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Abstract: This investigation attempts to study a possible controller in improving the dynamic
stability of capacitive microstructures through mitigating the effects of disturbances and uncertainties
in their resultant dynamic behavior. Consequently, a nonsingular terminal sliding mode control
strategy is suggested in this regard. The main features of this particular control strategy are its high
response speed and its non-reliance on powerful controller forces. The stability of the controller was
investigated using Lyapunov theory. For this purpose, a suitable Lyapunov function was introduced
to prove the stability of a controller, and the singularity conditions and methods to overcome these
conditions are presented. The achieved results proved the high capability of the applied technique in
stabilizing of the microstructure as well as mitigating the effects of disturbances and uncertainties.

Keywords: MEMS; terminal sliding mode controller; nonsingular; stabilization; active control

1. Introduction

The industry of Micro Electro Mechanical System (MEMS) has been among the most sig-
nificant businesses in the recent last decades, gaining the attention of numerous researchers
all over the world. MEMS structures, such as micro-switches [1–4], micro-capacitors [5–7],
micro-gyroscopes [8–11], micro-sensors [12–14], and micro-actuators [15–19], are essentially
used in various industrial fields, such as aerospace, micro-electronics, telecommunication,
and medical [20,21]. Their wider scopes of applications and popularity comes principally
from their small-scale features, their low energy/power consumption, their ability of batch
fabrication, and their high response speed.

The development and progress for these tiny structures depend on their suitable design
and correct prediction of their respective electro-mechanical behaviors and characteristics.
One of the primary challenges of these structures are their variant dynamic characteristics,
useful in certain applications but limiting their use in others. One can observe a significant
increase in the study of the mechanical and dynamical behaviors of these structures [22–26]
in the recently published literature.

One of the important concerns concerning the dynamic behavior analysis of these
structures are the effects of external disturbances and uncertainties. As for most microstruc-
tures, the governing dynamic equation is nonlinear; this nonlinearity can lead to numerous
dynamic instabilities, such as dynamic pull-in [27–30], bifurcations, dynamic hysteresis,
fractal and chaotic behaviors [31–36]. Disturbances and uncertainties, in addition to nonlin-
earity, drastically intensify such instabilities.
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Reducing disturbances requires altering the microstructure packaging and its isolation;
however, such adjustments/modifications cannot cancel all the unwanted disturbances at
all ranges of frequencies. Moreover, reducing uncertainties requires improved fabrication
processes [37,38], including lithography, etching, and others, but this would significantly
increase the manufacturing costs of these tiny structures. Bearing in mind these challenges, it
was proven that uncertainties and disturbances cannot be completely eliminated from macro-
scale structures [39–41]; thus, their elimination is even more challenging in microstructures.

The common studies on examining microstructure dynamical behavior do not include
disturbance and uncertainty effects [42–45]. For example, dynamical analysis of MEM
structures incorporating micro-beams have been studied without considering uncertainties
or disturbances [4,46–49]. Some studies in the case of vibration analysis of micro-plates
that neglect uncertainties and disturbances have been provided in references [50–54]. Addi-
tional to the abovementioned works, some relevant vibration analysis of micro gyroscopes
without considering uncertainty and disturbances are available in [55–58].

Contrary to these works, few studies have investigated such effects and attempted
their mitigation. As an example, the robust active control method is an efficient technique
for reducing and eliminating the effects of disturbance and uncertainty effects [59,60].
Furthermore, the Sliding Mode Control (SMC) is one of the primary robust control strategies
offering a particularly strong robustness against disturbances and uncertainties [61–66].
This control method has also the merit of being computationally cheap and simple as
compared to other robust control methods, and it can be combined with fuzzy and artificial
intelligent methods [67–71].

Rahmani et al. [72] studied dynamic analysis of MEMS gyroscopes using a sliding
mode controller. They considered external disturbances as an unwanted factor that disturbs
the vibration of the structure and used a Lyapunov function to extract the control parame-
ters. Robust dynamic analysis of MEMS Probing was presented in ref. [73]. In this work,
H-infinity method was employed to mitigate uncertainties and noises. He and Geng [74]
studied the dynamics and robust control of a torsional gyroscope subjected to electrostatic
force with considering structural uncertainties.

