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Abstract: This note describes the development of a plug-in imaging system for pheromone delta
traps used in pest population monitoring. The plug-in comprises an RGB imaging sensor integrated
with a microcontroller unit and associated hardware for optimized power usage and data capture.
The plug-in can be attached to the top of a modified delta trap to realize periodic image capture of
the trap liner (17.8 cm × 17.8 cm). As configured, the captured images are stored on a microSD card
with ~0.01 cm2 pixel−1 spatial resolution. The plug-in hardware is configured to conserve power,
as it enters in sleep mode during idle operation. Twenty traps with plug-in units were constructed
and evaluated in the 2020 field season for codling moth (Cydia pomonella) population monitoring in
a research study. The units reliably captured images at daily interval over the course of two weeks
with a 350 mAh DC power source. The captured images provided the temporal population dynamics
of codling moths, which would otherwise be achieved through daily manual trap monitoring. The
system’s build cost is about $33 per unit, and it has potential for scaling to commercial applications
through Internet of Things-enabled technologies integration.

Keywords: precision agriculture; integrated pest management; codling moth

1. Introduction

Integrated pest management (IPM) programs are designed to mitigate agricultural
pest pressure through cultural, biological and chemical application techniques towards
decreased synthetic pesticide use and enhanced biodiversity. A key aspect to managing
pest pressure is accurate and high-throughput monitoring of pest populations [1,2]. The
development of pheromone lures and insect traps has allowed for better estimation of
population densities [3]. Timely data of captured species, number of captures and capture
timings from these traps can aid in better pest management decisions [1,4]. However, these
traps are manually inspected, which incurs labor costs and reliance on labor availability.
This can lead to delayed diagnosis and significant economic losses to the grower.

The industry is therefore moving towards smart solutions, including remote monitor-
ing traps (RMTs). RMTs can improve the temporal resolution of pest population monitoring
to better guide crop protection applications [5]. For example, management decisions on
codling moth (Cydia pomonella), an important pest in pome fruits, rely on the time span
between sequential moth captures [6]. Commercial suppliers (e.g., Trapview, Semios, Pessl
Instruments) have begun producing RMTs that capture trap images for real-time pest moni-
toring. However, commercial RMTs have been adopted hesitantly by growers, as they are
expensive and are used at a low trap density. For example, one trap is recommended per
hectare of apple orchard block in the state of Washington for codling moth monitoring [6].
However, a commercial service provider tends to install one trap every 4 ha. Furthermore,
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such monitoring is normally part of a service package that costs approximately $1375/ha,
which may not be suitable for all growers [7].

Pertinent to codling moth monitoring, efforts have primarily been focused on classifi-
cation of insects captured by RMTs [8–11]. While some studies have constructed custom
apparatuses [12], the practical application of these traps has yet to be realized due to lack
of supporting infrastructure and the hardware cost [5]. To increase adoption and use, these
traps need to use hardware components that are widely available, easy to assemble, cus-
tomizable and cost-effective. Single board computers and microcontroller units (MCUs) are
becoming more popular for remote sensing applications in agriculture [13–17]. MCUs often
use open-source libraries and programming languages which allow for ease of modification
and expansion to a wide range of applications. Integrating MCU technology with RMTs
will thus enable relatively easy upgrades to these systems for better resolution, connectivity,
data storage and onboard (i.e., edge) computing [5].

In pursuit of a customizable and low-cost RMT, this study was aimed at developing a
low-cost open-source MCU-based RGB imaging system that is integrable with existing delta
traps used in tree fruit industry for pest monitoring. The sections below describe system
design considerations, followed by system development, an ongoing research application
and the versatility of the developed system for related pest monitoring applications.

