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Abstract: Hybrid soft leg systems have been studied for advanced gaits of soft robots. However,
it is challenging to analyze and control hybrid soft legs due to their nonlinearity. In this study, we
adopted dynamic pole motion (DPM) to analyze stability of a nonlinear hybrid soft leg system with
dynamic Routh’s stability criterion and to design a proper controller for the nonlinear system with an
error-based adaptive controller (E-BAC). A typical hybrid soft leg system was taken as an example,
as such a system can easily become unstable and needs a controller to get the system back to a stable
state. Specifically, E-BAC was designed to control the unstable hybrid soft leg fast with a minimal
overshoot. As a nonlinear controller, the implanted E-BAC in a feedback control system includes two
dominant dynamic parameters: the dynamic position feedback Kp(e, t) and the dynamic velocity
feedback Kv(e, t). These parameters were properly selected, and the feedback was continuously
varying as a function of system error e(t), exhibiting an adaptive control behavior. The simulation
shows that this approach for constructing an adaptive controller can yield a very fast response with
no overshoot.

Keywords: hybrid soft leg; nonlinearity; control; stability; dynamic pole motion; dynamic routh’s
stability criterion; error-based adaptive control

1. Introduction

Locomotion is an essential function of autonomous terrestrial robot systems, which
carry out exploring, monitoring, and delivering tasks in complex and harsh environments.
Although wheeled robots have been used in various engineering applications due to easy
and simple steering operation, they face challenges on rugged and uneven terrains [1].
Legged terrestrial mobile robots are more versatile in the locomotory performance, and
recently various bioinspired legged robots from animals and insects have been studied and
developed in the form of two-legged (bipedal) [2,3], four-legged (quadrupedal) [4,5], six-
legged (hexapedal) [6,7], and eight-legged (octopedal) [8,9] robots. It has been investigated
that more legs on a robot yield superior stability to less legs on a robot during locomotion.
Recently, with the new robotic concept, resilient robot [10–13], the more legs, the more
resilient. Inspired by insects, hexapedal robots present the most efficient gaits, considering
both stability and energy consumption [14].

A leg of a six-legged insect generally consists of five rigid segments (exoskeleton),
coxa, trochanter, femur, tibia, and tarsus from proximal (toward the body) to distal (away
from the body), connected by hinge joints, forming a sprawled posture [15], as illustrated
in Figure 1a. Inspired from the five exoskeletons of the insect leg, a leg of a typical
hexapedal robot includes three rigid links (coxa, fused trochanter and femur, and tibia
without tarsus) with rotary joints, yielding multi-shape legs with three degrees of freedom
(DOFs) [16], as shown in Figure 1b. Recent interests in bionic soft robots have attracted
much attention with advantages of sustaining large deformation, safe interaction, and
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flexibility of motions with higher DOFs. However, soft robots require high computational
costs of control due to the high DOFs [17–20]. Alternatively, hybrid soft robots have been
introduced with the combination of rigid and soft components of a robot based on the
hybridization engineering principle [21–24], and thus the hybrid soft robots retain the
advantages of both rigid and soft robots, such as easier control, lighter weight, more
flexibility, and so on [25]. Moreover, additive manufacturing (i.e., 3D printing technology)
has promoted the fabrication processes of hybrid soft robots with various stiffnesses of
robotic components [26,27]. Recently, Jiang et al. [28] introduced the flexoskeleton (external
skeleton with flexible joint) printing process, and they introduced flexoskeleton legs (a
quadrupedal robot) to promote the gait of insect-inspired hybrid soft robots with flexible
locomotory performance. For a more stable gait of the robot, a hexapedal hybrid soft robot
is desired as illustrated in Figure 1c.
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Figure 1. Comparison of six-legged insect and robot: (a) a biological six-legged ant and schematics 

of its hinder leg, (b) schematics of a rigid hexapedal robot and the structure of rigid leg with motors, 

and (c) schematics of a hybrid soft hexapedal robot and the structure of its hybrid soft leg with a 

motor and a spring. The same colors in 2D diagram represent the same segments of the leg (some 

segments in a biological insect leg are excluded in a robot leg). The blue arrow and the gray column 

at coxa joint in 2D diagram represent the direction of motion and the body, respectively. 

Various control approaches for soft robots have been studied in forms of open-loop 

control and closed-loop control. Without specific sensors and feedback, open-loop control 

is adopted with more accurate analytical models from physical models. Thus, the defor-

mation and the motion are well predicted for mobility of the robot. However, open-loop 

control faces many problems during the performance of soft robots due to the limited 
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schemes have been applied for nonlinear systems, such as inverse optimal controllers 

Figure 1. Comparison of six-legged insect and robot: (a) a biological six-legged ant and schematics of
its hinder leg, (b) schematics of a rigid hexapedal robot and the structure of rigid leg with motors,
and (c) schematics of a hybrid soft hexapedal robot and the structure of its hybrid soft leg with a
motor and a spring. The same colors in 2D diagram represent the same segments of the leg (some
segments in a biological insect leg are excluded in a robot leg). The blue arrow and the gray column
at coxa joint in 2D diagram represent the direction of motion and the body, respectively.