They applied an observer-based robust controller on the basis of linear matrix in-
equalities to fulfilment of this work. The stability of a micro gyroscope, including model
uncertainties and external disturbances, was investigated in ref. [75]. The implemented
strategy was based on applying of a robust adaptive fuzzy controller. Qin et al. [76] applied
a nonlinear feedback control method with integral sliding mode to alleviate the effects of
external disturbance of micro ultrasonic transducer. They used particle swarm optimization
for tuning the control parameters.

Darbasi et al. [77] investigated the dynamic analysis of a micro ultrasonic transducer
subjected to external disturbances and uncertainty. They applied sliding model control
to stabilize the microstructure. Robust dynamic analysis and disturbance rejection of an
electrostatically micro-tunable capacitor was studied in ref. [78] by means of an adaptive
sliding mode controller.

Among the SMC methods, Nonsingular Terminal SMC (NTSMC) represents the most
efficient control technique offering fast or finite-time convergence without requiring a strong
controlling force [79–82]. Considering the reputation and effectiveness of this method,
there have been significant studies to improve it in controlling the dynamic response of
mechanical structures [83–85]. Contrary to the majority of studies on control of mechanical
structures, there have been few studies on microstructure control and eliminating the effects
of disturbance and uncertainty.

Owing to the importance of controlling the responses of microstructure and the ef-
ficiency of the NTSMC control strategy as well as its high response speed, this study
investigates the stabilization of micro-capacitors in the presence of disturbances and uncer-
tainties. For this purpose, a dynamical system that covers the dynamic equations of most
microstructures is considered. This equation includes uncertainty and disturbance terms,
and, in reality, these terms may not be negligible.
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However, as mentioned before, most of the studies did not take these factors into
account. In the continuation of the study, a suitable sliding surface for the design of NTSMC
is presented, and the existence conditions for singularity are also discussed in detail. The
relation of the control inputs are presented and based on the presented Lyapunov function.
The stability of the Lyapunov function and, consequently, the stability of the NTSMC are
examined. The Lyapunov function and its derivative in the singular and nonsingular
regions are investigated.

Additionally, we aims to examine the effect of the main controller parameters on the
dynamic behavior of the micro-capacitors. The main controlling parameters consist of
the electrostatic forces applied to the microstructure to possibly overcome the disturbance
effects in the neighborhood of the fixed-point and prevent its distancing from this zone.
The major findings of this study are then summarized in indicating the vast potential of the
NTSMC method in controlling the dynamic behavior of capacitive microstructures under
the effects of disturbances and uncertainties.

The effects of controller and microstructure parameters on the amplitude of vibration,
phase plane associated with the sliding surface, the magnitude of the control parameter
or the applied voltages are fully investigated. In addition, the ability of the controller to
stabilize the microstructure in the presence of uncertainty and noise is investigated, and the
effect of noise intensity on the dynamic behavior of the system, extent of the phase plane
and its effects on applied voltages are discussed in detail.

The present study is structured as follows: The next section discusses the NTSMC
controller and its stabilizing based on Lyapunov theory. In Section 2.1, the studied mi-
crostructure and its governing dynamic equations are presented. The obtained results
related to dynamic behavior, stabilization, and the control of microstructure are presented
in Section 3. Section 4 presents the concluding remarks of this paper.

2. Nonsingular Terminal Sliding Mode Control

Below, the NTSMC design process for a dynamical system governed by a second order
differential equation [86] is presented. Equation (1) shows the general form of governing
differential equation of the examined system:

.
x1 = x2.

x2 = f (x) + ∆F(x) + d(t) + b(x)u(t)
(1)

where x = [x1 x2]
T ∈ R2 represents the vector of state space; f (x) and b(x) 6= 0 both express

the smooth functions, respectively; ∆F(x) and d(t) represent the uncertainty and the
external factor of disturbance; and u(t) denotes the controlling factor. For the investigated
case, it is assumed that |d(t)|+ |∆F(x)| ≤ ld where ld > 0. The purpose of designing a
NTSMC is to determine the control law of u(t) so that the dynamic system of Equation (1)
is stable in the vicinity of x = [0 0]T . Therefore, the NTSMC manifold for the mentioned
design is considered as follows [86,87]:

s = x2 + βx
q
p
1 (2)

where β > 0 is the controller parameter, and p and q are positive odd numbers satisfying
the following condition 1 < p

q < 2. A control law determination is based on the fulfilment

of the following condition: 1
2

d
dt s2 ≤ −η|s|. In fact, for this particular case, a Lyapunov

function is considered as V = s2

2 , and 1
2

d
dt s2 ≤ −η|s| representing the condition of stability

of Lyapunov function or
.