2. Design Considerations

The quality of the acquired images, minimal modifications to the geometry of existing
traps, high image throughput with limited power source, ease of image transfer and low
cost of overall hardware integration were some of the key factors considered in this study.
The quality of the acquired images is the most important aspects of the system’s design,
dictating the efficacy of pest identification and thereby management actions. The image
quality can be affected by three primary factors: spatial resolution, lighting and contrast of
insects compared to the linear background. As delta trap liners are typically white, they
create good contrast for the trapped gray codling moth. With a standard delta trap, this
contrast can allow for use of ambient daylight to illuminate the liner, eliminating the need
for artificial lighting and the associated power demand.

In a typical design, commercial RMT suppliers focus on image quality optimization
by altering the geometric construction of the trap. Impacts of the altered geometry are
suspected to compromise the number of insect captures. Delta traps have been optimized
in shape and color for optimal codling moth captures [18,19]. However, while leading
commercial suppliers have adopted aspects of the optimized design (Figure 1b–d), the
openings appear to be smaller, potentially inhibiting insect entry and pheromone dispersion.
Furthermore, existing phenology models and thresholds have been based on existing delta
trap capture rates. Changes in trap geometry may alter the accuracy of these parameters,
leading to incorrect management decisions.

Ideally, the entire imaging system would fit inside the peak of the standard delta
trap to eliminate trap modifications. However, in order to capture the entire liner in an
image, the trap’s geometry demands a field of view (FOV) of approximately 97◦, which
is wider than typical low-cost imagers can provide. As trap geometry must be changed
to accommodate a low-cost imager, in this study, the RMT was designed to more closely
mimic the current delta trap dimensions (10.5 cm H × 19.5 cm W) to ensure maximum
captures (Figure 1a).

As the RMT is only required to capture images periodically, power consumption
needs to be minimal during idle operation. Many available MCU chips are equipped to
go into a low-power consumption state (sleep mode) by removing power from unneeded
on-chip domains [24]. In sleep mode, the MCU relies on an interrupt to continue operation.
An interrupt is an external signal which can be provided by a Real Time Clock (RTC) or
another input with an independent battery. Some MCUs are equipped with onboard RTCs
which remain powered in sleep mode and provide an interrupt after a predetermined time
period. Additional long-term goals include the realization of on-demand imagery data
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transfer from each trap via localized wireless options. Thus, the MCU needs to be capable
of wireless network integration through Wi-Fi, among other communication protocols. The
plug-in unit also needs to be designed to minimally obstruct insect capture by the trap.
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Figure 1. (a) Sketch of a standard delta trap used for codling moth trapping in pome fruit crops
adapted from [20]. Other sketches (b–d) are adaptations of commercially available remote monitoring
traps equipped with imaging systems for codling moth monitoring [21–23].

Finally, the integrated system needed to be low-cost. In this study, we aimed to
produce each RMT plug-in for $30 per trap [25], as it should cover a hectare of orchard and
be economical for widespread usage [6].

3. System Development

The MCU (Arducam IoTai ESP32 CAM Wi-Fi Bluetooth PSRAM Development Board
with Camera Module OV2640, Arducam, Hong Kong, China) selected for this study is
equipped with an OV2640 imager of 2-MP resolution (1600 × 1200 pixels) and an integrated
RTC, along with Wi-Fi, Bluetooth and Bluetooth Low Energy (BLE) capabilities. The MCU
has the ability to switch in and out of sleep modes and enable wireless data transfer. This
can enable future Internet of Things (IOT) integration of these traps in a deployed network.
For immediate applications, an onboard microSD card module was used for automated
data storage. The entire unit was powered by a 3.7 V DC lithium polymer ion battery pack.
The cost of the assembled unit is about $32.69 (see Table 1 for detailed cost breakdown).

Table 1. Imaging system plug-in parts breakdown and associated costs.

