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Abstract: Rollover detection and prevention are among the most critical aspects affecting the stability
and safety assessment of heavy vehicles, especially for off-road driving applications. This topic has
been studied in the past and analyzed in depth in terms of vehicle modelling and control algorithms
design able to prevent the rollover risk. However, it still represents a serious problem for automotive
carmakers due to the huge counts among the main causes for traffic accidents. The risk also becomes
more challenging to predict for off-road heavy vehicles, for which the incipient rollover might be
triggered by external factors, i.e., road irregularities, bank angles as well as by aggressive input
from the driver. The recent advances in road profile measurement and estimation systems make
road-preview-based algorithms a viable solution for the rollover detection. This paper describes
a model-based formulation to analytically evaluate the load transfer dynamics and its variation
due to the presence of road perturbations, i.e., road bank angle and irregularities. An algorithm to
detect and predict the rollover risk for heavy vehicles is also presented, even in presence of irregular
road profiles, with the calculation of the ISO-LTR Predictive Time through the Phase-Plane analysis.
Furthermore, the artificial intelligence techniques, based on the recurrent neural network approach,
is also presented as a preliminary solution for a realistic implementation of the methodology. The
paper finally assess the efficacy of the proposed rollover predictive algorithm by providing numerical
results from the simulation of the most severe maneuvers in realistic off-road driving scenarios, also
demonstrating its promising predictive capabilities.

Keywords: rollover detection; heavy vehicles; off-road applications; predictive algorithms; artificial
intelligence; load transfer ratio

1. Introduction

Nowadays, vehicle rollover detection and prevention are two critical aspects that must
be taken into account for the safety of car passengers and pedestrians to avoid dramatic
fatal crashes [1] and accidents in the urban scenario. An analysis of the sequence critical
events leading to loss of control, and hence to rollover of vehicles equipped with Electronic
Stability Control (ESC) Systems is provided in [2], while typical scenarios and characteristics
of rollover accidents are investigated in [3], referring to the test criteria of National Highway
Traffic Safety Administration (NHTSA) [1,4]. Vehicles with a high position of the Centre of
Gravity (CoG) are more prone to rollover, as it happens for buses [5,6], heavy commercial
vehicles [7,8], and articulated heavy vehicles [9–14]. In a similar way, two-wheel vehicles
are affected by stability issues [15,16]; hence, their components must be dynamically
optimised [17], through a component to assembly dynamic analysis [18,19]. The rollover
prevention is a typical challenge for the automotive sector, especially for fuel cell and
hydrogen trucks, where the safety requirements demanded for their storage systems are
stricter than for light-duty vehicle segments [20].

Machines 2022, 10, 835. https://doi.org/10.3390/machines10100835 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10100835
https://doi.org/10.3390/machines10100835
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-7151-8873
https://orcid.org/0000-0003-0874-682X
https://orcid.org/0000-0001-6329-2256
https://orcid.org/0000-0003-0757-1626
https://doi.org/10.3390/machines10100835
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10100835?type=check_update&version=3


Machines 2022, 10, 835 2 of 23

The root cause of rollover can be addressed to external factors, i.e., road irregularities
and its bank angle, which also influence the powertrain management [21], and to aggres-
sive input from the driver on the steering wheel. Considering these factors, rollovers are
sometimes categorized, as conducted in [22–24], into two main types: un-tripped rollovers
and tripped rollovers. The former [25] is related to driver fast maneuvering on smooth
roads, while the latter [26] occurs due to sudden impacts that may apply lateral or vertical
forces to the vehicle tyres [27,28], hence possible root causes are impacts with guardrails
or hits with road objects as curbs and bumps [29]. In the last decades many researchers
have studied the vehicle rollover risk, whose knowledge is mandatory for developing
practical rollover prevention systems, which may be implemented using different control
logic, through a two-stages process. Indeed, the first step is the detection of rollover risk,
whereas the second is its mitigation and control, e.g., through an active handling suspen-
sion controller [30] or by means of a Model Predictive Control (MPC) strategy through
active front steering [31], or using a braking system for vehicle dynamics control [32].
Several rollover indices (RIs) have been proposed in literature, starting from static rollover
index, as the Static Stability Factor (SSF) [33–35], which only considers the geometrical
parameters of vehicles. The vehicle dynamics [36,37] plays a key role in the rollover risk
phenomena, and hence also for the indicators adopted to prevent it, which consider the
most important vehicle states for rollover, such as roll angle and roll rate [38–40], lateral
acceleration [41–44], side slip angle [45], yaw angle [46] and yaw rate [47,48]. The load
transfer ratio (LTR) [49–51], which is based on the computation of vertical tire forces, is
one of the widely used RIs for dynamic simulations, and shows a direct measure of how
close the vehicle is to rollover [49]. A predictive LTR [52] has been proposed to provide a
better prediction of rollover propensity w.r.t traditional LTR, while in [53] the contour line
of load transfer ratio (CL-LTR) is proposed for an accurate prediction of vehicle rollover
threat. Moreover, time to rollover (TTR) [39,43] and the rollover index (RI) [38,54] are
used widely for the rollover risk detection. At a glance, many RIs have been proposed
in literature, with slight differences on the factors affecting the rollover, thus some RIs
are more adapt for specific rollover conditions and not work well in other situations. For
example, an extensive research investigation is focused on the untripped rollover risks
and only a minimal attention is reserved to tripped rollover conditions which represent
the most critical aspect for off-road and autonomous driving applications where the dis-
turbance from the external environment play an important role [55]. Additionally, the
artificial intelligence (AI) techniques are also proposed in literature [56,57] to obtain better
anti-rollover prevention features. In particular, [58] has identified the Recurrent Neural
Networks (RNN) as potential rollover risk-detector algorithm. However, by considering
time and costs constraints [59], the big experimental data required to generate an efficient
algorithm is not always possible.