For accurate manipulations, positioning control is essential for robots. Compared to
the conventional control of rigid robots, control of soft robots is laborious due to high or
infinite DOFs, including bending and torsion (i.e., nonlinearity). Hybrid soft robots face
similar complications in control of undeniable flexible nonlinear components, although
the structure of a hybrid soft robot is less distorting than a fully soft robot’s in motion.
Moreover, various control strategies should be considered by actuator mechanisms of a
soft robot or a hybrid soft robot, such as a fluidic-driven actuator, magnetic-driven actuator,
tendon-driven (indirect-driven) actuator, and motor-driven (direct-driven) actuator [29].

Various control approaches for soft robots have been studied in forms of open-loop
control and closed-loop control. Without specific sensors and feedback, open-loop control
is adopted with more accurate analytical models from physical models. Thus, the defor-
mation and the motion are well predicted for mobility of the robot. However, open-loop
control faces many problems during the performance of soft robots due to the limited appli-
cations, and open-loop control is suitable for simple actuation control [30–32]. Closed-loop
control can achieve more accurate and robust actuation control of soft robots with flexible
proprioceptive sensors to achieve autonomous controls. Adaptive control schemes have
been applied for nonlinear systems, such as inverse optimal controllers [33,34], and the
scope of the adaptive controls has been extended to soft robotics [35,36]. Other closed-loop
control approaches have also been studied, such as PD or PID controls [37–39] and FEM-
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based controls [40–42]. However, those approaches have not completely been solutions of
nonlinearity soft robots exhibit owing to large deformations.

Furthermore, intelligent control approaches, such as machine learning algorithms,
have been introduced to soft robotics due to uncertainties encountered during modelling.
Learning based-approaches can achieve model-free control strategies based on collected
data from a soft robot’s motion [43–46]. In addition, unsupervised learning schemes to
control soft robots are available [47,48]. Although intelligent control approaches can handle
nonlinearities of a soft robot system, there is still limitations in applicability due to required
large amounts of data for training. Significant time is required to collect sufficient data to
use, and the quality of the collected data is not fully reliable [49].

In this study, we adopt a dynamic pole motion (DPM) approach to analyze a nonlinear
time-variant hybrid soft leg system by dynamic Routh’s stability criterion and to control the
system by an error-based adaptive controller (E-BAC). Applying DPM, the dynamic Routh’s
stability criterion quickly determines the stability of a nonlinear system, while conventional
stability analysis requires complex procedures for nonlinear systems. Moreover, E-BAC
manipulates a system to operate fast with little or without overshoot for a stable and robust
control by utilizing system error. We investigated the stability of the hybrid soft leg system
by the dynamic Routh’s stability criterion, and discovered that the leg system retains
multiple regions of stability and instability. In order to overcome the unstable regions,
we designed and implanted E-BAC in the system to achieve distinguished performance
of the controlled system. The controlled system presented very fast settling time (~0.4 s)
without overshoot, by adjusting system parameters, such as damping ratio varied from
0.35 to 1 and bandwidth from ~36 Hz to ~9 Hz.

2. Analysis of a Motorized Hybrid Soft Leg: Dynamic Routh’s Stability Criterion for
Nonlinear Systems

As illustrated in Figure 1, a leg of an insect, such as an ant, is composed of several
connecting segments (called exoskeletons) as a structural support (i.e., link) or a joint. The
exoskeletons are made from chitin networks which produce various stiffness (i.e., rigid or
flexible) of the connecting exoskeletons depending on functions, dimensions, and shapes of
the leg segments. The multi-stiffness of an insect leg significantly determines motions and
mobility of an insect [28,50]. The rigid and flexible structure of an insect leg has motivated
biomimetic hybrid soft legs, but the combination of various stiffness produces nonlinearity
of the hybrid soft leg. A nonlinear system is simply described as a system whose output
change is not proportional to input change, and a system is called as a time-variant system
if the output of a system is varying depending on a function of time. Thus, nonlinear
time-variant (NLTV) systems, such as soft robots (both complete and hybrid ones), are very
challenging and difficult to be handled.