Component Manufacturer Purpose Unit Cost (USD)

Arducam IoTai ESP32 CAM WiFi
Bluetooth PSRAM and development
board with OV2640 camera module

Arducam,
Hong Kong, China Microcontroller /Imager 19.99

3.7 v, 350 mAh Lithium Polymer
Ion battery

Adafruit Industries LLC.,
New York City, NY, USA Power 5.95

180◦ fisheye clip on lens Walmart, Inc.,
Bentonville, AR, USA Fish-eye lens 1 5.99

Clear mini pencil box S.P. Richards Co.,
Atlanta, GA, USA Enclosure 0.74

Total 2 32.67
1 Only the fisheye lens is required from this package. 2 Excludes standard trap and labor for trap modification.
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The prototype RMT is shown in Figure 2. As assembled, the imaging unit and battery
were contained in a waterproof enclosure (8.3 cm × 18.4 cm × 3.2 cm). To capture the entire
liner (17.8 cm × 17.8 cm) in a single image, the imager would need to be positioned at
19.96 cm above the liner. However, a fish-eye lens was used to widen the FOV and decrease
the required trap height (to 15.5 cm above the liner). The peak of a standard delta trap does
not lend itself to installation of an imaging sensor parallel to the liner. Thus, a trapezoidal
corrugated plastic structure was used as a support inside the main housing. The main
housing was constructed of two delta traps stacked as shown in Figure 2. The upper section
of the main housing served to protect the electrical components from solar radiation and
related heat exposure, and the lower section contained the trap liner.
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MCU and imager.

The hardware is programmed in Arduino IDE with a customized algorithm to capture
one image per day. This allows for monitoring individual moths’ arrival dates and temporal
progression of insect capture. The codling moth is active at dusk, and to a lesser extent, at
dawn, so 10:00 a.m. was chosen for image capture to provide both sufficient light and a
complete daily activity cycle. To track the date of capture, the RTC must first be synced
with local time. For this purpose, before field installation, the MCU was configured to
retrieve local time from a Wi-Fi connection and write it to a “time” structure with date and
time stamps (Figure 3). Omission of this step leads to image timestamps beginning at the
UNIX epoch. As this MCU’s RTC does not operate on an independent battery, it needs to
be reset every time the system is restarted.
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RTC: Real Time Clock; MCU: Microcontroller unit.

After the RTC is set, the system then captures an image and stores it as a JPEG file to
the microSD card. The MCU then sets the time until next image capture and enters deep
sleep mode [25]. In deep sleep mode, only the RTC continues to draw power from the
battery. Upon awakening, the code verifies that a “time” structure has been created and
contains numeric values which bypasses connecting to Wi-Fi, as the RTC does not need
to be reset. Reliance on the RTC for timekeeping can cause drifting from actual local time,
however this drift is relatively inconsequential for daily image captures. For each image
capture, the MCU is active for approximately 15 s before returning to sleep mode. With a
350 mAh DC power source, the developed RMTs can sustain field operations for as long as
15 days, exceeding the time required for the ongoing research.

4. System Evaluation

The developed RMT is currently being used in a multiyear research study that requires
daily counts of captured codling moths. In the 2020 field season, 20 units were hung in
apple (cv. Fuji and Granny Smith) canopies in a commercial orchard using standard delta
trap installation materials (Figure 4).

For the field install, the MCU was programmed as described above to capture one
image per day during daylight hours. The RMTs were collected from the field 15 days after
installation to gain insights on the behaviors of mating populations. Individual codling
moths were identified on the collected trap liner; images were compared to determine date
of arrival for each moth. This information successfully provided daily recapture rates and
dispersal from a single release event.

Two of the 20 units (10%) installed in the field experienced failure due to broken
battery leads. The remaining 18 traps successfully acquired images over the course of
15 days. Only 2.6% of the imagery data were not captured over the study period due to
three units experiencing premature battery depletion after 11, 13 and 14 days. Furthermore,
as seen in the images (Figure 5), system installation can be slightly off-centered in the
current construction, which can be eliminated with precision manufacturing techniques.
The captured images were stored as 320 × 240 pixels with a spatial resolution of 0.1 cm
pixel−1, which was sufficient for evaluating individual moth capture dates.
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10-day period.