Based on the widespread and in-depth bibliographic research found in the literature,
to the knowledge of the authors, there are still many open questions on the rollover
prevention assessment that the present activity attempts to solve. This paper aims to cover
some relevant aspects in the the detection and prevention of the incipient rollover, with the
following contributions:

• The development of a non-linear three degrees-of-freedom mathematical model as
simple as effective to catch the lateral load transfer dynamics even in presence of a
banked road;

• The formulation of a model-based algorithm for the analytical identification of the
critical rollover limits through the development of characteristic maps in the phase
plane portrait, able to exhibit the influence of road local irregularities and global
geometric factors, i.e., the bank angle;

• The formulation of a statistical algorithm, based on the recurrent neural network
approach, for the estimation of the load transfer ratio in a realistic scenario, by consid-
ering typical measurable quantities available for an experimental implementation;
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• The numerical assessment of a real-time algorithm able to predict in advance the time
to reach a specific load transfer ratio considered as the incipient rollover limit.

It is also important to note that one of the most important advantages related to the
methodology described in the paper is the versatility of application to different powertrain
and vehicle architectures, by providing an algorithm that requires the typical measurements
available onboard the vehicle.

The manuscript is organised as follows: Section 2 describes the set of equations used
for modelling the non-linear vehicle roll dynamics; Section 3 presents the two algorithms
adopted for the load transfer ratio estimation; the the phase plane analysis of load transfer
characteristics is carried out in Section 4; the ISO-LTR predictive time is introduced in
Section 5 and its simulation assessment is shown in Section 6; finally, some conclusions are
drawn in Section 7.

2. Vehicle Model Description

The evaluation of the rollover condition, together with the definition of a predictive
index to prevent the incipient risk, is firstly carried out by investigating the influence of the
most relevant quantities on the load transfer dynamics. A straightforward methodology
is proposed with a three degrees-of-freedom (dofs) vehicle model to obtain an analytical
and a straightforward approach for analysing the vehicle roll dynamics on flat and banked
roads. The 3-dofs of the vehicle model, whose scheme is reported in Figure 1, are the
vertical and the lateral vehicle motions (with respect to the road plane) and the relative roll
motion between the sprung and the unsprung masses. The virtual roll axis is R, Gs is the
CoG of the sprung mass and Gui is the CoG of the ith = FL, FR, RL, RR unsprung mass.
The hypothesis behind the model are:

1. All the bodies below the suspension system (tires, calipers, wheels carriers, suspension
rods, etc. . . . ) are considered as a unique rigid body, connected to the sprung mass ms
through the virtual roll axis R, and represented by four lumped masses mui , where
i = FL, FR, RL and RR, each one placed in the the Front Left (FL), Front Right (FR),
Rear Left (RL) and Rear Right (RR) wheel rotational centers, respectively;

2. The roll moment of inertia of the unsprung mass is considered negligible;
3. The road bank angle φR is supposed to be equal for the front and the rear axles:

absolute roll angle of the unsprung mass is φR;
4. The front and rear suspensions are represented as an equivalent torsional spring and

damper system.

From Figure 1a, the following set of equilibrium equations for the whole vehicle
is drawn :

FzR + FzL − msazs − ∑
i

(
mui azui

)
− mg cos φR = 0

FyR + FyL − msays − ∑
i

(
mui ayui

)
− mg sin φR = 0

(FzR − FzL)
T
2 − msays(hR + hs cos φ)− msg(hR sin φR + hs sin (φR + φ))+

−msazs hs sin φ − ∑
i

(
mui ayui

hu

)
− mughu sin φR − G − Is(φ̈R + φ̈) = 0

(1)

where FzR = FzFR + FzRR and FzL = FzFL + FzRL are the total vertical forces on the right and
left tyres, respectively. FyR = FyFR + FyRR and FyL = FyFL + FyRL are the right and left side
total lateral forces, respectively. ms is the sprung mass, mui is the ith = FL, FR, RL, RR
lumped unsprung mass (mu = ∑i mui ) and m = ms + mu is the vehicle total mass. azs and
azui

are the vertical components of the sprung and ith unsprung mass, respectively. ays

and ayui
are the lateral components of the sprung and ith unsprung mass, respectivelly.

Moreover, the two angle φR and φ are the bank angle and the roll angle of the sprung mass
w.r.t. the unsprung mass. The absolute sprung mass roll angle is φA = φR + φ. hu and hR
are the heights of the unsprung mass and roll centre from the road, respectively, and hs is
the distance between the sprung mass CoG from the roll centre. g is the gravity acceleration,



Machines 2022, 10, 835 4 of 23

T is the vehicle track width and Is is the roll sprung mass moment of inertia. Rx and Ry
represent the horizontal and vertical components of the internal reaction in the virtual roll
axis, respectively.