A hybrid soft leg can be schematically described with links and springs actuated by
motors and gears as illustrated in Figure 2. A conventional 3D printing with polylactic acid
(PLA) and thermoplastic polyurethane (TPU) could achieve the rigid link and the soft joint,
respectively. The leg is connected through a gear train (harmonic drive) with the ratio n
to a rigid link with length l, mass m, and moment of inertia

(
ml2)/3. The components of

the structure are an actuator with rotor inertia JM, an actuator with viscous damping BM,
a joint actuator with a relative angular displacement θM, a motor shaft with a torque τM,
and an end effector with a relative displacement θL. The joint flexibility is modeled by a
linear torsional spring with stiffness k. Defining τM = r, the Euler–Lagrange equation can
represent the dynamics of the hybrid soft leg as

ml2

3

..
θL + BL

.
θL +

mgl
2

sinθL + k
(

θL +
θM
n

)
= 0 (1)

JM
..
θM + BM

.
θM +

k
n

(
θL +

θM
n

)
= r (2)
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Figure 2. A schematic diagram of the mechanism of a motorized hybrid soft leg illustrated in
Figure 1c. The mechanical structure consists of a single link manipulator and a flexible spring joint.

Furthermore, defining x1(t) = θM, x2(t) =
.
θM, x3(t) = θL and x4(t) =

.
θL, the state

variables xi, (i = 1, 2, 3, 4) can be derived as
.
x1(t) = x2(t).
x2(t) = −a1x1(t)− a2x2(t)− a3x3(t) + br(t)
.
x3(t) = x4.
x4(t) = −a4x1(t)− a5x3(t)− a6sin(x3(t))− a7x4(t)

(3)

where
b = 1

JM
, a1 = k

JMn2 , a2 = BM
JM

, a3 = k
JMn

a4 = 3k
mnl2 , a5 = 3k

ml2 , a6 = 3g
2l , a7 = 3BL

ml2

From a block diagram of the motorized hybrid soft leg (see Figure 3), it is easily
pointed out that this hybrid soft leg is NLTV since the sine function in the feedback loop
of the system causes nonlinearity in the system, and the state variable x is dependent on
function of time t, which yields some problems in designing an effective controller. The
nonlinearity should be examined for designing a proper controller and analyzing stability
of the system. In this study, we apply dynamic Routh’s stability criterion [51] to analyze
the stability of this nonlinear hybrid soft leg system. Dynamic Routh’s stability criterion
has advantages to analyze NLTV systems due to its simplicity as Routh’s stability criterion
for linear time-invariant (LTI) systems.
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Figure 3. Block diagram of the hybrid soft leg with rigid links and a flexible joint (spring). The system
has both linear and nonlinear feedback.

The insight of dynamic Routh’s stability criterion was initiated by the perception that
the position of poles and zeros of a system is changing (i.e., dynamic pole motion, DPM [52])
as the system state x varies with time t in a dynamic system. This rationale expanded the
two-dimensional s-plane (i.e., real axis σ and imaginary axis jω) to a three-dimensional
g-plane (i.e., real axis σ, imaginary axis jω, and time-dependent variable) as illustrated in
Figure 4. The stability region in the g-plane is defined from the definition of stability region
in the s-plane (see Figure 4).
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Figure 4. Having the stability region, a three-dimensional g-plane consists of a real part σ(t), imagi-
nary part jω(t), and time-dependent part. The time-dependent part can be time t, error e(t), or state
variable x(t).

For simplicity, we set the value of the parameters ai (i ∈ [1, 7]) and b equal to 1 in
Equation (3) as 

.
x1(t) = x2(t).
x2(t) = −x1(t)− x2(t)− x3(t) + r(t)
.
x3(t) = x4(t)
.
x4(t) = −x1(t)−

{
1− sin(x3(t))

x3(t)

}
x3(t)− x4(t)

(4)

We first formulate a dynamic characteristic equation of the system by det(gI−A(x, t))
= 0, where

A(x, t) =


0 1 0 0
−1 −1 −1 0
0 0 0 1
−1 0 −

{
1 + sin(x3)

x3

}
−1

 (5)

Thus, the dynamic characteristic equation of the motorized hybrid soft leg is given as

g4(t) + 2g3(t) + (3 + ψ(t))g2(t) + (2 + ψ(t))g(t) + ψ(t) = 0,
ψ(t) = sin(x3(t))

x3(t)
.