5. Future Scope: Scalability for Other Application Domains

Towards IPM automation using RMTs, computer vision algorithms can automate the
moth species’ identification and counting. Ding and Taylor [8] have developed a neural
network for moth classification with images of 640 × 480 pixel resolution in a commercially
available RMT. Though undisclosed, it is estimated that the spatial resolution for Ding
and Taylor [8] was between 0.03 and 0.05 cm pixel−1. To use collected images in such
a network, the resolution of the captured images can be improved programmatically to
800 × 600 pixels to realize spatial resolution of 0.04 cm pixel−1.

The system had adequate battery life for the discussed research application; therefore,
in-field charging (i.e., solar power) was not pursued. However, an important aspect of
the selected MCU is the onboard battery charger which may be integrated with a low-cost
solar panel. The selected MCU, in its current configuration, consumes approximately
0.24 mA/h (5.76 mA/day) [25]. Assuming a minimum of 12 h of daylight during the grow-
ing season, a small solar panel (e.g., Round Solar Panel Skill Badge–5 V/40 mA, $2.95,
Adafruit Industries, New York City, NY, USA) will suffice for sustained system operation.

Concurrently to this study, Wahl and Zhang [25] were working on the potential of
creating an IOT network using the selected MCU for agricultural data collection. The study
proposed BLE communication between the MCU nodes and a central MCU gateway for
uploading images to the open-source Google platform “firebase.” However, for codling
moth monitoring, it is recommended to install one trap per hectare [6]. With square plots,
the traps would be approximately 100 m apart, which is the maximum range of BLE
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transmission in optimal conditions [25]. The growing canopy foliage may further reduce
this range. Furthermore, as rural agricultural communities have poor Internet connectivity
and limited wireless infrastructure, uploading to a cloud network from the field is not yet
practical [5,10,26].

To address in-field Internet connections, recent studies have investigated accessing
in-field sensor data remotely via unmanned aerial vehicles [27,28]. The primary concern
for these systems is the need for an external signal to activate the sensor, which requires an
onboard receiver that is constantly scanning for an activating signal. As power consumption
is a challenge, [27] investigated two passive signal receivers for activating the sensing node.
A radio frequency (RF) signal was reported to have a larger range and lower consumption
compared to an infrared signal. Integration of a RF receiver could be useful for ground-
based data collection as well. As codling moth traps are placed in the upper 1/3rd of the
canopy [6], remote activation and data collection using the same protocol as described
above could reduce data collection time and allow coverage of greater areas. Integration of
passive receivers into sensing nodes may enhance early adoption of RMTs.

The developed RMT, therefore, can serve as an intermediary during the transition
to better Internet connectivity. A low-cost RF receiver can be installed on a system
which, upon receiving a signal from another BLE-enabled device with RF transmitter, will
(i) awaken, (ii) take an image and (iii) advertise that image until it has been received by
the client device; then, (iv) it will stop advertising and (v) return into the deep sleep state.
While an additional device for RF transmission may be required, most android devices
are BLE-enabled, suggesting potential for a mobile application that facilitates wireless
image transfer to a handheld mobile device. The image could then be uploaded to a cloud-
computing platform for automated classification and decision-making when connectivity
is available.

6. Summary

A low-cost RMT was developed to operate on low power, capturing one image per
day. The developed system is being used in a multiyear research study related to codling
moth behavior monitoring in apple orchards. The objective of determining the dates of
capture for individual moths and thus progression counting of insects from the captured
images was successfully achieved in this study. For immediate adoption of RMTs, this
system offers reduced data collection time, even when implemented independently of cloud
computing networks. The system has potential to be scaled using edge/cloud computing
approaches, serving as an IOT sensing node [25] to capture and transmit information for
real or near real-time decision making. Furthermore, the developed imaging system plug-in
may be integrated into other insect traps for remote population monitoring using the design
considerations outlined in this study.
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