(a)

(b)

Figure 1. Free body diagrams of: whole vehicle (a), sprung and unsprung masses (b).

The term G groups together the relative vertical dynamics between the left and right
unsprung masses and it is defined as reported in Equation (2):

G =
T
2
(muFR azFR + muFL azFL − muRR azRR − muRL azRL) (2)
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The roll equilibrium equation for the vehicle unspung mass from Figure 1b is:

(FzR − FzL)
T
2
=

=
(

FyR + FyL

)
hR −

[
∑

i

(
mui ayui

)
+ mug sin φR

]
(hR − hu) + Kφ + Cφ̇ − G (3)

where K and C are the roll stiffness and damping, respectively. Finally, roll equilibrium
equation for the vehicle sprung mass from Figure 1b is:

Is(φ̈R + φ̈) + Kφ + Cφ̇ = msays hs cos φ + msazs hs sin φ + msghs sin φ (4)

The heavy vehicle analysed within the present paper is defined by the parameters
listed in Table 1.

Table 1. Vehicle parameters.

Type Description Parameter Value

Springs Total roll stiffness K 209, 000 Nm/rad

Dampers Total roll damping C 6122.8 Nms/rad

Masses and inertia

Roll sprung mass moment of inertia Is 801.34 kgm2

Sprung mass ms 1923.9 kg
FR unsprung mass muFR 78.715 kg
FL unsprung mass muFL 78.715 kg
RR unsprung mass muRR 109.314 kg
RL unsprung mass muRL 109.314 kg

Total mass m 2300 kg

Distances

Front axle from the sprung mass CoG a 2.119 m
Rear axle from the sprung mass CoG b 2.221 m

Wheelbase L 4.34 m
Track width T 1.674 m

Unsprung mass CoG height hu 0.324 m
Roll centre height hR 0.1998 m

Sprung mass CoG from the roll centre hs 1.0852 m
Front tyre radius rF 0.324 m
Rear tyre radius rR 0.324 m

3. Load Transfer Ratio Estimation

The most accurate, and widely disseminated, index for detecting the incipient rollover
risk is the Load Transfer Ratio (LTR) defined as the the relative vertical force on tires
between the right and left sides of a vehicle:

LTR =
FzR − FzL

FzR + FzL

(5)

When the LTR is equal to 0, the vertical load is equally distributed between the two
sides, by means that the vehicle is far away from the rollover condition. The vehicle is very
likely to rollover when the wheels on one side lift off the ground, condition verified when
LTR = ±1.

However, the experimental acquisition of LTR is not feasible to realize since there
are no sensors able to provide a direct measurement of the vertical tire load. For this
reason, many authors have proposed multiple solutions to provide an accurate estimation
of the LTR from the measurements commonly available onboard passenger cars, e.g.,
accelerations, linear and angular velocities, roll and pitch angles. Simple static [34,35], and
dynamic indices have been used, in different works analysed in [24], to detect rollover
risk during dynamic manoeuvres. The LTR proposed in [60] only considers the lateral
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acceleration and the roll angle, while [61,62] neglects the unsprung masses, by placing the
roll centre very close to the road plane at hR ≈ 0 and assuming the vehicle CoG height
as the effective arm for lateral acceleration. Other proposed LTR indices are based on
suspension parameters [50,63], by considering the effective torsional stiffness, torsional
damping, roll angle and roll rate, and subsequently revised in [64] with the inclusion of the
sprung mass lateral acceleration. RIs based on the tyre deflection is proposed in [65,66],
also adapted for heavy vehicles. A more complex index, which considers the rolling motion,
the lateral acceleration, and the time to wheel lift (TTWL) is proposed in [38], where the
TTWL is achieved with a phase plane analysis of roll angle and roll rate. Although a RI
for banked roads is already developed in [67], the road bank angle influence receives a
lower attention from the literature since its effect is not as relevant as for off-road designed
vehicles. Finally the index proposed in [22] tries to to consider both tripped and untripped
rollovers, by developing a four dofs vehicle model.

However, most of the above mentioned formulations does not include the influence
of road global, i.e., bank angle, and local, i.e., speed bumps or potholes, irregularities
on the load transfer among the four wheels, which represents a fundamental aspect for
the off-road driving scenario. The present section of the paper describes a model-based
and a statistic formulation for the LTR estimation. The first approach aims at providing
an analytical methodology to express the LTR as function of the vehicle states and road
profile, able to predict their influences on the LTR dynamics. However, the accuracy of the
model-based estimation is drastically affected by the model parameters uncertainties, a
drawback that is improved by proposing an alternative approach based on the Recurrent
Neural-Network (RNN) theory, thus allowing an improved estimation of the LTR directly
from conventional measurements.

