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Abstract: This article proposes a two-stage simultaneous localization and mapping (SLAM) method
based on using the red green blue-depth (RGB-D) camera in dynamic environments, which can not
only improve tracking robustness and trajectory accuracy but also reconstruct a clean and dense
static background model in dynamic environments. In the first stage, to accurately exclude the
interference of features in the dynamic region from the tracking, the dynamic object mask is extracted
by Mask-RCNN and optimized by using the connected component analysis method and a reference
frame-based method. Then, the feature points, lines, and planes in the nondynamic object area are
used to construct an optimization model to improve the tracking accuracy and robustness. After the
tracking is completed, the mask is further optimized by the multiview projection method. In the
second stage, to accurately obtain the pending area, which contains the dynamic object area and the
newly added area in each frame, a method is proposed, which is based on a ray-casting algorithm
and fully uses the result of the first stage. To extract the static region from the pending region, this
paper designs divisible and indivisible regions process methods and the bounding box tracking
method. Then, the extracted static regions are merged into the map using the truncated signed
distance function method. Finally, the clean static background model is obtained. Our methods have
been verified on public datasets and real scenes. The results show that the presented methods achieve
comparable or better trajectory accuracy and the best robustness, and can construct a clean static
background model in a dynamic scene.

Keywords: dynamic scene; semantic SLAM; RGB-D; mask refinement; background reconstruction

1. Introduction

Visual simultaneous localization and mapping (SLAM) plays an important role in
autonomously unknown environment exploration and map construction using robots and
other equipment [1,2]. Currently, most SLAM systems work well on scenes based on static
assumptions [3], but in real scenes, there will inevitably be moving objects, and moving
objects will bring great challenges to SLAM. On the one hand, dynamic objects may cause
errors of data association during tracking, thereby causing tracking and mapping to fail.
On the other hand, it is difficult to accurately distinguish dynamic regions from static
backgrounds, and some dynamic objects will be reconstructed in the map, thus leading to
mapping errors. Such a map cannot be used for robot navigation.

Most of the improved SLAM methods for dynamic scenes are based on ORB-SLAM2 [4].
The idea of these improved methods is to exclude the dynamic feature points and use only
static background points for tracking and mapping. In traditional methods, the motion
consistency check method is used to distinguish between dynamic points and static points,
but due to the lack of prior information on dynamic objects, tracking will degenerate when
the dynamic objects move at a low speed. Currently, image segmentation [5,6] and object
detection methods [7] based on deep learning are used to recognize dynamic objects, and
the feature points in the dynamic area are filtered out. Some scholars combine deep learning
and geometric methods to further improve tracking accuracy; these methods can eliminate
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most of the dynamic points, and the rare remaining dynamic points can be removed by
using bundle adjustment optimization, but when the dynamic object occupies a larger
foreground or a larger part of the image, the points in the dynamic region are removed
and the remaining few unevenly distributed static points may cause unstable tracking; in
these cases, some structural information in the scene can be used to help improve tracking
accuracy and robustness.

A clean background map can make robot navigation much more convenient. Currently,
there are relatively few studies on reconstructing the dense static background of dynamic
scenes. Dynamic scenes are often more complex than static scenes, and reconstructing a
clean map without the dynamic object is a great challenge. The segmentation results of deep
learning suffer from over-segmentation or under-segmentation [8]; connected component
analysis based on depth information will inevitably divide the dynamic area into the static
area when the dynamic object is in close contact with the static background; the Bayesian
probabilistic update method cannot reconstruct the static background well when dynamic
objects are in close contact with the background and the dynamic objects move slowly.
Overall, the current reconstruction quality and effect still need to be further improved.

In this paper, we propose a method for high-precision and robust tracking in a dynamic
environment and a method for reconstructing scene models without dynamic objects. An
overview of our method is shown in Figure 1. Our method is divided into two stages.
The first stage is based on the ORB-SLAM2 [4] system, and the workflow of this stage
is indicated by the blue arrow. First, points, lines, and plane features are extracted from
each frame; Mask-RCNN [5] and the connected component analysis method are used to
accurately detect dynamic objects; the features in the dynamic area are dropped out; and
the points, lines, and planes in the static area are used to construct an optimization equation
to improve the tracking accuracy. When tracking and sparse reconstruction end, multiview
projection methods are used to further optimize the mask. The workflow of the second
stage is indicated by the green arrow, and the pose and mask of each frame in the first
stage are used as the initial value of dense tracking. Then, the static background depth
map in the current pose can be obtained subtly and precisely by using the ray-casting
method. The pending area is obtained by comparing the depth map captured by the red
green blue-depth (RGB-D) sensor and the depth map captured by the ray-casting method.
Some region-handling methods are designed to divide static regions and dynamic regions
in the pending area, and static regions are fused into the background by using the truncated
signed distance function (TSDF) method. Finally, a clean background model is obtained.
Our contributions are summarized as follows:

• A dynamic feature-removal method is proposed, which is based on a dynamic object
mask and depth and projection error check. Dynamic object masks are obtained
by Mask-RCNN and further optimized by using the connected component analysis
method and a reference frame-based optimization method;

• We build an optimization model based on points, lines, and plane features to obtain
higher trajectory accuracy and more robust tracking;

• We propose a static background reconstruction method, which uses the reconstructed
information and ray-casting method to determine the pending regions. Some region-
handling methods are designed to extract static regions from the pending regions, and
static regions are used to reconstruct the static background model.

The remainder of the paper is organized as follows: Section 2 provides a brief overview
of related work; Section 3 presents the proposed method in detail; Section 4 shows the
experimental results, including comparisons by trajectory accuracy, tracking stability, and
dense background reconstruction effect; Section 5 summarizes the whole work and the
future outlook.
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Figure 1. System overview.