V = s
.
s < 0. Given the equations of (1) and (2), we have:

.
s =

.
x2 + β

q
p

x
q
p−1
1

.
x1 = f (x) + ∆F(x) + d(t) + b(x)u + β

q
p

x
q
p−1
1 x2 (3)
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Considering q
p − 1 < 0, for x1 = 0 and x2 6= 0, there is a singularity situation for

.
s, and

it can be written as follows:

lim x
q
p−1
1 x2 = ∞

x1 → 0
x2 → 0

(4)

The above state cannot occur in the neighborhood of x1 = 0 and x2 = 0, and therefore:

lim x
q
p−1
1 x2 = 0

x1 → 0
x2 → 0

(5)

The purpose of the NTSMC controller is to assure a control condition that does not
cause a singularity on

.
s. For this reason, and according to [86], the control law can be

expressed as follows:

u = b−1(x)
[
− f (x) + sat(u f , us)− λsign(s)

]
(6)

where λ = ld + η, sat
(

u f , us

)
represents the saturation function considering u f = −β

q
p x

q
p−1
1 x2,

and η is a positive number.
In the continuation of this section, the stability of the Lyapunov function is discussed.

As previously said,
.

V should be negative (
.

V = s
.
s < 0) in order for the system to be stable.

If this condition is satisfied, the Lyapunov function and, consequently, the controller, will
be stable.

The term x
q
p−1
1 x2 in Equation (3) is important, and this element may result in singu-

larity. Figures 1 and 2 illustrate the fluctuation of g(x1) = x
q
p−1
1 and F(x1, x2) = x

q
p−1
1 x2

versus x1.
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Figure 1. x1 for different values of q and p.

The following conclusions can be found from these figures.

• As illustrated in Figure 1, g(x1) = x
q
p−1
1 is never less than zero for any x1.

• As a result, the sign of F(x1, x2) = x
q
p−1
1 x2 is independent of x1 and is reliant only on x2.

Thus, sgn
(

x
q
p−1
1 x2

)
= sgn(x2). Additionally, this point can be deduced from Figure 2.

• As it is clear from Figure 2: lim
x1 → 0
x2 6= 0

x
q
p−1
1 x2 → ∞ . Where, this term indicates singularity.
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• The term of F(x1, x2) = x
q
p−1
1 x2 for x2 6= 0 is always nonzero.

• lim
x1 → 0
x2 → 0

x
q
p−1
1 x2 = 0
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It is important to thoroughly analyze the term sat
(

u f , us

)
. To facilitate the examination

of the Lyapunov function’s stability, we focus on the following two areas on the x1 − x2 plane.

A =

{
(x1, x2) : β

q
p

x
q
p−1
1 |x2| ≤ us

}
B =

{
(x1, x2) : β

q
p

x
q
p−1
1 |x2| > us

}
As previously stated, us > 0. The regions of A and B, as well as the s = 0 curve, are

represented in Figure 3.
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As can be seen in the illustration, s = 0 is always in the district of A. As a result, there
is no singularity on the s = 0 diagram.
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If state (x1, x2) is in the area A. Then the condition β
q
p x

q
p−1
1 |x2| ≤ us is met. Thus:

sat
(

u f , us

)
= −β

q
p x

q
p−1
1 |x2| = u f . In this case, and by substituting the preceding term in

Equation (6),
.
s can be obtained as (see Equation (3)):

.
s = ∆F(x) + d(t)− β

q
p

x
q
p−1
1 x2 − λsgn(s) + β

q
p

x
q
p−1
1 x2

.
s = ∆F(x) + d(t)− λsgn(s) (7)

Considering Equation (7) and according to |d(t)|+ |∆F(x)| ≤ ld and λ = ld + η, the
following relation can be extracted for

.
V:

.
V = s

.
s = s[∆F(x) + d(t)]− λ|s| ≤ −η|s| < 0 (8)