(6)

With the dynamic characteristic equation, the stability of the hybrid soft leg system
can be analyzed through dynamic Routh’s array as

g4 1 ψ + 3 ψ
g3 2 ψ + 2 0
g2 (ψ+4)

2 ψ 0

g1 ψ2+2ψ+8
ψ+4 0 0

g0 ψ 0 0

(7)

Investigating the dynamic Routh’s array and considering that the Routh’s criteria for
LTI systems is a subset of the dynamic Routh’s stability criterion for NLTV systems, we
obtain the following interpretation:

(a) For stability of the system, all the elements in the first column of the dynamic Routh’s
array must be positive non-zero values. Thus, we find that ψ > 0 from all the
conditions of ψ + 4 > 0, ψ2 + 2ψ + 8 > 0, and ψ > 0 from each row, which means
the condition of sin(x3(t))/(x3(t)) > 0 should be met to make the system stable. The
stability region of sin(x3(t))/(x3(t)) is graphically represented in Figure 5.
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Figure 5. Graphical representation of the stable region of the dynamic characteristic equation,
g4(t) + 2g3(t) + (3 + ψ(t))g2(t) + (2 + ψ(t))g(t) + ψ(t) = 0. For simplicity of graphical representa-
tion, a specific time t is applied for ψ(t).

(b) Zero value at any rows in the first column of the dynamic Routh’s array represents
that oscillatory dynamic poles are located on the imaginary axis of the g-plane, which
indicates instability of the system. Zero value exists only if sin(x3(t)) = 0, which
occurs periodically.

(c) As the conventional Routh’s stability criterion, the dynamic Routh’s stability criterion
can indicate the number of dynamic poles on the right-hand plane (RHP) of the
g-plane by the number of sign (+ or −) changes in the first column of the dynamic
Routh’s array. From the array, it can be found that one sign change could occur, which
represents that one dynamic pole could be located in RHP of the g-plane when the
system is not stable. Without a sign change, no dynamic poles are located in RHP of
the g-plane, and the system is stable.

Next, the dynamic roots of this characteristic equation are calculated as

g1,2(t) = 1
2

{
−1±

√
2
√

ψ2(t) + 4− 2ψ(t)− 3
}

,

g3,4(t) = 1
2

{
−1±

√
−2
√

ψ2(t) + 4− 2ψ(t)− 3
}

.
(8)

The nonlinear function, ψ(t) = sin(x3(t))
x3(t)

, covers the range −0.22 ≤ ψ(t) ≤ 1 for all
values of x3(t) over [−∞, ∞], and the dynamic pole motion of this system is illustrated in
Figure 6. As the system state x3(t) varies, the pole positions are fluctuating on the g-plane.
Mostly, the poles are on the left-hand plane (LHP) in the g-plane, which represents stable
states of the system. However, at some x3(t) values, one (g2) of the dynamic poles crosses
over the imaginary axis to RHP, which implies unstable states of the system, and a proper
controller is necessary for this hybrid soft leg.
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Figure 6. The sketch of dynamic pole motion (DPM) of the hybrid soft leg without a controller: (a) two-
dimensional representation with σ(t)- and jω(t)-axes and (b) three-dimensional representation
adding a x3(t)-axis. The arrows in (a) indicate the paths of pole movements.
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3. Error-Based Adaptive Controller (E-BAC) for the Motorized Hybrid Soft Leg

The initial concept of a dynamic pole motion (DPM) approach [52] was further stan-
dardized in [53,54] to facilitate the error-based adaptive controller (E-BAC) for nonlinear
time-variant (NLTV) systems to accomplish a faster and more stable response of a system
with little or without overshoots.

For the design of E-BAC, there are two dominant parameters to be considered, position
feedback Kp(e, t) and velocity feedback Kv(e, t). In a closed-loop control system, the
feedback parameters are adapted by the system error e(t) and its states x(t) as shown in
Figure 7, defining the position feedback Kp(e, t) and the velocity feedback Kv(e, t) gains as
functions of system error e(t) [54] as

Kp(e, t) = Kp f

(
1 + αe2(t)

)
(9)

Kv(e, t) = Kv f exp
[
−βe2(t)

]
(10)

e(t) = r(t)− y(t) (11)

y(t) = Kp(e, t)x1(t), (12)

where α and β are some gain constants which decide the slope of the functions and affect
the system response, Kp f and Kv f are the final steady-state values of Kp(e, t) and Kv(e, t),
and exp[·] is the exponential function as illustrated in Figure 7.
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Figure 7. Schematics of an error-based adaptive controller (E-BAC): x4(t) =
.
x3(t), and the change of

the slopes of Kp(e, t) and Kv(e, t) curves. For various values of α and β, the directions of the arrows
indicate the increasing values of α and β.