3.1. Model-Based Estimation

The LTR model-based estimation is obtained from the 3-dofs model presented in the
previous section. By combining the roll equilibrium equations of Equations (1) and (4) and
by considering the vertical equilibrium equation in Equation (1), the LTR is then calculated
as follows:

LTRest =
2
T

Kφ + Cφ̇ + msays hR + ∑
i

(
mui ayui

hu

)
+ (msghR + mughu) sin φR − G

mg cos φR + msazs + ∑
i

(
mui azui

) (6)

For a direct comparison against the LTR formulation commonly available in the
literature, the particular cases of a) negligible unsprung dynamics and vertical accelerations
(mui = 0 and azs = azi = 0) and b) negligible unsprung dynamics and vertical accelerations
on a flat road (mui = 0, azs = azi = 0 and φR = 0) are also reported in Equation (7) and in
Equation (8):

LTRest,sprung =
2
T

Kφ + Cφ̇ + msays hR + msghR sin φR

mg cos φR
(7)

LTRest, f lat =
2
T

Kφ + Cφ̇ + msays hR

mg
(8)

Three driving scenarios, shown in Figure 2, are built in IPG CarMaker® to simulate
the realistic behavior of a heavy duty vehicle and to compare the efficacy and the reliability
of the LTR formulations in Equations (6)–(8):

(a) A double lane change manouvre (ISO 3888-1) on a flat road at an initial vehicle
speed of 100 km/h;

(b) A straight manoeuvre on a banked road, whose bank angle is smoothly increased
from 0 deg to 30 deg, at constant vehicle speed (30 km/h);

(c) A straight manoeuvre on a road with a flat surface under the left vehicle side and
an asymmetrical sinusoidal profile (wavelength equal to the vehicle wheelbase and
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height amplitude of 10 cm) under the right vehicle side, called asymmetrical waves
road in the rest of the paper.

Figure 2. Driving scenarios created in IPG CarMaker® for the LTR estimation: double lane change
manoeuvre on a flat road (a) , straight manoeuvre on a banked road (b) and straight manoeuvre on
an asymmetrical waves road (c).

The first scenario is chosen to evaluate the influence of the maneuver severity, imposed
by the driver behavior, on the LTR dynamics. The simulation results are reported in
Figure 3, in terms of LTR estimation, driver commands, vehicle speeds, accelerations and
roll angles.

Figure 3 shows that the manoeuvre is aggressive enough to push multiple times the
LTR towards the rollover condition. It is clear that the lateral acceleration, imposed by the
severity of the test and by the dynamic response of the driver, represents the main cause
for the marked transfer loads from one vehicle side to the other one. Indeed, the road is
flat and does not influence the roll dynamics meanwhile the unsprung mass only slightly
affect the LTR dynamics, as shown by the comparison of LTRest against LTRest,sprung and
LTRest, f lat, due to the low frequency content of steering wheel angle imposed by the driver.

The second scenario aims at investigating the effect of the road bank angle on the
vehicle transfer loads, as shown in the simulation results of Figure 4.
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Figure 3. Double lane change manoeuvre at initial speed of 100 km/h on a flat road. From the top
left side to the down right side: LTR, steering wheel angle and vehicle speed, vertical accelerations,
lateral accelerations, roll angles and angular velocities.

The straight manoeuvre is selected to minimize the influence of lateral accelerations
and to focus the attention on the bank angle effect on the load transfer dynamics. The road
is banked up to 30 deg that represents a suitable threshold for approaching the rollover
limit, identified by the condition LTR = 1. The general formulation of LTRest is able to
provide a perfect estimation of the actual LTR, meanwhile the basic formulation LTRest, f lat
completely underestimate the load transfer behavior since it is valid only for flat roads.
The estimation LTRest,sprung is closer to the actual LTR behavior than the LTRest, f lat, but it
shows a lower accuracy at high bank angles since the unsprung mass still play an important
role in the roll dynamics, although mu represents only the 16% of the total vehicle mass.
Finally, the last driving scenario is designed to evaluate the influence of the unsprung mass
on the LTR estimation, by exciting the vehicle roll dynamics with a sinusoidal road profile
applied only to the right side of the vehicle. The manoeuvre on the asymmetrical waves
road, with a wavelength equal to the vehicle wheelbase, is run at the constant speed of
40 km/h, in order to excite the higher frequency content of the unsprung mass vertical
dynamics. The simulation results are shown in Figure 5.
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Figure 4. Straight manoeuvre at 30 km/h on a banked road. From the top left side to the down right
side: LTR, steering wheel angle and vehicle speed, vertical accelerations, lateral accelerations, roll
angles and angular velocities.

This manoeuvre can also evaluate the effect of a local road disturbances, i.e., road
bump, pothole, etc. . . . , which are typical conditions for the off-road applications and it
has a different impact on the roll dynamics with respect to a global road geometry such
us the presence of a bank angle. Indeed, the roll dynamics derived from the asymmetrical
excitation induces a persistent condition of incipient rollover: during the small time frame
of 1 s, the tires of the right vehicle side lift off three times. In this contest, the unsprung mass
influence becomes much more important with respect the previous driving manoeuvres,
and it is appreciable how the generic model-based estimation LTRest is still reliable in
detecting the LTR dynamics, if compared against the other two formulations.
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Figure 5. Straight manoeuvre at 40 km/h on an asymmetrical waves road. From the top left side
to the down right side: LTR, steering wheel angle and vehicle speed, vertical accelerations, lateral
accelerations, roll angles and angular velocities.