Therefore, for the area of A, the stability condition holds true.
For the area of B, the following relation is valid.

sat
(

u f , us

)
= ussgn

(
u f

)
= −ussgn(x2) (9)

According to Equation (6) and substituting Equation (9) in it, and using Equation (3)
we have:

.
s = ∆F(x) + d(t)− ussgn(x2)− λsgn(s) + β

q
p

x
q
p−1
1 x2 (10)

As shown in Figure 3, the B is union of B1 and B2. If the state (x1, x2) is placed in
the area of B, the sat

(
u f , us

)
is equal with −ussgn(x2). For the region of B1; Given that

|d(x)|+ |∆F(x)| ≤ ld, η > 0, and considering that the gain λ generally has some margin;
therefore, in the area B1, as the same as area of A,

.
V = s

.
s < 0 still holds true [86]. If (x1, x2)

passes from B1 to B2, the condition of
.

V < 0 is disturbed, and, in the area B2, for x1 → 0
while x2 6= 0, singularity happens.

Calculating the boundaries of B1 and B2 is difficult and requires an in-depth under-
standing of the bounds of uncertainties and disturbances [86]. However, significant here is
that the area of B2 is a transition region in which the state (x1, x2) does not persist indef-
initely. Furthermore, as illustrated below, the state (x1, x2) passes through this transient
situation and reaches the stability region of A [86].

Using
.
x1 = x2 in Equation (1) and integrating from there, we find:

x1(t) = x1(0) +
t∫

0

x2(t)dt (11)

If (x1, x2) is in the B2, there are two scenarios.
In case (1) for x2(t) > 0, according to the Equation (11), x1(t) increases monotonically

until crossing the border of B and entering the A region in a finite time (see Figure 3). As
mentioned before A is a stable region, where satisfies the stability of the Lyapunov condition.

For case (2), if x2(t) < 0, then x1(t) decreases monotonically to enter the region of A,
and the scenario presented in case 1 is repeated, and the stability of the Lyapunov function
is guaranteed, and the state (x1, x2) reaches s = 0.

For such design, us should be considered in the following range [86]:

β2
(

q
p

)
x

2q
p −1

1 max < us < fmax + λ + bmaxumax (12)
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The saturation function can be expressed as follows:

sat
(

u f , us

)
=


us −β

q
p x

q
p−1
1 x2 > us

−β
q
p x

q
p−1
1 x2 −us < −β

q
p x

q
p−1
1 x2 < us

−us −β
q
p x

q
p−1
1 x2 < −us

(13)

2.1. Micro-Capacitor Dynamic Model Governing Equation

In this part, the schematic view of studied micro-capacitor is presented consisting of
a conductive movable plate suspended between two conductive upper and lower fixed
plates, Figure 4. The top view of the moving plate is shown in Figure 4a, consisting of
a rectangular plate detained by four carrier beams. Given the length l, thickness h and
width b of each rectangular beam, their respective equivalent stiffness coefficients can be
calculated as follows: k = 12 EI

l3 and keq = 4k, where I = bh3

12 symbolizes the rectangular
beam second moment of inertia.
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Correspondingly, the front view of the structure shown in Figure 4b, illustrates the
moving electrode, which is located at a distance Go from its fixed upper and lower elec-
trodes, and two electrical potentials V1 and V2 are applied to the moving electrode from
both lower and upper actuating electrodes. The material of the moving electrode is con-
sidered to be homogeneous with a Young’s modulus E, mass density ρ, and cross section
area A. In this investigation, we considered A = 150 µm× 150 µm, h = 0.2 µm, b = 5 µm,
G0 = 4 µm, l = 100 µm, E = 169 Gpa, and ρ = 2300 kg

m3 .
The simple one-degree of freedom mathematical model governing the dynamic behav-

ior of the above micro-capacitor can be written as follows [88]:

m
d2z
dτ2 + c′

dz
dτ

+ keqz = qelec + d(τ) + ∆F′(z) (14)

where m, c′, qelec, d(τ), and ∆F′(z) denote the equivalent mass of the movable electrode,
damping coefficient, electrostatic force, external disturbance, and inherent uncertainty,
respectively. Moreover, τ denotes time, and z is the displacement of the movable plate
with respect to the lower electrode. The resultant electrostatic force on the movable plate
can be expressed as follows assuming a parallel-plates theory with negligible fringing-
fields effects [88]:



Machines 2022, 10, 34 8 of 18

qelec =
ε0SV2

1

2(G0 − z)2 −
ε0SV2

2

2(G0 + z)2 (15)

where ε0 designates the air permittivity in the vacuum.
For the sake of normalizing the above dynamic equation, we consider the follow-

ing non-dimensional parameters w = z
G0

and t = τ
t∗ . Therefore, the dynamic equation,

Equation (14) can be written as follows:

d2w
dt2 + c

dw
dt

+ w =
αV2

1

(1− w)2 −
αV2

2

(1 + w)2 + γd(t× t∗) + γ∆F′(G0 × w) (16)

where t∗, c, and α are parameters defined as follows:

t∗ =
√

m
keq

, c =
c′

keqt∗
, α =

ε0S
2keqG3

0
, γ =

1
keqG0

(17)

Now considering x1 = w and x2 = dw
dt , Equation (16) can be re-written in state space

form as follows: .
x1 = x2.

x2 = −x1 − cx2 + Felec + δ(t) + ϕ(x)
(18)

where

Felec =
αV2

1

(1− x1)
2 −

αV2
2

(1 + x1)
2 δ(t) = γd(t× t∗)ϕ(t) = γ∆F′(G0 × x1) (19)

Comparing Equation (18) with standard form of the presented state space form of
Equation (1), we have:

f (x) = −x1 − cx1
∆F(x) = ϕ(x)
d(t) = δ(t)
Felec = b(x)u

(20)

An important point in designing of controller is that the nonlinear term is expressed
in the form of electrostatic force or Felec. According to Equation (19), it is clear that
Equation (18) becomes nonlinear due to the presence of terms 1

(1−x1)
2 and 1

(1+x1)
2 . It should

also be considered that electrostatic force is inherently attractive and applied voltages create
attractive forces. As mentioned in Section 2.1; applying a voltage of V1 causes the movable
electrode to move towards the lower electrode.

Given that the positive direction z and x1 are toward the lower electrode; therefore,
applying V1 causes more instability of the structure and moves the electrode away from
the fixed point. Therefore, in these conditions, V2 must be applied to attract the movable
electrode towards a fixed point or stability region. Therefore, depending on the position of

the moving electrode, the Felec can be αV2
1

(1 − x1)
2 or αV2

2
(1 + x1)

2 .

In other words, V1 and V2 do not act simultaneously. As will be presented in the results
section; at any given time, only one of the voltages is non-zero. According to the above
explanations and depending on the position of the movable electrode, the nonlinear term
b(x) is α

(1 − x1)
2 or α

(1 + x1)
2 and also the control factor u means V2

1 or V2
2 .

3. Results and Discussions

In this section, the generated results for controlling the above micro-capacitor are
presented and discussed. It is assumed next that the micro-plate capacitor is first subjected
to a disturbance of the following form: δ(t) = 0.1 sin

(
12× 103 × πt× t∗

)
and with an

inherent uncertainty represented by the following function ϕ(t) = 0.05x1. The simulation
is for a span of 0 < τ < 3s, and, in some cases, for more clear trends, we present the
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results with a shorter timing range. The purpose of this motion is to reduce the effects of
disturbance on the dynamic behavior of the microstructure. It is worth noting that, due
to the fact that the disturbance is permanent without any decaying, it is not possible to
completely eliminate its effects, and the controller can only mitigate them.

Figure 5 shows the variation of x1 versus time for both controlled and uncontrolled
situations. As it is clear from this figure; the controller is able to significantly reduce the
effects of disturbance. The specifications of the controller for this simulation are p = 19,
q = 11, and β = 200. The phase portrait for a manifold of s and its time derivative variation
is drawn in Figure 6. As can be seen from this figure, with the application of the control
law, the phase limit becomes significantly more compacted.
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Correspondingly, the variation of control parameters V1 and V2 are both depicted in
the Figure 7. As can be seen from this figure, the control voltage does not exceed 2.5 volts,
which is a reasonable applied DC load amplitude for MEMS capacitors.
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The variation of the x1 parameter versus time for various amounts of q was extracted
and is shown in Figure 8. From this figure, the upper and lower amplitudes of x1 decrease
with increase of q, and the structure tends to oscillate near the fixed point. For instance,
for q = 17, x1 varies in range of −0.19 < x1 < 0.08, but for q = 11, x1 vibrates in the
−0.11 < x1 < 0.12 domain. Furthermore, the phase diagrams for different values of q are
illustrated in Figure 9. It is clear from this figure that, with the increase of q, the relevant
phase plane expands.
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s for various amounts of q, p = 19, and β = 200.