The position feedback Kp(e, t) and the velocity feedback Kv(e, t) gains were motivated
from the natural frequency (ωn) and the damping ratio (ζ) of a conventional linear time-
invariant (LTI) system. A small ζ and a large ωn (i.e., an underdamped dynamic with large
bandwidth) yield a large error but a very fast system response with a very small rise time.
Moreover, a large ζ and a small ωn (i.e., an overdamped system with a small bandwidth)
result in a small error and inhibit overshoot of the system response. Therefore, defining
Kp(e, t) and Kv(e, t) as functions of the system error, e(t) = r(t)− y(t), a very fast dynamic
response of an NLTV system with no overshoot can be achieved. Designing Kp(e, t) and
Kv(e, t) induces dynamic pole motions (DPM) (i.e., poles are moving as a function of time),
and the system response can be controlled at an acceptable level following a linguistic
algorithm [54] as below:

‘As error decreases from a large value to a small value, Kp(e, t)
(
= ω2

n(t)
)

is con-
tinuously decreased from a very large value to a small value, and simultaneously,
Kv(e, t)(= 2ζ(t)ωn(t)) is increased from a small value to a large value’.
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The error-based control signal u(e, t) is derived as a function of e(t) and time t using
the following two steps:

position f eedback control : up(e, t) = Kp(e, t)x3(t) (13)

velocity f eedback control : uv(e, t) = Kv(e, t)x4(t) (14)

Thus, the total feedback signal u(e, t) is given by

u(e, t) = up(e, t) + uv(e, t), (15)

and, finally, the control signal v(t) (see Figure 4) is defined as

v(t) = r(t)− u(e, t) (16)

For this motorized hybrid soft leg, the design criteria of our error-based adaptive
controller (E-BAC) follow some important points as below:

(a) For the stability of the hybrid soft leg system, the dynamic poles should be always
located on LHP on the g-plane for all values of x3(t).

(b) For achieving the fast response time, the system must have a large bandwidth for
large errors and small bandwidth for small errors. Thus, the position feedback as the
bandwidth parameter must be a function of the system error e(t).

(c) For no overshoot in the system response, damping should be adjusted continuously
as a function of e(t). Kp(e, t) and Kv(e, t) are designed such that they yield a small
damping ratio with a large bandwidth for large errors, and a large damping ratio with
small bandwidth for small errors.

The control input signal v(t) is derived as

v(t) = r(t)− u(e, t) (17a)

u(t) =
{

up(e, t) + uv(e, t)
}

(17b)

up(e, t) = Kp f

[
1 + αe2(t)

]
x3(t) (17c)

uv(e, t) = Kv f exp
[
−βe2(t)

]
x4(t) (17d)

where x3(t) = x and x4(t) =
.
x are the states of the system, Kp f and Kv f are the steady-

state values of feedback Kp(e, t) and Kv(e, t), respectively, α and β are some gain con-
stants for Kp(e, t) and Kv(e, t), respectively, r(t) is the reference input of the system, and
e(t) = [y(t)− r(t)] =

(
r(t)− Kp(e, t)x3(t)

)
is the system error.

As described in the design criteria, the objective of the embedded E-BAC is to design
the control u(t) to make the system output y(t) follow the reference input signal r(t). The
dynamics of the close-loop system are continuously changing: initially for large errors, we
make a large bandwidth and very small damping ratio ζ(t), and as error decreases, the
damping ratio ζ(t) is continuously increased, and the system bandwidth is decreased.

4. Simulation Study and Results

For a simulation study, we set the motorized hybrid soft leg in unstable states with
x3(t) = −5 as indicated in the graphical representation (see Figure 5). In the design of
the E-BAC, by the feedback Kp(e, t) and Kv(e, t), the controlled system was expected to
respond fast at the beginning (similar to an underdamped system) with large error, and
then gradually the system was anticipated to behave slowly (as an overdamped system)
with decreasing error. For the simulation, a step input (r(t) = 1, t > 0) was applied.

Initially, we arbitrarily chose the gains Kp f = 1.1, Kv f = 3.5, α = 1, and β = 2, and
the results are shown in Figure 8. At t = 0 with an error of 1, two poles are placed in LHP
(PLs), and the other two poles are located in RHP (PRs) near the imaginary axis. As time
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increased, the PLs approached the imaginary axis, and the PRs moved to the real axis in
LHP with decreasing error. However, the changing error induced the oscillation of the
system response by locating PRs near the imaginary axis (i.e., similar to an underdamped
system). In the meantime, the error yielded the reduction of oscillation of the system by
locating PLs on the real axis (i.e., similar to an overdamped system). Overall, the system
response with the selected gains presented gradually decreasing oscillation to reach a stable
state with reducing error. However, it took a long time (>100 s) before the system finally
settled down.
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Figure 8. Dynamic pole motion of the controlled hybrid soft leg and the controlled system response
by error change with the gains of Kp f = 1.1, Kv f = 3.5, α = 1, and β = 2: (a) 2D plot, (b) 3D plot, and
(c) the system response to the step input. The arrows indicate the direction of pole motions.