3.2. Recurrent Neural Network Estimation

As previously anticipated in Section 3, RNNs can be used to improve the estimation of
rollover indicators, such as LTR and roll angle. The algorithm presented differentiates from
the literature in terms of architecture, standardization method, inputs and outputs selection.
In particular, the outputs are not defined as discretized quantities (higher or lower rollover
risk factors), but they provide directly the estimation of the LTR. The RNNs method is
chosen by considering the nature of the problem, since they belong to the category of
artificial neural network designed to recognize patterns from a set of time histories.

The methodology adopted is characterized by two main phases. The first one consist
in the generation of a large time domain dataset which is needed to successfully train the
neural networks. Due to the big amount of required data, the time histories are generated by
simulating the behaviour of the vehicle in the IPG CarMaker® environment. In particular,
a set of 15 maneuvers (and related scenarios), are selected to induce the rollover risk.
Each manoeuvre is 500 s long, to impose the same weight for the RNN training. In total,
a starting dataset of 750, 000 points is obtained for each variable of interest, sampled at
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constant frequency of 100 Hz. The variables obtained from IPG CarMaker® used for the
neural networks inputs and outputs are shown in Table 2.

Table 2. RNN: inputs and outputs.

Type Description Units

Inputs

Longitudinal speed m/s
Longitudinal acceleration m/s2

Lateral acceleration m/s2

Vertical acceleration m/s2

roll rate deg/s
yaw rate deg/s
pitch rate deg/s

steer angle deg

Outputs
Roll angle deg

Front load transfer ratio −
Rear load transfer ratio −

The approach developed suggests an integration between the neural network al-
gorithm with the simulation environment (IPG CarMaker®), which represents its data
provider. This leads to the following practical implications:

• the RNN algorithm can be developed and tested with a considerable amount of
simulated driving scenarios, without requiring an extensive experimental campaign,
thus reducing time and costs;

• If the vehicle dynamic behavior is well described by the mathematical model, the
neural network designed with a simulated data can be directly deployed on an experi-
mental setup with a lower time and cost effort.

The second phase consisted in the training and testing of the AI algorithms, articulating
the process in several steps with the Deep Learning Toolbox available in Matlab®. Firstly,
a data pre-process and normalisation elaboration is carried out to obtain dimensionless
quantities. The processed data is then adopted to elaborate the architecture of the RNN, by
testing multiple solutions, leading to the final solution reported in Table 3.

Table 3. RNN: Architecture.

Type Description Characteristics

Layers

Sequence input Number of features (8)
LSTM Number of hidden units (100)

Fully connected Number of Responses (3)
Regression

Main Hyperparameters

Adam Adaptive moment estimation
MaxEpochs 850

GradientThreshold 1
InitialLearnRate 0.01

LearnRateDropPeriod 425
LearnRateDropFactor 0.2

The features indicated in Table 3, corresponds to the inputs of the RNN, and so the
responses for the outputs. In particular, regarding the RNN architecture selection, the
number of hidden units (the neurons) is chosen through empirical rules. It has been
observed that with more than 100 hidden units, the results do not improve in accuracy
and the process becomes excessively time consuming, while a smaller number of neurons
inevitably leads to a decline in terms of performance (measured by RMSE and loss function).
The number and the typology of layers have been chosen following a similar criteria.
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Given the RNN architecture, the algorithm training is ready to start by obtaining a
neural network that, provided with the 8 inputs (Table 2), is able to estimate the 3 outputs
with good precision and immediate response. This is also validated during the testing
phase, where the features are known, and the vehicle responses not. The results related to
three different maneuvers, generated in the IPG CarMaker® environment, are presented.

The first maneuver analyzed simulates the vehicle driving over the Bernina Pass. This
is a completely unknown road to the RNN, and the results obtained, shown in Figure 6a,b
are definitely promising in terms of accuracy (see the resultant Mean Absolute Error and
Mean Square Error in Table 4). Moreover, the RNN estimates are collected in the lapse of
0.01–0.05 s. For the sake of brevity, results related to the roll angle have been omitted.

(a) (b)

Figure 6. Estimation of the vehicle Load Transfer Ratio at front (a) and rear (b) axles driving over the
Bernina Pass.

The second maneuver presented is obtained from one of the 15 database composing
the training. The analysis aims at understanding if similar maneuvers to the ones already
adopted for the RNN training, lead to an accuracy worsening, since the weights introduced
in the RNN are influenced by the maneuvers set. Results in Figure 7a,b show how the
RNN keep their high level of performance. There are only minimal differences that can be
considered negligible for the required accuracy.

The Fishook manoeuvre, whose estimating results are shown in Figure 8a,b, produces
the less promising results (as confirmed by Table 4). The reasons behind that is that
the manoeuvre time length and speed profile are lower w.r.t. to the other manoeuvres
introduced in the data set.

To provide a quantitative information related to the accuracy of the neural networks,
the Mean Absolute Error (MAE) and the Mean Square Error (MSE) are reported for each
manouvre in Table 4.

Table 4. Results: Mean Absolute Error and Mean Square Error related to the tested maneuvers.