2. Related Works

Most SLAM systems are based on static environment assumptions [3]. In the dynamic
environment, these SLAM systems easily interfere with dynamic objects. The motion
consistency check method is used to distinguish between dynamic points and static points.
In Dai’s method [9], the dynamic points were distinguished based on the principle that the
movement of the feature points in the static background and the movement of the feature
points in the dynamic area were inconsistent, thus causing the length of the connecting
edge of the static point and the dynamic point to change. Sun [3] used sequence depth
map differences and quantized depth images to classify dynamic regions and static regions,
but the dynamic object area was not obtained when the moving object was stationary. The
optical flow method can model points with different motion speeds. Wang [10] divided the
points with different optical-flow motion-description vectors into several groups and used
the random sample method to evaluate the current frame pose; the feature points in the
group with the most numerous inner points were selected as static points, and the other
points were selected as dynamic points. Liu [11] used dense optical flow to predict the
semantic label of a region and reduced the influence of the dynamic objects according to
the velocity of each landmark. Cheng [12] used essential matrix evaluation and optical flow
vectors to determine whether a feature point was a dynamic point. Brasch [13] adopted
a probabilistic model to reduce the influence of dynamic feature points; this method was
affected when the dynamic object moved slowly. Wang [14] and DMS-SLAM [15] were
based on the assumption that static feature points outnumber dynamic feature points; when
dynamic objects occupied a larger region in the image, this method would degenerate.
Given the development of deep learning, nowadays deep learning methods can be used
to detect and segment dynamic objects accurately. Dyna-SLAM [16] used Mask-RCNN
to obtain dynamic object masks, and simultaneously, dynamic points were identified by
using multiview methods; then, these dynamic points were used to extract the masks of
the dynamic object by the regio- growing method, and the feature points in nondynamic
regions were used for tracking and sparse reconstruction. PLD-SLAM [17] combined deep
learning segmentation and k-means methods [18] to obtain dynamic points in dynamic
regions, and dynamic points were further filtered out by using depth and epipolar geometry
constraints. The points and lines in the static region were used to improve the tracking
accuracy. SGC-VSLAM [19] used deep learning object detection and geometric constraints
to segment dynamic objects, and the optical flow method was used to optimize the dynamic
object mask, while the feature points in the nondynamic area were used for tracking and
sparse reconstruction. Han [20] used semantic segments and optical flow to filter out
dynamic points. SOF-SLAM [21], SDF-SLAM [22], DS-SLAM [23], DM-SLAM [24], and
OFM-SLAM [25] used deep learning segmentation combined with optical flow and other
geometric constraints methods, such as epipolar constraints, to filter out dynamic points.
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Dynamic-SLAM [26] used the bounding box compensation algorithm to compensate for the
area removed by deep learning segmentation, and the scene information was fully used to
improve the tracking robustness. Liu [27] used static probability and the static observation
number as the weight of the feature point, and the improved random sample consensus
method was used to filter out the dynamic point. Xie [28] used the depth learning method
to segment dynamic objects, and the dynamic region inpainting method and optical flow
method were used to eliminate the interference of dynamic feature points.

Currently, most scholars focus on dynamic scene tracking and sparse map construction,
while relatively few scholars focus on clean-background dense reconstruction. Due to the
complex characteristics of dynamic scenes, building a clean, high-quality, dense background
of a dynamic scene is challenging. Fan and Zhang [8] used instance segments to obtain
the mask of a dynamic object; depth value analysis and mask expansion methods were
used to divide the dynamic area and the static area, and the points in the static area
were used to construct the point cloud map. RS-SLAM [29] used octrees to construct
scenes, and the labels and confidence of a voxel were used to determine whether a voxel
was dynamic. DDL-SLAM [30] and Zhang [31] used object-detection methods to detect
dynamic objects, where multiview constraints were used to further optimize the dynamic
area mask, and static areas were used for octree-based reconstruction. Some algorithms
track and reconstruct each instance individually. MaskFusion [32] and MID-FUSION [33]
used Mask-RCNN and geometric methods to obtain the mask of each object, where the
object was tracked and reconstructed separately, then, finally, the semantic map was
obtained. StaticFusion [34] divided the depth map into different clusters; each weighted
cluster was used to construct an error optimization function according to the photometric
and geometric consistency constraint. This method could simultaneously estimate camera
motion and segment static objects in the current frame; finally, the temporally consistent
data was used to construct a dense map. Refusion [35], as a voxel-based real-time dynamic-
scene-reconstruction method, used the distance between the point and the fusion surface
to determine the dynamic pixel point. Although this method had better tracking and
reconstruction capabilities, dynamic objects would still be reconstructed when the dynamic
object was static or moved at low speeds in the scenes.

3. Proposed Methods

In this paper, we propose a two-stage algorithm for robust and high-precision tracking
and clean background reconstruction. The first stage is the sparse reconstruction stage
based on ORB-SLAM2, and the second stage is the dense background reconstruction stage
based on TSDF fusion. The pipeline of the first stage is shown in Figure 2, where the
position of the proposed method in the ORB-SLAM2 framework is indicated by the green
boxes. We use Mask-RCNN and connected component analysis methods and a reference
frame-based method to obtain the dynamic object mask. In tracking, the points, lines, and
planes in the nondynamic area are used to construct an optimization model to improve
the tracking accuracy and stability, and a multiview projection method is used to further
optimize the mask after the tracking is completed. The first stage can provide an initial
value for the second stage. The method used in the first stage will be introduced in detail.
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Figure 2. Overview of the first stage.