Next, we investigated the gain to examine how the controlled system would behave
by changing the individual gain values. First, we studied the effect of Kp f on the controlled
system response, keeping the initial values of other gains. Kp f was initially set higher
as Kp f = 10. With the increased Kp f , the system response became unstable because PLs
crossed the imaginary axis to the position in RHP after a certain time. A small increase of
Kp f = 1.5 yielded the system as stable, but the system response presented high oscillation
with a small decrease, and thus the time to reach for a stable state (i.e., settling time) was
longer (>500 s). However, lower gain, Kp f = 0.1, improved the system response as shown
in Figure 9. All four poles were initially located in LHP, and as error changed, two poles
approached near the imaginary axis, and the other two poles moved on the real axis in
LHP (close to the origin). The error was reduced faster than that with a higher Kp f , and the
settling time with the small oscillation was also reduced because of the pole near the origin
on the real axis. However, the settling time was still long (~50 s) with the small oscillation
of the response before the settlement.

We further examined the effect of Kv f on the controlled system response (i.e., only Kv f
was changed, keeping other gains with the initial values), and the results are exhibited in
Figure 10. The initial poles with higher Kv f (> ∼ 4) were in both RHP (i.e., two PRs) and
LHP (i.e., two PLs) similar to the case of higher Kp f . As error changed, the PRs settled on the
real axis in LHP, and the PLs moved to the imaginary axis and crossed the imaginary axis
at higher Kv f , which caused instability of the system. Lower Kv f = 0.3 drove the controlled
system stable and settled. As error changed, the two initial PRs moved to LHP, and the two
initial PLs relocated toward the imaginary axis (but not close to it), which diminished the
oscillation of the system. Moreover, the settling time was greatly reduced (~15 s). However,
the controlled system presented a high overshoot as a typical underdamped system.
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Figure 9. Dynamic pole motions of the controlled hybrid soft leg and the controlled system response
by error change with the gains of (a) Kp f = 1.5, Kv f = 3.5, α = 1, and β = 2, and (b) Kp f = 0.1,
Kv f = 3.5, α = 1, and β = 2. The arrows indicate the direction of pole motions.
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Figure 10. Dynamic pole motions of the controlled hybrid soft leg and the controlled system response
by error change with the gains of (a) Kp f = 1.5, Kv f = 4, α = 1, and β = 2, and (b) Kp f = 0.1,
Kv f = 0.3, α = 1, and β = 2. The arrows indicate the direction of pole motions.
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Next, only α was changed to investigate the effect on the controlled system response,
keeping the other gains the initial values, and the controlled system responses are shown
in Figure 11. Overall, both higher α = 10 (see Figure 11a) or lower α = 0.1 (see Figure 11b)
did not significantly affect the system response, although the initial pole positions in both
cases were different. The responses before and after altering α produced similar results
with high oscillations and long settling time. Higher α drove the initial two PRs relatively
further from the imaginary axis, and lower α induced all initial pole positions in LHP, but
the final pole positions in both cases were similar (i.e., two poles near the imaginary axis,
and two poles on real axis in LHP). The similar final pole positions induced similar system
responses with high oscillation. However, the initial behaves of the controlled system
became different with the different α values: higher α caused high peaks initially.
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Figure 11. Dynamic pole motions of the controlled hybrid soft leg and the controlled system response
by error change with the gains of (a) Kp f = 1.1, Kv f = 0.3, α = 10, and β = 2, and (b) Kp f = 1.1,
Kv f = 0.3, α = 0.1, and β = 2. The initial system responses were slightly distinct with different peaks,
but the rest of the response remained similar. The arrows indicate the direction of pole motions.

Finally, the effect of β was explored on the controlled system response with the initial
values of other gains, and the results are presented in Figure 12. It was found that β did not
also considerably influence the system response, but the initial system response and the
shape of oscillation were slightly affected. Both higher and lower β induced two initial PRs
and PLs, and the poles in both cases ended near the imaginary axis (two poles) and on the
real axis (two poles) in LHP. The difference was that PRs settled on the real axis at higher β,
but PLs landed on the real axis at lower β. As a result, lower β yielded smoother oscillating
peaks, and higher β caused sharper oscillating peaks with lower error.
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From the observation of the gain change, significances of gains in E-BAC to a control
system were concluded as Kp f and Kv f mainly influence the oscillation of the system
response, such as amplitude and decay, and α and β mostly affect the initial amplitude of
the response and the shape of the oscillation. Considering the significance, we improved the
controlled system response by selecting more proper gains as Kp f = 0.25, Kv f = 0.5, α = 2,
and β = 5, and the results are presented in Figure 13. Small Kp f and Kv f produced little
oscillation and its amplitude, and moderate α and β induced smooth curve of the controlled
system response. Initially, all poles were placed in LHP. As error changed, two poles moved
towards the imaginary axis (not close to it), and the other two poles approached the real
axis in LHP, which resulted in a stable controlled system response with improved settling
time (~7 s) without overshoot.