In this paper, the main purpose of robustness is to keep x1 around a fixed-point
or x1 = 0. As shown in this section, this is possible by applying a control process to
improve the stability of the system around a fixed-point. As shown, by changing the
control parameters, the phase portrait can be contracted. Therefore, robustness can be
considered from two perspectives. (1) System stabilization around fixed-point or x1 = 0.
(2) In the controlled mode, robustness can be considered as limiting the phase portrait on
the s− .

s plane.
More explanations and results in this field are provided in the continuation of this

section. On the other hand, a noteworthy point in this design is the absence of the chatting
phenomenon. As presented in this section, the chatting phenomenon, which is a problem
in the design of sliding mode controllers, does not appear here. However, as can be seen in
studies related to MEMS structure control, such phenomena are clearly visible [78].

Similarly, the maximum applied voltages V1 and V2 for different q are presented in
Table 1. From this table, the values of the applied voltages increase with the increase of q, and
p
q approaches 2. According to the results presented in this table as well as Figures 8 and 9,

the controller design is preferable to choosing less q or choosing p
q close to one.

Subsequently, the effects of the damping coefficient on the control of the micro-
capacitor are investigated. For this case, we considered p = 19, q = 17, and β = 50.
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The diagram of x1 for various damping coefficients is demonstrated in Figure 10. As can be
seen from this figure, the amplitude decreases with the increase of the damping coefficient.
Correspondingly, the phase plane is also depicted for this simulation in Figure 11. This
figure shows, with an increase of c, that the related phase diagram considerably constricts
in the vicinity of origin.

Table 1. The maximum applied voltages V1 and V2 for various amounts of q, p = 19, and β = 200.

q = 11 q = 13 q = 15 q = 17

V1 max 2.3 3.23 4.78 6.11
V2 max 1.69 2.27 3.61 5.32
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.
s for various amounts of c and considering p = 19,

q = 17, and β = 50.

The maximum values of the applied voltages for this simulation are summarized in
Table 2. As can be seen from the table, with the increase of the damping coefficient, the
maximum values of the applied voltages become smaller. Moreover, the effect of the β
parameter on the control of the microstructure is also studied, and the phase trajectories
are drawn for different β. For this case, the damping coefficient is c = 0.05. It is clear from
Figure 12 that, with increase of β, the amplitudes of s and

.
s are increased. The maximum

values of V1 and V2 are shown in Table 3. As it is clear from this table, increasing β causes
an increase in the maximum amount of applied voltage. Therefore, in identical conditions,
the preference is to choose a small β.
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Table 2. The maximum applied voltages V1 and V2 for various amounts of c and considering p = 19,
q = 17, and β = 50.

c = 0.05 c = 0.1 c = 0.2 c = 0.5

V1 max 0.54 0.4 0.35 0.32
V2 max 0.52 0.41 0.36 0.33
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Table 3. The maximum applied voltages V1 and V2 for various amounts of β and considering p = 19,
q = 17, and c = 0.05.

β = 100 β = 50 β = 25

V1 max 0.66 0.54 0.48
V2 max 0.59 0.52 0.47

In the continuation of this section, the effects of disturbance on the robustness of
the controller and the existence region of the sliding mode controller are explored. The
noise under consideration is δ(t) = ε sin

(
12× 103 × πt× t∗

)
, where ε denotes the noise’s

amplitude. This analysis takes into account the specifications p = 19, q = 17 and β = 50.
The maximum applicable ε for the designed controller is 1.05.

This means that ε > 1.05 will be followed by |x1| > 1, and the moving electrode will
make contact with one of the stationary electrodes.