Maneuver Error Values

Bernina

MAE LTR Front 0.0026
MAE LTR Rear 0.0030

MAE Roll 0.0500 deg
MSE LTR Front 9.7767 × 10−5

MSE LTR Rear 1.1046 × 10−4

MSE Roll 0.0048
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Table 4. Cont.

Maneuver Error Values

Stelvio

MAE LTR Front 0.0066
MAE LTR Rear 0.0063

MAE Roll 0.0802 deg
MSE LTR Front 1.0434 × 10−4

MSE LTR Rear 8.8145 × 10−5

MSE Roll 0.0141

FishHook

MAE LTR Front 0.0146
MAE LTR Rear 0.0138

MAE Roll 0.106 deg
MSE LTR Front 6.1685 × 10−4

MSE LTR Rear 5.3661 × 10−4

MSE Roll 0.0291

(a) (b)

Figure 7. Estimation of the vehicle Load Transfer Ratio at front (a) and rear (b) axles driving over the
Stelvio Pass.

(a) (b)

Figure 8. Estimation of the vehicle Load Transfer Ratio at front (a) and rear (b) axles during a
FishHook maneuver.

4. ISO-LTR Phase Plane Portrait

As mentioned in the previous section, the model-based LTR formulation, expressed
in its more robust and generic form by the Equation (6), is not suitable for a realistic
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implementation of the LTR estimation but rather it represents a valid tool for the analytical
correlation between the vehicle states and the LTR dynamics. One of the most adopted
tool to evaluate the vehicle states dynamics is the phase plane analysis. By focusing the
attention only to the relative roll dynamics between the sprung and the unsprung masses,
the vehicle states selected for plotting the phase plane map are the relative roll angle φ and
roll rate φ̇ between the sprung and the unsprung masses. The phase plane analysis has the
fundamental advantage to describe the trajectory of the vehicle states in a unique plot that
can also be obtained with complex and non-linear models or directly from experimental
measurements. In this paper, the phase-plane plot is drawn by running a fast ramp steering
manoeuvre at constant speed in the IPG CarMaker® simulation environment. According
the NHTSA’s standard (49 CFR Part 575), a steering wheel rate of 720 deg/s is imposed,
and the test is repeated at different vehicle speeds with step of 10 km/h. An example of
simulation results obtained during a fast ramp steering manoeuvre at 70 km/h on a 10 deg
banked road is shown in Figure 9.

Figure 9. Fast ramp steering manoeuvre at 70 km/h on a 10 deg banked road. From the top left side
to the down right side: LTR, steering wheel angle and vehicle speed, vertical accelerations, lateral
accelerations, roll angles and angular velocities.

This aggressive manoeuvre is able to depict the transient behavior of the vehicle roll
dynamics at a constant vehicle speed and road bank angle, through a trajectory line in the
phase plane plot. The manoeuvre is repeated for different vehicle speeds, thus obtained
the phase plane portrait for a predefined value of the road bank angle. An example of the
phase plane portrait for a a 10 deg banked road is reported in Figure 10.
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Figure 10. ISO-LTR characteristics obtained during a fast ramp steering manoeuvre on a 10 deg
banked road at different speeds.

Each trajectory in the phase plane portrait represents the φ̇− φ correlation during a fast
ramp steering manoeuvre at constant vehicle speed and include the steady-state and the
transient responses of the vehicle roll dynamics. Each trajectory shows a colour variation
as function of the corresponding LTR value, passing from a lower rollover risk represented
by a blue markers (LTR = 0) to a high level of rollover risk with the red markers (LTR = 1)
indicating that the left wheels lifted off.

When the phase plane portrait (φ̇, φ) is built and defined for a specific boundary
condition, i.e., the road bank angle, the ISO-LTR characteristics, i.e., the locus of constant
vertical load transfers (LTR = q, with q = 0.4, 0.5, . . . , 0.9), can be drawn, as shown in
Figure 10 for φR = 10 deg. The ISO-LTR characteristics map is characterized by parallel
lines, each corresponding to a constant LTR level.

By combining the vehicle roll equilibrium equation in Equation (1) with the roll
equilibrium equation of the sprung mass in Equation (4), the following analytical expression
of the linear ISO-LTR characteristics in the phase-pane is obtained:

φ̇ = −K
C φ −

msays hR+∑
i

(
mui ayui

hu

)
C

−

 q T
2 msazs+q T

2 ∑
i

(
mui azui

)
−G

C

+
+

[
q T

2 mg cos φR−(msghR+mughu) sin φR
C

] (9)

The slope of the ISO-LTR linear characteristics is always negative and it depends
on the vehicle suspension system parameters through the total roll stiffness K and roll
damping C coefficients. In particular, an increment of the total roll stiffness or, equivalently,
a reduction of the total roll damping, would lead a lower ISO-LTR lines sensitivity to the
relative roll rate φ̇. On the other hand, the severity of the manoeuvre imposed by the driver,
the local road perturbations, e.g., road bumps, potholes, etc. . . . , and the road bank angle
will affect the last three contributions of the ISO-LTR linear characteristics, respectively,
thus substantially producing an horizontal shift of the ISO-LTR characteristics.