It should be noted that there would be more choices of gains to achieve the similar
response as shown in Figure 13, but the settling time was not able to be greatly shortened
(e.g., <1 s) because all four poles were dominant, and their movements for the system
response were closely perturbed by each other’s. This explained that the current control
system (simple structure and control design) of the motorized hybrid soft leg should be
improved to keep two dominant system poles. In order to achieve two dominant poles
of the control system, there will be various approaches to modify and/or to reform the
physical structure with mechanical and electrical parts. In this study, we consider all
the approaches as a compensator to add in the control system to achieve a compensated
system (Gc) of the motorized hybrid soft leg as illustrated in Figure 14. One of conceivable
approaches for Gc is to add two zeros near two poles not to disturb the movements of the
other two dominant poles. In this study, we simply added zeros at −1 and −2 to achieve a
Gc as

Gc(t) =
(g(t) + 1)(g(t) + 2)

(g(t) + g1)(g(t) + g2)(g(t) + g3)(g(t) + g4)
(18)
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Figure 13. Dynamic pole motion of the controlled hybrid soft leg and the controlled system response
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Figure 14. Schematic block diagram of a compensated system of the motorized hybrid soft leg with 

a compensator and E-BAC. 
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Figure 14. Schematic block diagram of a compensated system of the motorized hybrid soft leg with a
compensator and E-BAC.

We further set the gains of E-BAC as Kp f = 210, Kv f = 31, α = 2, and β = 0.5, and
the controlled system response of the compensated motorized hybrid soft leg is shown in
Figure 15. The selected gains placed initial positions of the dynamic poles of the system
at g1,2(0) = −0.99 and −1.99, and g3,4(0) = −8.76± j23.6. During the operation of the
system, as error changed (to 0), the positions of the dynamic poles finally moved to −1,
−1.93, −13.46, and −16.11 on the g-plane. The zeros located at around −1 and −2 by the
compensator attracted two poles (g1,2) not to affect the dominant poles (g3,4). The controlled
system response initially exhibited the trajectory of an underdamped system with a small
damping ratio (ζ(t) = 0.35) and a large bandwidth (ωBW(t) = 35.62 Hz), and the response
finally settled down like an overdamped system with a large damping (ζ(t) = 1) and a
smaller bandwidth (ωBW(t) = 8.98 Hz). The settling time of the compensated system was
extremely improved (~0.4 s), and no overshoot was observed.

Machines 2022, 10, x FOR PEER REVIEW 15 of 19 
 

 

(a) (b) (c)

underdamped

overdamped

 

Figure 15. Dynamic pole motion of the controlled compensated hybrid soft leg and the system re-

sponse by error change with the gains of 𝐾𝑝𝑓 = 210, 𝐾𝑣𝑓 = 31, 𝛼 = 2, and 𝛽 = 0.5: (a) 2D plot, (b) 

3D plot, and (c) the system response to the step input (𝜁: damping ratio and 𝜔𝐵𝑊: bandwidth in 

Hz). The arrows in (a,b) indicate the direction of pole motions. 

It is clear from the figure that the dynamic motion of poles of the system is decided 

by the value of the system error. The initial positions of the dominant dynamic poles are 

placed to generate a low damping ratio 𝜁(𝑡) and large bandwidth 𝜔𝐵𝑊(𝑡) of the system, 

which is the characteristic of an underdamped system. Thereafter, the dynamic poles are 

optimized and shifted as the system error decreases, increasing 𝜁(𝑡)  and reducing 

𝜔𝐵𝑊(𝑡) . The final positions of the dominant dynamic poles drive the system as an 

overdamped system, resulting in large 𝜁(𝑡) and small 𝜔𝐵𝑊(𝑡). The variations of 𝜁(𝑡) 

with respect to error and 𝜔𝐵𝑊(𝑡) at each time interval are shown in Figure 16.  

(a) (b)

bandwidth

 

Figure 16. Variations of properties of the controlled compensated system: (a) dynamic damping 

ratio 𝜁(𝑡) (from 0.35 to 1) with respect to error and time (the dot line is the projection plot of 𝜁(𝑡) 

on error-damping ratio plane), and (b) 3D sketch of dynamic magnitude plot of the system and 

dynamic bandwidth 𝜔𝐵𝑊(𝑡) (yellow curve, from 35.62 Hz to ~9 Hz) at each time interval (the dot 

line is the projection plot of 𝜔𝐵𝑊(𝑡) on frequency–time plane). 