Figure 13 illustrates the highest variance in x1 vs. ε. As can be seen from the graph,
raising ε raises the maximum value of x1, while increasing ε = 1.05 raises the maximum
value of x1 to 1. As a result, the sliding mode controller’s stability region is established for
0 < ε ≤ 1.05. For ε > 1.05, the controller is unable to maintain the microstructure’s stability.

Machines 2021, 9, x FOR PEER REVIEW 15 of 21 
 

 

 

Figure 13. The maximum variation of 1x  versus ε  for 19p = , 17q =  and 50β = . 

Figure 14 depicts s s−  phase images for various ε  values. As illustrated in this fig-
ure, as ε  increases, the associated phase diagram also expands dramatically. Addition-
ally, the phase diagrams take on a distinct shape as a result of the nonlinear character of 
the applied electrostatic field. 

 

Figure 14. The phase portraits of s s−   for different values of ε . 

Now, we will explore the influence of ε  on the quantity of applied voltage. Figure 

15 a–d illustrates the applied voltages 1V  and 2V  for various ε . ε  increases the volt-

age amplitude greatly, although the pace of this amplitude increase for 1V  is more than 

that for 2V , as demonstrated in these figures. For example, whereas the 1V  and 2V  am-

plitudes are about similar for 0.1ε = , it is clear from Figure 15 b,c that the 1V  ampli-

tude is much greater than the 2V  amplitude for 0.4ε = , 0.7ε = , and 1.05ε = . 

Figure 13. The maximum variation of x1 versus ε for p = 19, q = 17 and β = 50.



Machines 2022, 10, 34 13 of 18

Figure 14 depicts s− .
s phase images for various ε values. As illustrated in this figure,

as ε increases, the associated phase diagram also expands dramatically. Additionally, the
phase diagrams take on a distinct shape as a result of the nonlinear character of the applied
electrostatic field.
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Figure 14. The phase portraits of s− .
s for different values of ε.

Now, we will explore the influence of ε on the quantity of applied voltage. Figure 15a–
d illustrates the applied voltages V1 and V2 for various ε. ε increases the voltage amplitude
greatly, although the pace of this amplitude increase for V1 is more than that for V2, as
demonstrated in these figures. For example, whereas the V1 and V2 amplitudes are about
similar for ε = 0.1, it is clear from Figure 15b,c that the V1 amplitude is much greater than
the V2 amplitude for ε = 0.4, ε = 0.7, and ε = 1.05.
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Figure 16 depicts the variances of V1max and V2max for 0.05 ≤ ε ≤ 1.05 for further
examination. As may be seen in this diagram, for ε = 0.05, V1max ' V2max. However, with
higher levels of ε, the V1max exceeds the V2max. Additionally, as illustrated in this figure,
increases in V2max are nearly linear, whereas changes in V1max are nonlinear, and the rate of
increase of V1max is more noticeable with greater ε.
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4. Conclusions

Given the importance of active control of microstructures as well as mitigating the
unwanted effects of disturbances and uncertainties in such tiny structures, this study
investigated a control strategy seeking mainly their stabilization in the vicinity of a fixed
point. Indeed, the nonsingular TSMC was considered in this regard, which is an efficient
and fast method with high robustness.

In addition to the aforementioned advantages, the lack of need for a strong control
force is another respectable feature of this particular control strategy. This controller is of
a second-order type, where determination of its control law in mitigating the effects of
disturbances and uncertainties were examined for the case of a micro-capacitor. The control
forces in such a capacitor were performed through the electrostatic forces regulated by the
assumed electric potentials.

The effects of control parameters on the dynamic behavior and the control forces as
well as the phase trajectory of the sliding surface manifold were studied. The obtained
results showed high capability of the control method in stabilizing the microstructure as
well as considerably reducing the effects of disturbances and uncertainties. The results also
showed a significant contraction of the phase portrait for the controlled system compared
to uncontrolled system.

Furthermore, we confirmed that, with increasing p
q , the phase diagram became more

contracted, and the level of control force was significantly reduced. Moreover, the effect
of the damping coefficient on the active control together with dynamic behavior of the
system was studied. The results showed that, through increasing the damping coefficient,
the phase diagram became more compact, and the maximum control force decreased. We
also demonstrated that changing the β parameter had a significant effect on the behavior
of the controlled system and increasing β caused expansion in the phase diagram and a
decrease of the maximum level of control force.
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