3.1. Subsection Dynamic Object Mask Generation
3.1.1. Dynamic Object Mask Extraction Using Mask-RCNN

To exclude the interference of dynamic objects, we first need to know the region of
the dynamic object. In a scene where dynamic objects move slowly or are in close contact
with the background, the depth-based connected component analysis method cannot
accurately obtain the dynamic object region. Mask-RCNN is an image-based instance-
level segmentation algorithm that can provide prior information of dynamic objects in the
scene. Compared with semantic segmentation, a bounding box of a dynamic object can be
provided by Mask-RCNN; this bounding box contains most of the object’s information, so
this bounding box can provide a good range limit for depth-based connected component
methods. Mask-RCNN is used to segment the dynamic objects in this paper. As shown in
Figure 3a, people and chairs are segmented as dynamic objects; the segmentation results of
deep learning suffer from over-segmentation or under-segmentation. In the mask, some
static background areas are divided into dynamic foreground areas, and some dynamic
foreground objects are divided into static backgrounds. When the dynamic area is divided
into the static background, the feature points in this dynamic region will be regarded as
static points and participate in tracking, thus affecting the tracking accuracy. Therefore, it is
necessary to process the dynamic object mask extracted by Mask-RCNN.

Figure 3. Dynamic region segment. (a) The result of Mask-RCNN. (b) The mask refined by the
connected component analysis method.

3.1.2. Mask Optimization by Connected Component Analysis Method

Mask-RCNN only uses image information for instance segmentation; in RGB-D data,
the depth information can be used to further optimize the mask segmented by Mask-RCNN.
In the depth map, when the dynamic area and its adjacent static background have a large
depth difference, it is easy to separate dynamic objects from the scene; in some cases, when
people put their hands on the table, the depth difference between the dynamic area and its
adjacent static background area is relatively small, and it is difficult to accurately remove
dynamic objects. Compared with the smooth area in an object, the normal and variance
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at the junction of the dynamic area and its adjacent static background will differ more.
Therefore, the depth difference ∅d, normal difference ∅e, and variance difference ∅σ are
used to express the difference of a pixel, as shown in Formula (1).

∅ = ∅d + ∅σ + γ1·∅e (1)

where γ1 is the weight of ∅e. ∅d, ∅e and ∅σ are expressed as follows:

∅d = max
i∈N
|(vi − v)·n| (2)

∅e = max
i∈N

{
0 i f ((vi − v)·n) < 0
1− (ni·n) else

(3)

∅σ =

√√√√ N

∑
i = 1

(vi − v)2

N
(4)

where v represents the point on the depth map, N represents the neighborhood point index
sets of point v, and vi represents the neighborhood point of v. γ1 is set to 5 in our work.

Formula (1) is used to calculate the weight value of every pixel. As shown in Figure 3b,
the region in the red contour is the dynamic object segmented by Mask-RCNN, and the
part in the bounding box but outside the red contour is the nondynamic recognition region.
The connected component method based on the ∅ value is applied in these two regions to
obtain every area, and different areas are marked with different colors.

In Figure 4, in the region segmented by Mask-RCNN, dynamic objects occupy a larger
proportion, and in the region that is in the bounding box but outside the red contour, the
static background accounts for a larger proportion. We regard the larger areas in these two
regions as static objects and dynamic objects, as shown in Figure 4a. The main part of the
dynamic object inside the red contour is shown, and the main part of the static region in
the bounding box but outside the red contour is shown.

Figure 4. Region analysis. (a) Static and dynamic main area determination. (b) The result of region
merging.

When there are more points with consistency ∅ on the boundary of two regions, the
two regions may be the same region. Assuming that the two regions are A and B, A is the
small area; the number of boundary points with consistent depth in region A is NC, amd
the number of remaining boundary points in region A is ND.

NC > ND (5)

When the conditions in Formula (5) are satisfied, the two regions are considered to be
the same connected components, and A will be merged into B. This condition is used as the
boundary condition.

After the main part of the static region and the main portion of the dynamic objects
are determined, the remaining small areas should be merged into the main area to optimize
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the mask. In the bounding box, we use boundary conditions to determine whether a
region can be merged into its adjacent regions. Some areas are merged into adjacent main
regions according to the boundary conditions; in addition, we consider that the outside
of the bounding box is a static region. If an area is adjacent to a static region outside the
bounding box and meets the boundary conditions with this adjacent static region, the area
is considered to be a static area. As shown in Figure 4b, after processing by our method,
most of the areas within the bounding box are identified, and the remaining areas that
cannot be merged are still regarded as undetermined areas.

3.1.3. Mask Optimization Using a Reference Frame

We extract feature points, lines, and planes of the current frame and use the mask to
remove the feature in the dynamic region, and the feature points, lines, and planes in the
static region are used for lightweight tracking. After lightweight tracking, the pose of the
current frame can be obtained. Each point in the undetermined area on the current frame is
projected to the reference frame depth map according to the pose of the current frame to
find the corresponding point. If the point has a consistent depth with the corresponding
point and the corresponding point is in the static region, this point is viewed as a static
point. If the proportion of static points in an area exceeds the proportion of dynamic points,
the connecting region is considered to be a static area; otherwise, the connecting region is
still an area that cannot be identified.

Figure 5a is another color representation of Figure 4b. Figure 5b shows the result of the
mask refined by using the reference frame. After the reference frame is used to determine
the undetermined area, part of the undetermined area is divided into the background,
which is conducive to tracking and reconstruction.

Figure 5. Mask optimization. (a) Mask merging. (b) Mask optimization using a reference frame.

3.2. Dynamic Features’ Removal
3.2.1. Dynamic Features’ Removal by a Mask

Most dynamic objects fall within the bounding box extracted by Mask-RCNN. There-
fore, only a few feature points are dynamic points outside the bounding box. After the
dynamic region segmented by Mask-RCNN is optimized by the connected component
analysis method, we use the points, lines, and planes outside the dynamic region to perform
lightweight tracking. The pose of the current frame is obtained, and based on the pose, the
reference frame optimization method is used to optimize the mask, and the mask is used to
further filter out the feature points, lines, and planes that fall within the mask.