5. Discussion and Conclusions 

In this study, a new and simple control approach for NLTV hybrid soft leg system 

was introduced, employing the error-based adaptive controller (E-BAC) with the princi-

ple of dynamic pole motion (DPM). The design of this adaptive controller is conceptually 

error-based and can handle the complexity of the hybrid soft leg system. E-BAC is de-

signed to continuously change feedback parameters as functions of the system error. Ini-

tially, the controller induces a large error to imitate an underdamped system with a small 

damping ratio and a large bandwidth, and then forces the system to behave as an 
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Figure 15. Dynamic pole motion of the controlled compensated hybrid soft leg and the system
response by error change with the gains of Kp f = 210, Kv f = 31, α = 2, and β = 0.5: (a) 2D plot,
(b) 3D plot, and (c) the system response to the step input (ζ: damping ratio and ωBW : bandwidth in
Hz). The arrows in (a,b) indicate the direction of pole motions.
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It is clear from the figure that the dynamic motion of poles of the system is decided
by the value of the system error. The initial positions of the dominant dynamic poles are
placed to generate a low damping ratio ζ(t) and large bandwidth ωBW(t) of the system,
which is the characteristic of an underdamped system. Thereafter, the dynamic poles are
optimized and shifted as the system error decreases, increasing ζ(t) and reducing ωBW(t).
The final positions of the dominant dynamic poles drive the system as an overdamped
system, resulting in large ζ(t) and small ωBW(t). The variations of ζ(t) with respect to
error and ωBW(t) at each time interval are shown in Figure 16.
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Figure 16. Variations of properties of the controlled compensated system: (a) dynamic damping
ratio ζ(t) (from 0.35 to 1) with respect to error and time (the dot line is the projection plot of ζ(t) on
error-damping ratio plane), and (b) 3D sketch of dynamic magnitude plot of the system and dynamic
bandwidth ωBW(t) (yellow curve, from 35.62 Hz to ~9 Hz) at each time interval (the dot line is the
projection plot of ωBW(t) on frequency–time plane).

5. Discussion and Conclusions

In this study, a new and simple control approach for NLTV hybrid soft leg system
was introduced, employing the error-based adaptive controller (E-BAC) with the principle
of dynamic pole motion (DPM). The design of this adaptive controller is conceptually
error-based and can handle the complexity of the hybrid soft leg system. E-BAC is designed
to continuously change feedback parameters as functions of the system error. Initially, the
controller induces a large error to imitate an underdamped system with a small damping
ratio and a large bandwidth, and then forces the system to behave as an overdamped system
with a large damping ratio and a small bandwidth. In the state of an underdamped system,
the system responds to the control signal quickly, and in the state of an over damped system,
the system response becomes steady and stable to minimize (or eliminate) overshoots.

We first analyzed the motorized hybrid soft leg system by employing DPM and
dynamic Routh’s stability criterion, and found that the system included three poles in
LHP and one pole in RHP, which concluded that this system was genuinely unstable. We
utilized E-BAC for the unstable system to achieve stable system performances. By selecting
proper gain values of position and velocity feedback, the performance of the controlled
system was improved and stable. However, it was still challenging to reduce the settling
time and the overshoot of the controlled system.

Next, we enhanced the system response, especially the settling time and the overshoot,
with a two-zero compensator to obtain a compensated system. A new E-BAC was designed
for the compensated system where the motions of two dominant dynamic poles were not
interrupted by other dynamic poles. As a result, the performance of the controlled system
was greatly improved with very fast settling time (~0.4 s) without overshoot. During the
processing, the damping ratio varied from 0.35 (t = 0) to 1 (t = ~0.4 s), but on the contrary,
the bandwidth of the system changed from a large value (~36 Hz) to a small value (~9 Hz).

Several conclusions can be drawn from this study as follows:
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# The dynamic pole motion approach based on the g-plane is effective to control the
NLTV hybrid soft leg systems.

# The dynamic Routh’s stability criteria can quickly confirm the instability of the NLTV
hybrid soft leg system.

# The E-BAC can control an unstable state of the NLTV hybrid soft leg system to quickly
get back to a stable state of the system without any overshoot.

On a general note, the approach to construct an error-based adaptive controller based
on the concept of dynamic pole motion enjoys its simplicity to deal with the nonlinear
dynamics of a plant, a hybrid soft let system in this case, especially quick settling time
without overshoot. This approach thus has its merit over traditional control approaches. In
the future, we will test this controller on a real hybrid soft leg system. Another future work
is to apply this approach to constructing a controller for fully soft robotic systems, e.g., soft
octopus [55], soft frog [56], and Jellyfish [57].
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