Machines 2022, 10, 835 16 of 23

It is possible to express the ISO-LTR characteristics in the phase plane through the
following linear equation:

φ̇LTR=q = kφLTR=q + n (10)

where k = −K
C and n = f

(
ays , ayui

, azs , azui ,φR

)
are the slope and the x intercept of the

ISO-LTR corresponding to LTR = q, respectively.
To provide a proof of this conclusion, the influence of the the road bank angle on the

phase-plane portrait and the distribution of the ISO-LTR lines are shown in Figure 11.

Figure 11. Comparison of the ISO-LTR characteristics for a flat and a 10 deg banked road.

The figure demonstrates that the ISO-LTR lines keep the same negative slope, not
influenced by the road bank angle, whose main effect is a shift of the ISO-LTR characteristics
towards smaller relative roll angles φ.

5. ISO-LTR Predictive Time

The previous sections present the mathematical background to detect the incipient
rollover risk through the evaluation of the LTR, its representation on the phase plane plot
through the definition of the ISO-LTR characteristics and their perturbations due to the
driver behaviour, the local and global road profile geometry. The present section aims
at providing a predictive indication of the time the vehicle requires to cross one of the
ISO-LTR lines, defined as the ISO-LTR Predictive Time (ILPT) in the rest of the paper.

The principle underlying the procedure, based on the formulation proposed by [53], is
described by Figure 12 in the phase plane plot.
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Figure 12. Schematic principle of the ILPT definition.

The figure shows three trajectories corresponding to different manoeuvres represented
in the phase plane. After a generic time instant, the three trajectories reach the points
P, PI , PI I approaching to the same roll angle but with different roll rates. The condition
of incipient rollover is identified by the blue ISO-LTR line. The ILPT is defined as the
time required to reach the intersection point between the ISO-LTR line and the tangent line
at the current point of the phase plane trajectories. For example, the tangent line in P is
expressed by:

φ̇ = kP(φ − φP) + φ̇P (11)

where φ̈P, φ̇P and φP represent the relative roll acceleration, roll rate and roll angle cor-
responding to the point P of the phase plane trajectory and kP = φ̈P

φ̇P
is the slope of the

tangent line. The intersection point between the tangent line and the ISO-LTR line Q is then
calculated as follows: {

φQ = kPφP−φ̇P+n
kP−k

φ̇Q = kkPφP−kφ̇P+kPn
kP−k

(12)

Hence, the ILPT represents the time required to reach point Q from point P, under the
hypothesis to follow the tangent line expressed by Equation (11), as also described by [53]:

ILPT =
[1 − sign(z)]

2

√√√√(
φQ − φP

)2
+
(
φ̇Q − φ̇P

)2

φ̇2
P + φ̈2

P
(13)

with:
z = (φ̇P − kφP − n)(−φ̇P + kφP − n) (14)

where z is introduced to saturate the ILPT to 0 when the point P crosses the corresponding
ISO-LTR line. The calculation of the ILPT requires the knowledge of the current relative
roll acceleration, roll rate and roll angle and the parameters k and n of the selected ISO-LTR
line. The ILPT provides a time information only if it exceeds a predefined upper thresholds,
i.e., 0.5 s above which the vehicle is far away from the rollover risk.

6. Simulation Results

The predictive capabilities of the ILPT are verified in IPG CarMaker® environment
through the simulation of the following driving manoeuvres:

• A fast ramp steering on a banked road;
• A double lane change on a flat Road (ISO 3888-1).
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The simulation results are analyzed both in the phase plane and in the time domains.
The phase-plane analysis provides a graphical interpretation for the ILPT calculation. On
the other hand, the time domain analysis is carried out to asses the methodology accuracy
in predicting the critical condition. Indeed, the reference time TRe f , i.e., the time required to
reach a defined LTR threshold LTRth, is backward evaluated from the whole post-processed
time history and it is compared against the ILPT estimation. TRe f is represented in the time
domain as −45 deg inclined lines:

TRe f = −t + TLTR=LTRth (15)

where TLTR=LTRth is the time that LTR = LTRth, and it is detected by a backward analysis
of the LTR time history. The TRe f represents a key quantity to asses the performance of any
predictive algorithm to detect a particular event, i.e., the incipient rollover, but it can be only
calculated when the whole time history up to the event occurrence is available and it is not
suitable for a real-time implementation. The LTR threshold, here considered as potentially
critical to provoke the vehicle rollover, is assumed to be ±0.8. The smaller the deviation
between ILPT and TRe f , the better the predictive capabilities of the proposed methodology.

6.1. Fast Ramp Steering on a Banked Road

The first manoeuvre is one from the simulation set adopted in the previous section to
draw the ISO-LTR characteristics of Figure 10.

The resultant phase plane trajectory of the manoeuvre is reported in the topside of
the Figure 13, where the graphical solution for the ILPT calculation is provided for four
time instants. The resultant ILPT, elaborated in real-time during the manoeuvre, is plotted
in the downside of Figure 13 where the LTR time history is also compared against the
threshold LTRth.

Figure 13. Fast ramp steering manoeuvre at 30 km/h on a 10 deg banked road: phase plane trajectory
(top), LTR, reference (TRe f ) and estimated (ILTP) time to reach LTR = 0.8 (down).