3.2.2. Depth Constraint and Projection Error Check

We use points, lines, and planes in the static area for lightweight tracking. Since some
dynamic regions failed to be divided into the dynamic mask, these dynamic regions will
participate in the tracking. The depth and position of these feature points will change with
the movement of the dynamic object, so while bundle adjustment is used to optimize the
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pose of the current frame, depth error dproj and projection error ddepth are used to further
filter out the dynamic points.

dproj = ‖p − Ω(R·Pi + t)‖ (6)

ddepth = ‖Dp − z(R·Pi + t)‖ (7)

As shown in Figure 6, o− xyz and o1− x1y1z1 represent the reference frame coordinate
system and the current frame coordinate system, respectively; R and t represent the rotation
matrix and translation vector of the current frame; Ω represents the perspective projection
transformation; z( ) represents the z value of a point; p and p′ represent the matched feature
points; pi represents the projection position of point P in the current frame; Dp represents
the depth value of point p0 on the depth map; dproj represents the distance between p0 and
p; and ddepth represents the difference between Dp and the depth value of P in the current
frame coordinate system.

Assuming that τproj and τd are the established projection error threshold and depth
error threshold, respectively, if dproj > τproj or ddepth > τd, the point is considered to be
a dynamic point, and the point will be filtered out. τproj is the same as the feature point
projection error threshold in ORB-SLAM2.

Figure 6. Depth error and projection error.

3.3. Subpixel Tracking

ORB-SLAM2 uses pixel-level corner points for tracking; in some undulating areas,
such as mouse lines and keyboard corners, differences in viewing angles may cause position
deviations of matching points during tracking. In this paper, the subpixel optimization
algorithm is used to further optimize the position of the matching point on the current
frame. Considering the matching speed, the quadratic polynomial equation fitting method
is used to obtain the subpixel feature match point, which is expressed as follows:

z = a + bx + cy + dx2 + ey2 + f xy, x, y ∈ [−1, 1] (8)

where x and y are the coordinate positions of the pixels in the neighborhood 3 × 3 window
centered on the current point. Therefore, the value range of x, y is [−1, 1], where z represents
the zero-mean normalized cross-correlation (ZNCC) similarity value of the point (x, y),
(a, b, c, d, e, f ) are the coefficients, which can be obtained by the linear least-squares method,
and the extreme point position is obtained through the first derivative of the equation.
During tracking, after the feature points of the current frame and the reference frame are
matched, Formula (8) is used to optimize the feature points’ position in the current frame.
If the refined point is within the neighborhood window, the optimization is considered to
be successful.

3.4. Optimization Model of Points, Lines, and Planes

When the dynamic object occupies a large foreground area, the dynamic mask is used
to remove the dynamic area. The remaining static points are few and unevenly distributed,
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which may lead to unstable tracking and decreased accuracy. Therefore, we make full use
of line and plane information in indoor scenes to improve the robustness and accuracy of
tracking.

3.4.1. Line Structure Constraints

The line segment detector (LSD) [36] algorithm is used to extract and describe the line
on the RGB image. In tracking, the line is matched by the line description. The 2D line on
the image and the corresponding three-dimensional line in space can be used to construct
constraint equations to maintain the line structural consistency and improve he tracking
accuracy. As shown in Figure 7, assuming that the endpoints of the line in the space are Ps
and Pe, O1, O2, and O3 are the camera centers of the three frames, and l1, l2, and l3 are the
projections of Ps and Pe on the three images. The endpoints of the line l extracted by LSD
on the image are ps and pe, and the projection points of Ps and Pe on the image are p′s and
p′e; p′s = (p′sx, p′sy, p′sz), and p′e = (p′ex, p′ey, p′ez). The 3D line in space can be expressed as
(Ps, Pe − Ps/‖Pe − Ps‖)), and the line l can be calculated by the cross-product, which is
expressed as L = ps × pe. Suppose that L = (a, b, c). The, then projection distance d can
be expressed as in Formula (9):

dL(l, L) =
a·p′sx + b·p′sy + c·p′sz√

a·a + b·b
+

a·p′ex + b·p′ey + c·p′ez√
a·a + b·b

(9)

Figure 7. Line constraint.

3.4.2. Plane Structure Constraints

There is also some plane structure information in the indoor scene, such as that
concerning the floor, wall, and desktop. These planes can be used as structural constraints
to assist in tracking; the cascaded plane extraction method [37] is used to extract planes
from each depth map. Considering that a plane with only a few support points may be
noise, the planes with extracted plane support pixels of less than 5000 points are deleted.
During tracking, the initial pose (rotation matrix R and translation vector t) of the current
frame can be obtained through the uniform motion model. Assume that nc

predict and dc
predict

represent the parameters of the plane normal and the distance from the origin to the plane
in the current frame coordinate system, nW and dW represent the parameters of a plane in
the map, and p is a point in the depth map of the current frame. Formulas (10) and (11) are
used to determine whether two planes are similar.

‖(R−1·nc
predict)

T ·nW‖ > τθ (10)

(nW)
T ·
(

R−1·p−R−1·t
)

+ dW < τdis (11)

The angle threshold τθ and point-to-face distance threshold τdis are, respectively, set
as 0.9 and 0.02 m in our experiment. When the plane in the current frame and the plane
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in the map meet the normal and distance constraints in Formulas (10) and (11), the two
planes are considered to be the matched plane.

Assuming that the plane is represented by (ϕ, θ, d), πc represents the current frame
plane, T(πc) represents the transformation matrix that can transform the plane from the
current frame coordinate system to the world coordinate system, and πw represents the
map plane in the world coordinate system. The specific formula is as follows:

q(π) =

(
ϕ = arctan

(
ny

nx

)
, θ = arcsin(nz), d

)
(12)

eπ(πc, πW) = q(T(πc))− q(πw) (13)

The difference eπ(πc, πW) between the current frame plane and the corresponding 3D
plane in the map are used as constraints in the pose optimization.

