented also for other work object geometries. However, for 

the calibration method to be easily implemented, the work object should be well defined, have at least 

one plane surface and its position should be roughly known from the beginning. It must also be 

possible for the robot to reach around the work object while taking measurements. By replacing the 

proximity sensor with, e.g., a capacitive sensor or a miniature snap-action switch, non-ferromagnetic 

materials can be detected. As indicated by the UU WEC stator section example, work objects with 

complicated geometries might require step-by-step positional calibration through repeated 

measurements. With a simpler geometry on the other hand, the positional calibration procedure can be 

simplified and a lower cycle time can thus be achieved. 

For tasks fulfilling the demands described above, there are some possible benefits with the 

presented positional calibration method. One benefit is the robustness of the method and equipment, 

such as being insensitive to changes in the surrounding light. Another benefit is the large possible work 
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area and ability to take measurements on different sides of the work object provided by the robot itself. 

Also, with the proximity sensor placed on the robot tool, positioning of the robot will be similar during 

the work object positional calibration and when later working with the work object. Hence the 

positional calibration will to some extent include compensation for the robot-specific absolute 

positioning error against the stator section. This is especially true if the robot moves in a restricted area 

with relatively small joint axis movements and given that the robot joint axis rotations are similar 

during the positional calibration and the following robot task. Further, the use of inexpensive and 

simple equipment and the possibility to include the calibration procedure directly into the robot 

programming independent of robot model makes the method inexpensive, simple and easy to implement. 

On the other hand, depending on the application there are some possible drawbacks with the 

presented method compared to, e.g., commercial vision systems. An important drawback is the 

methods limited capability to detect and identify different objects, especially if they are unsorted, due 

to the need to have a good start estimation for the search procedure and the need for the robot to reach 

around the work object while taking measurements. Another important drawback is that the method 

might be very hard and time consuming or even impossible to implement for complicated geometries. 

The positioning calibration cycle time can also be quite long, especially for complicated work objects. 

Since the robot holds the proximity sensor, the calibration can not be done simultaneously with other 

robot tasks and thus the calibration cycle time will be more likely to directly add to the total product 

cycle time. Finally, by using a robot-held sensor, the calibration accuracy will depend also on the robot 

absolute positioning accuracy and on the proximity sensor detecting distance accuracy. This can be a 

problem both when the robot later works with the work object and if the robot is supposed to share the 

calibration results with other equipment. 

The UU WEC Stator Section Example 

Positional calibration of the UU WEC stator section requires a robust method with high accuracy 

results over the full stator surface, which was achieved with the developed method. With a total stator 

section winding cycle time of 215 min, the resulting positional calibration cycle time, 4 min per stator 

section, will only make a minor contribution to the total product cycle time. Hence robustness and 

accuracy are prioritized over a very low cycle time. 

The experiments with the stator section resulted in a ±0.55 mm confidence interval for positioning 

over the full 1,000 × 100 mm stator section side relative to the calibrated stator section position, with a 

99.99% confidence level. However, the robots used in the stator section positional calibration 

experiments were not absolute calibrated, which may also have influenced the results. The specified 

linear path accuracy performance of the used robot model was 0.8–1.3 mm, specified for the full reach 

of an un-used robot. As the robot is positioned against the stator section side in the cable winding task, 

only small rotations of the robots joint axes 1–5 are required since the work area is restricted. If the 

robot absolute accuracy performance thereby is assumed to be included in the positional calibration 

result, this positioning error can be neglected in the total positioning error for the winding task. Further, 

the robot positioning repeatability was not considered in the experiments. This did probably influence 

the measurements and this must thus be included in the total positioning error. The specified linear 

path repeatability performance of the robot used in the experiments was 0.25–0.4 mm, for the full 
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reach of an un-used robot. By adding this repeatability accuracy to the total positioning error for the 

winding task, the resulting accuracy will still be within the specified requirement of ±1.0 mm with a 

99.99% confidence level. 

The experimental results regarding the rotational accuracy of the calibrated WOCS relative to the 

stator section geometry validated that the presented method well fulfilled the specified requirement of 

maximum ±1.0° rotational error for the x-, y- and z-axes respectively with a 99.99% confidence level. 

Two specific problems with positional calibration of the UU WEC stator section were the uneven 

short side of the stator section, which probably effected measurement C, and the limited robot reach, 

which made it impossible to take measurements on the stator section top side. The results might also 

have been improved by using a more precise and smaller diameter proximity sensor. It should as well 

be noted that calibration of the TCPCSs on the robot tool adds another accuracy error to the calibration 

method. Thus this tool calibration must be performed with high accuracy. 

Manual winding experience has shown that there is a risk that the stator section teeth are bent 

somewhat outwards as a cable is fed through. This did not occur during the initial robot winding 

experiments. However if such deformation cannot be completely avoided, this geometrical change 

must be identified during the actual winding. It would, e.g., be possible to complete the described 

positional calibration by using, e.g., bayonet pins in unwound stator slot holes with a force feedback 

system during the winding. Such a system would on the other hand be rather expensive. 

To perform a compete analysis of using the implementation of the presented positional calibration 

method for calibrating the UU WEC stator section position, further experiments, preferably on several 

different full length stator sections, are needed. Using absolute calibrated robots and, e.g., a laser 

tracking system to determine the actual robot positioning accuracy after the calibration would also 

improve the analysis. Such equipment was however not available for this work. 

6. Conclusions 

A trigonometry-based measurement and calculation procedure for 6-DOF work object positional 

calibration using an industrial robot equipped with a proximity sensor has been presented. The method 

require a well defined work object with at least one plane surface, a rough start estimation of the work 

object position and orientation and space around the work object for the robot to be able to take 

measurements. In a task with relatively long product cycle time and a suitable, medium complicated, 

work object geometry; the benefits of the method include robustness to changes in the surrounding 

light, a large possible work area and being inexpensive, simple and easy to implement, while the 

drawbacks include the limited capability to detect and identify different objects, especially complicated 

geometries or if they come unsorted, and a rather long cycle time. 

An experimental setup for robotized cable winding has been used for implementation of the 

presented calibration method. In this setup, the position of a UU WEC stator section prototype was 

measured. Based on the experiments, the required positioning accuracy, maximum 1.0 mm absolute 

positioning error with a 99.99% confidence level for robot positioning over a 1,000 × 100 mm surface, 

and the required rotational accuracy, maximum 1.0° rotational error with a 99.99% confidence level, 

have been theoretically validated. 
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