At the beginning of the manoeuvre, when the LTR level indicates a substantial distance
from the rollover risk, the ILPT (red circles) deviates from the TRe f (red dashed line) to
reach the condition of LTR = 0.8, event that occurs after 0.24 s from the application
of the ramp steering. The time deviations between the estimated ILPT and the TRe f
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suddenly drops down after 0.05 s, when the ILPT starts tracking the reference time until
the occurrence of the critical threshold LTR = 0.8. This deviation can be graphically
explained by the phase-plane portrait in Figure 13. At the beginning of the ramp steering
(left side of the trajectory), the trajectory strongly deviates from the tangent line (dashed
lines). As soon as the trajectory is approaching the ISO-LTR line (blue continuos line), the
tangent line begins to better approximate the future phase-plane trajectory thus allowing
the convergence of the ILPT towards the TRe f . It is also interesting to note that the ILPT
slightly underestimates the TRe f when approaching the corresponding ISO-LTR line, thus
providing a more conservative estimate.

6.2. Double Lane Change on a Flat Road

The methodology is also applied to a second manoeuvre that is not used to extrapolate
the ISO-LTR characteristics or any other results shown in the previous sections. This is
the double lane change test which represent a critical manoeuvre from the rollover point
of view. The time domain plot of the LTR, the ILPT and reference time are shown in
Figure 14.

Figure 14. Double lane change manoeuvre at initial speed of 100 km/h on a flat road: LTR, reference
(TRe f ) and estimated (ILTP) time to reach LTR = 0.8.

During the double change manoeuvre, the vehicle crosses four times the LTR threshold.
In all cases, the methodology is able to detect in advance the critical point as highlighted by
the ILTP that starts dropping to zero when the vehicle is approaching the LTR threshold.
Even during this maneuver, the ILPT tends to underestimate the reference time when the
vehicle is getting closer to the ISO-LTR boundary, thus providing a conservative and safer
prediction. During the last part of the maneuver, the algorithm provides a false positive
indication of dangerous situation since the ILTP drops to 0.3 s even if the LTR did not reach
the threshold of 0.8 after this point. This behavior is explained by the sudden reduction
of the LTR at t = 30 s, which is successfully recovered by the stabilizing intervention of
the driver.

Even though the vehicle does not rollover during the maneuver, the ILPT can predict
all the potential dangerous situations in a time frame of a few tenths of seconds, which is
suitable for an active control logic to intervene.
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7. Conclusions

The activity presented in this paper aims at providing some usefull tools and method-
ologies to detect and prevent the incipient risk of rollover, applied to heavy vehicles
designed for off-road driving applications. The main conclusions drawn from the results
and the methodologies presented can be summarized as follows:

• A quantitative indication of the anti rollover risk is represented by the LTR, thus
detecting the critical limit above which a wheel lifted off occurs. However, the LTR
does not represent a measurable quantity due to the extreme difficulty in estimating
the vertical load transfers among the vehicle corners. The paper proposes three LTR
model-based formulations, by considering an increased level of complexity. The
most generic formulation includes the influence of the road bank angle, unsprung
masses and vertical dynamics. Numerical simulations of aggressive manoeuvres on
flat roads, banked roads and in presence of asymmetrical speed bump waves, show
the significant reliability of the generic model-based formulation when compared to
the two simplified versions widespread in the literature;

• The incipient rollover occurs when a defined LTR threshold is approached. The paper
proves that the ISO-LTR characteristics, i.e., the combination of vehicle relative roll
speeds and angles where the LTR is constant, are linear in the phase plane portrait of
the vehicle roll dynamics. This is analytically explained through the LTR model-based
formulation, and numerically verified with multiple simulations in IPG CarMaker®.
The paper also shows that the LTR model-based formulation provides a qualitative
tool to predict how the ISO-LTR lines would change when a road perturbation, i.e.,
road bank angle or irregularities, is encountered. The ISO-LTR slopes are only influ-
enced by the suspension system configuration and parameters (total roll stiffness and
damping), meanwhile the severity of the manoeuvre (lateral and vertical accelera-
tions) and the road global and local perturbations provoke an horizontal shift of the
ISO-LTR lines;

• The model-based formulation is essential to analytically evaluate the main influencing
factors on the load transfer dynamics between the left and right vehicle sides. How-
ever, any mathematical formulation is affected by parameters uncertainties, external
disturbances and unmodeled dynamics that compromises its effectiveness for a real-
istic implementation, especially when noisy experimental measurements are input
to the analytical formulation. For this reason, the statistical approach, based on the
recurrent neural network principle, is proposed as an alternative methodology to
estimate the LTR in a realistic scenario. Indeed, the input of the RNN algorithm are
typical measurable quantities available for an experimental implementation, which
represent the natural following step the authors are going to explore in the near future.
The RNN approach provides excellent results in estimating the front and the rear load
transfers even in presence of complex and realistic driving scenarios.

• The detection of current LTR is not sufficient to predict the incipient risk of rollover.
A ISO-LTR Predictive Time is then derived to proactively calculate the necessary
time to reach a particular LTR threshold. The proposed predictive index is then
successfully verified through a fast ramp steering maneuver on a banked road and
during an aggressive double lane change manoeuvre. In both cases, the ILPT demon-
strates promising predictive capabilities, compatible with the intervention of a control
active strategy.
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