3.4.3. Sparse Tracking and Reconstruction in Dynamic Scenes

As Figure 8c shows, our method removes the dynamic feature points well, thereby
providing a good basis for tracking.

Figure 8. Results of feature point extraction. (a) The original RGB image. (b) The feature point
extraction results in the ORB-SLAM2 system. (c) The feature point extraction results of our method.

Figure 9a shows that in the tracking result of the ORB-SLAM2 system, feature points in
the dynamic regions are also involved in the tracking, and these dynamic points will cause
some interference with the tracking. As shown in Figure 9b, dynamic points no longer
participate in tracking when using our method. Compared to the ORB-SLAM2 system, our
method can eliminate the interference of dynamic points.

Figure 9. Tracking results. (a) The tracking result of ORB-SLAM2. (b) The tracking result of our method.

During tracking and sparse reconstruction, Mask-RCNN and the connected com-
ponent analysis method and the referenced frame-based method are used to extract the
dynamic area mask; the ORB feature extraction algorithm, LSD, and plane extract algorithm
are used to extract the feature points, lines, and planes; the features in the static region are
used for lightweight tracking, and the mask is refined by using the reference frame. Points,
lines, and planes that fall in the dynamic region are removed; then, the points, lines, and
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planes in the static region are used to construct error constraint equations for tracking, local
graph optimization, and global optimization. The global optimization equation is shown
as Formula (14):

{Pu, Lv, πh, (Rs, ts)| u ∈ Kp, v ∈ Kl , h ∈ Kπ , s ∈ Nk}

= argmin(
Nk
∑

b = 1

Np

∑
i = 1

ρ(Ep(b, i)) +
Nk
∑

b = 1

Nl
∑

j = 1
γ2·ρ(Eline(b, j))

+
Nk
∑

b = 1

Nk
∑

k = 1
γ3·ρ(Eplane(b, k)))

(14)

where ρ represents the robust Huber kernel function, Ω represents the perspective projec-
tion transformation, Pu represents the map points, (Rs, ts) represents the frame poses to
be optimized, Lv represents the map lines to be optimized, πh represents the planes to be
optimized, Kp represents the index set of the map points, Kl represents the index set of
the total map line, Kπ represents the index set of the total map planes, Nk represents the
number of keyframes, Np represents the number of map points, γ2 and γ3 represent the
weights, Nl represents the number of map lines, and Nπ represents the number of map
planes. γ2· and γ3· are defined by using each iteration’s residuals of error terms related to
line and plane features.

The feature point projection error Ep(b, i), line projection error Eline(b, j), and plane
error Eplane(b, k) are expressed as follows:

Ep(b, i) = ‖p−Ω
(

RbPi + tb

)
‖ (15)

Eline(b, j) = dL(l
j
b, Lj) (16)

Eplane(b, k) = eπ
(

πk
bc, πk

W

)
(17)

3.5. Mask Optimization by Multiview Projection

When the sparse reconstruction finishes, we use the multiview projection method to
optimize the mask of the dynamic object. First, both the distance and the rotation angles
between the current frame Fc and another keyframe Fn are used to build dist(Fc, Fn),
which is similar to the method of selecting adjacent frames in Dyna-SLAM [16]. The five
keyframes closest to the current frame are selected for mask optimization.

After the neighboring five frames of each frame are selected, similar to the method
used in the “Mask Optimization by Using a Reference Frame” section, each undetermined
region on the current frame is projected onto the five reference frames, and the proportion
of static points in the connected area is counted in every reference frame. If the proportion
of static points in any of the five statistics exceeds the proportion of dynamic points, the
area is considered to be a static area.

Figure 10 shows that after multiview projection, some undetermined areas are accu-
rately determined to be background areas, and the mask quality is further improved. The
remaining area is relatively small, and it is found in the experiment that these areas have
little effect on tracking. Therefore, our method can obtain a higher-quality mask, which can
provide a good initial value for dense reconstruction.
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Figure 10. Mask refined by the multiview method. (a) Mask before the multiview optimization.
(b) Mask after the multiview optimization.

3.6. Detailed Overview of Dense Background Reconstruction in Dynamic Scenes

This paper proposes a method for the dense reconstruction of static backgrounds in
dynamic scenes. As shown in Figure 11, the pose and mask of each frame obtained from
the first stage are used to perform initial dense tracking, and the obtained pose is used
to generate the static background depth map in the current pose by using the ray-casting
method. The pending area is obtained by comparing the depth map generated by the
ray-casting method and the depth map captured by the RGB-D sensor. We designed some
region-handling methods to classify the dynamic and static regions in the pending area. The
static regions are used to refine the dense tracking and are fused into the dense background
map by using the voxel-based TSDF method. Finally, a clean and dense background model
is obtained.

Figure 11. Dense reconstruction process.

3.7. Determination of Pending Areas

In the reconstruction of the first frame, the dynamic object mask extracted in the first
stage is used to remove the dynamic object, and the non-dynamic area in the first frame is
reconstructed. In the following frames, we make full use of the reconstructed background
information to assist in determining the pending regions in the current frame. In the initial
tracking stage, the mask and pose of the current frame in the sparse reconstruction are
used as the initial value. Since the mask removes most of the dynamic objects, an accurate
camera pose can be obtained in the initial dense tracking stage. By using the ray-casting
method with the current camera pose, a depth map of the static background map can be
obtained in the same pose of the current frame.

Suppose that DC represents the current frame depth map and DR represents the depth
map generated by using the ray-casting method. Where there is a difference between the
depth values of DR and DC, the region may be a dynamic region or a newly static region.
The depth difference area is calculated by Formula (18).

d_sub = |DR −DC| (18)
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where d_sub represents the difference between DR and DC. Suppose MC represents the
mask of the depth map of the current frame, which indicates the state of each pixel. The
point (u, v) in DC with an invalid depth value or depth value greater than the value of
the sensor measurement range is evaluated as an invalid point, and MC(u, v) is set to an
invalid point. The point (u, v) with a depth that is valid in DC but invalid in DR is evaluated
as a pending area, and MC(u, v) is set as an undetermined point. When the depth values
of the point (u, v) in DR and DC are all valid, the point can be divided by the following
formula:

MC(u, v) =

{
1 d−sub(u, v) > τd
0 else

(19)

If MC(u, v) is marked as 1, then MC(u, v) is a dynamic point; otherwise, it is a static
point. We divide the pending area into MD

C . Figure 12 show the results of the ray-casting.
Figure 13 shows invalid data and region classification. From Figures 12b and 13a, we can
see that MD

C contains the following types of areas:

Patch(NBR) + Patch(NDR) + Patch(DR) + Patch(IR) + Patch(NR) = MD
C (20)

Patch(NBR) represents the newly added background areas, Patch(NDR) represents
the newly added dynamic areas, Patch(IR) represents an invalid depth value area,
Patch(NR) represents noise blocks, and Patch(DR) represents the dynamic area that has
been reconstructed.

Ms
C is the region of static points in MC. From Figures 12b and 13a, we can see that it

contains the following two types.

Patch(SDR) + Patch(SBK) = MS
C (21)

Patch(SDR) represents the dynamic area in the static background. These areas are
generated because when a dynamic object appears in the scene for the first time, the
bounding box extracted by deep learning is inaccurate, thus causing a very small area of
the dynamic object to leak into the static background. Patch(SBK) represents the static
background that has been reconstructed.

In MC, Patch(IR) represents the region of invalid points, which does not need to be
processed; the regions that generally occupy a large area in Patch(SBK) and Patch(DR)
are viewed as the static and dynamic main body, respectively, which are relatively easy
to identify. The main focus of our method is how to deal with Patch(NBR), Patch(NDR),
Patch(NR), and Patch(SDR); these four areas are caused by the movement of dynamic
objects and the camera. In continuous frames, these areas are generally relatively small, as
shown in Figure 13b. This article will introduce how to address these four types of areas.

Figure 12. Result of ray casting. (a) The depth map of the current frame. (b) The reconstructed
background. (c) The depth map generated by the ray-casting method in the same pose as the current
frame.
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Figure 13. Region classification. (a) Invalid depth area and area beyond the effective measurement
distance in MD

C . (b) Patch(NR), Patch(NBR), and Patch(DR).

3.8. Divisible and Indivisible Situation Handling

In MD
C , the connected component analysis method is used to obtain all connected re-

gions, and the region with the largest area is considered the dynamic main region Patch(DR),
while the other connected regions include Patch(NBR), Patch(NDR), Patch(NR), and
Patch(SDR). The points in MD

C are used to perform region growth in MS
C to obtain Patch

(SDR) in the reconstructed region. Patches that contain only dynamic regions or only static
regions are considered to be divisible regions, while patches that contain both dynamic and
static regions are considered to be indivisible patches. Since the change between the two
consecutive frames is very small, the new regions generated by the change of the angle of
view should be small, so we set an area threshold τarea where range is 6000–10,000, and
only the patches with an area smaller than τarea are processed. When the area of a region is
less than τarea, we simply view it as a divisible area.

3.8.1. Small Noise Block Removal

Patch(NR) comprises discrete small blocks generated due to the unstable depth value
of the object edge or areas with reflective surfaces in the static background. Since the area
of each noise block is small, as shown in Formula (22), the morphological erosion method
is used to remove small noise areas, and the morphological dilate method is used to restore
other areas. Supposing that Mask contains MD

C and MS
C, the formula is as follows:

Mask← dilate(erode(Mask)) (22)

3.8.2. Dynamic Block Patch(SDR) Removal

When a new dynamic object enters the scene for the first time, Patch(SDR) will be
reconstructed because the dynamic object cannot be completely segmented by deep learning
and connected component analysis. If Patch(SDR) is not processed, in the next few frames,
the newly added area adjacent to Patch(SDR) will be determined to be a static region, and
these newly added areas will be reconstructed in the background, thus leading to a map
error. Patch (SDR) is usually adjacent to an area in MD

C and has a consistent depth with
this adjacent region. According to this characteristic, Patch (SDR) is processed. Suppose
that patch

(
i′
)

represents a region in MD
C , patch(i) represents an area in MS

C and is adjacent
to patch(i′), NSC represents the number of boundary points patch(i) at a consistent depth
with the points in MD

C , and NB represents the other bounding pixels of patch(i). Spatch(i)
represents the number of pixels in the block patch(i), and Spatch(i′) represents the number
of pixels in the block patch

(
i′
)
.

Spatch (i) < Spatch (i′) (23)

NSC > NB (24)

If the constraints in Formulas (23) and (24) are satisfied, then patch(i) is merged into
the block patch(i′), and the dynamic block Patch(SDR) removal method can effectively
prevent the reconstructed dynamic area from expanding further.
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3.8.3. Static Block Patch(NBR) Extraction in MD
C

On consecutive frames, the static area newly added in each frame is generally small.
Assuming that patch(j′) is an area in MD

C , this region may be connected to the static
background and other dynamic scenes. The number of points that are on the boundary of
patch(j′) and have consistent depth with its adjacent points in the static background region
is ND

SL, the number of points that are on the boundary of patch(j′) and have consistent
depth with its adjacent points in the dynamic region is ND

DL, and the number of valid
boundary points of patch(j′) is NVE. Formulas (25) and (26) can be used to determine
whether patch(j′) is a static area.

ND
SL > NVE (25)

ND
SL > ND

DL (26)

If area patch(j′) meets the conditions of Formulas (25) and (26), patch(j′) will be
merged into the static area.

3.8.4. Floating Block Patch(SDR) Processing in the Bounding Box

Part of the dynamic object may differ in depth from the dynamic object; for example,
the depth of the arm differs from the body, as shown in Figure 14a. Therefore, the method
of counting the number of points with consistent depth on the boundary is no longer
applicable. Instead, we count boundary points with the dynamic label. These regions
generally have a small area compared with the main body. Therefore, boundary constraints
and area constraints are used to filter part of the patch. Assuming that the number of
bounding points with an adjacent point with a dynamic label is NSL and the number of
bounding points with an adjacent point with a dynamic label is NDL, the discriminant
formula can be expressed as follows:

NDL > NSL (27)

If the condition in Formula (27) is met, the small area is considered to be a dynamic
area, and the small region is merged into its neighboring dynamic area.

Figure 14. Divisible dynamic block and depth indistinguishable situation. (a) The right hand is
unconnected to the main body. (b) The arms and feet are closely connected to the static background.

3.8.5. Indivisible Situation Handling

When the dynamic area is closely connected with the background and nonconnected
with the people in depth (such as concerning the hand and the desktop in Figure 14b, where
there is no obvious difference in depth), it is more difficult to distinguish which part is
static. Generally, this small area may be merged into the static area by using our method.
However, after the hand moves away after a while, the fusion of static background data of
continuous multiple frames will make the reconstructed part of the dynamic object weaken
or even disappear.

When a new area is closely connected with dynamic objects and this dynamic part is
static for a long time, such as concerning the feet and the ground in Figure 14b, although
the ground area will become increasingly larger as the depth camera moves, it is difficult to
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accurately distinguish between the feet and the static ground. In this paper, the structural
information in the scene is used to address this indivisible situation; the planes are extracted
from the depth map, and the plane area will become increasingly larger as the camera
moves. When the plane area is large enough, the plane area is judged to be a static area,
and the points in the plane are fused into the static background map.

3.9. Bounding Box Tracking and Noncontact Static Region Extraction

The algorithm used in this paper can reconstruct only the area connected to the
static background. Therefore, when some areas enter the scene, the algorithm cannot
reconstruct areas that are static and that are not in contact with the background that has
been reconstructed. As the angle of view moves, most areas in the current frame have
not been reconstructed, and dense tracking may fail. We use the bounding box tracking
method to process this problem.

To obtain a good bounding box, the ID, mask, and bounding box obtained by deep
learning segmentation are first merged with the projected area of the dynamic area of
the previous frame. Assume that PBBX (i) represents the bounding box of the projected
area of the i-th object in the previous frame, BBX(j) represents the bounding box of the
j-th object in the current frame generated by using Mask-RCNN segmentation, PID(j)
represents the object ID of PBBX(i), and ID(j) represents the object ID of BBX(j). When
the overlap of PBBX(i) and BBX(j) is large, the objects in the two bounding boxes are
considered to be the same object, and the combined bounding box can be identified as
BBX

′
= PBBX(i)

∣∣∣BBX(j) .

area(PBBX(i)) > γ4 ∗ area(BBX(j)) (28)

area(BBX(i)) > γ4 ∗ area(PBBX(j)) (29)

ID(i) = PID(j) (30)

where the value range of γ4 is (0.5, 1), and if the PBBX(i) and BBX(j) satisfy the con-
straints in Formulas (28)–(30), these two boundary boxes can be merged. Suppose that
DBBX(i) represents the area constituted by the connected component domain analysis

based on depth in MD
C , rectU(i, j) = DBBX(i)

∣∣∣BBX
′
(j) represents the union of two re-

gions, rectA(i, j) = DBBX(i) & BBX
′
(j) represents the intersection of the two regions, and

IOUoccp(i,j) = area(rectA(i, j))/area
(

BBX
′
(j)

)
represents the proportion of the intersec-

tion region in the area BBX
′
(j). If the ratio of the area of rectA(i, j) to the area of DBBX(i)

and the area of BBX
′
(j) is more than γ4, or when IOU_occp(i, j) is very close to 1, the two

bounding boxes can be combined If there is no intersection between BBX
′
(j) and any

bounding box in DBBX, the area in BBX
′
(j) may be a new area, and its ID is assigned

as −1.
The ID and region bounding box of multiple continuous frames are used to determine

whether the area is static, as shown in Figure 15. If no ID is allocated in consecutive frames
in the red bounding box, and it is not connected to the edge of other areas, when the
camera moves left continuously, the tracking will fail. The number of consistent depth
pixels between the area in the bounding box of the current frame and the projection point
of the corresponding area from the last frame has a proportion exceeding 0.8, and these
two regions have the same ID. If this statistic is satisfied in multiple consecutive frames,
the region is considered to be a static area.



Machines 2022, 10, 892 17 of 26

Figure 15. Bounding box tracking and static region determination.

3.10. Mesh Generation and Postprocessing

In highly dynamic scenes, dynamic objects stay in a position for a short time, and the
number of points falling into the corresponding voxel is fewer, so we delete the voxels with
fewer fusion points. By using this method, most of the traces left by the highly dynamic
objects can be removed.

By the marching cube method, the mesh is obtained from the SDF field, and the small
components in the mesh with a small surface volume are removed. Through this method,
some small dynamic areas or noises are removed.

Figure 16 shows the incremental reconstruction process. We can see that dynamic
objects are well-removed during reconstruction, and the static background area is incre-
mentally reconstructed. Our algorithm reconstructs a good background map on both less
and highly dynamic scenes.

Figure 16. Incremental background reconstruction process. (a) Incremental dense reconstruction of
less dynamic scenes. (b) Incremental dense reconstruction of highly dynamic scenes.

4. Experimental Results and Discussion

This section evaluates our method on the TUM dataset and real scenes. Real scene
sequences are collected through Kinect v2. All experiments are implemented on a computer
with a GTX1060 GPU, an Intel(R) Core (TM)i7-7700HQ CPU, 16 GB RAM, and a Windows-
10 64-bit operating system.

To obtain a reliable depth difference threshold τd, this paper uses plane extraction [37]
to obtain planes on each depth map, each plane is considered to belong to the same object,
and τd is calculated based on the depth difference of adjacent pixels in the same plane.
First, the distance from the point to the center of the camera is calculated, and the point
is stored in a bucket with an interval of 5 cm according to the distance. Then, the depth
difference between the point and its adjacent points is calculated. After calculating all
points in the dataset, the maximum difference value in each bin is selected as the difference
value. In this paper, the difference value is fitted as a straight line, which is represented as
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=−0.733x + 24.753; x (expressed in millimeters) represents the distance from a point to the
center of the camera, and τd indicates the depth difference threshold between the point and
its neighboring point.

To evaluate the proposed method more comprehensively, the experiment is divided
into three parts: trajectory error, tracking rate, and the effect of the reconstruction model.
Specifically, the absolute trajectory error (ATE) and the relative pose error (RPE) are used to
evaluate our trajectory accuracy, the tracking rate is used to evaluate the tracking stability
of our method, and static background dense reconstruction results are used to show the
reconstruction ability of our method in the dynamic scene. Our method is compared with a
series of state-of-the-art methods.

4.1. Experiments on TUM Datasets
4.1.1. ATE Evaluation Experiment

Table 1 shows the ATE of eight sequences in the TUM datasets. The “-” symbol in
the table indicates that no corresponding results were found in related papers. The results
show that ORB-SLAM2 has good accuracy in less dynamic scenes and poor accuracy in
highly dynamic scenes. Compared with the ORB-SLAM2 algorithm, our method has a
22% improvement on average in a less dynamic environment and a 32.3% improvement
on average in a highly dynamic environment, which demonstrates that the algorithm in
this paper can effectively improve the trajectory accuracy. The results of our method on
eight datasets differ slightly from the ground truth, which indicates that there is no obvious
tracking drift when using our method. Our method is also compared with the current
state-of-the-art algorithms, such as DS-SLAM, OFM-SLAM, DM-SLAM, Dyna-SLAM, and
PLD-SLAM, in the sequences (Fr3_s_static, Fr3_w_rpy, and Fr3_w_half). The algorithm
proposed in this paper achieves the best results, which are 0.3 mm, 2.7 mm, and 2.3 mm
higher than the results achieved by the current best algorithm. In the scene Fr3_w_xyz,
our method has the same accuracy as that of the current best method. The accuracy of our
method in the sequences (Fr3_s_xyz, Fr3_s_rpy, Fr3_s_half, and Fr3_w_static) is worse than
the current best results.

Table 1. ATE evaluation accuracy results of eight sequences in the TUM dataset (M).

Sequence DS-
SLAM

OFM-
SLAM

DM-
SLAM

Dyna-
SLAM

ORB-
SLAM2

PLD-
SLAM Refusion Xie [28] Liu [27] Our

Method

Fr3_s_static 0.0065 0.0134 0.0063 0.0064 0.0083 0.0063 0.009 0.007 0.0086 0.0060
Fr3_s_xyz - 0.0130 - 0.013 0.0095 0.0092 0.040 0.013 0.0090 0.0117
Fr3_s_rpy 0.0187 0.0160 0.0230 0.0302 0.019 0.0220 - 0.043 0.0204 0.021
Fr3_s_half 0.0148 0.0257 0.0178 0.0191 0.035 0.0145 0.110 0.019 0.0149 0.0173

Fr3_w_static 0.0081 0.041 0.0079 0.0080 0.390 0.0065 0.017 0.010 0.0108 0.016
Fr3_w_xyz 0.0247 0.306 0.0148 0.0158 0.614 0.0144 0.099 0.014 0.0156 0.0140
Fr3_w_rpy 0.4442 0.104 0.0328 0.0402 0.973 0.2212 0.104 0.033 - 0.0303
Fr3_w_half 0.303 0.307 0.0274 0.0274 0.789 0.0261 - 0.028 0.0359 0.0227

Figures 17 and 18 show the trajectory error image of the eight sequences, where the
red lines represent the difference between the ground truth and the estimated value. The
first row is the result of our algorithm, and the second row is the result of ORB-SLAM2.
In the four highly dynamic datasets, the result of our method is close to the ground truth
values, and the result of ORB-SLAM2 has a large deviation from the ground truth values.
In the four less dynamic datasets, the results obtained by our method and the ORB-SLAM2
method are all close to the ground truth values. Figures 17 and 18 are consistent with the
results in Table 1.
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Figure 17. ATE comparison of four highly dynamic environment sequences in the TUM dataset. The
first row shows the trajectories generated by our method. The second row shows the trajectories gen-
erated by ORB-SLAM2. (a) Fr3_w_static of our method. (b) Fr3_w_xyz of our method. (c) Fr3_w_half
of our method. (d) Fr3_w_rpy of our method. (e) Fr3_w_static of ORB-SLAM2. (f) Fr3_w_xyz of
ORB-SLAM2. (g) Fr3_w_half of ORB-SLAM2. (h) Fr3_w_rpy of ORB-SLAM2.

Figure 18. ATE comparison of four less dynamic environment sequences in the TUM dataset. The
first row shows the trajectories generated by our method. The second row shows the trajectories
generated by ORB-SLAM2. The four columns from left to right are Fr3_s_half, Fr3_s_static, Fr3_s_rpy,
and Fr3_s_xyz. (a) Fr3_s_half of our method. (b) Fr3_s_half of our method. (c) Fr3_s_half of our
method. (d) Fr3_s_half of our method. (e) Fr3_s_half of ORB-SLAM2. (f) Fr3_s_static of ORB-SLAM2.
(g) Fr3_s_rpy of ORB-SLAM2. (h) Fr3_s_xyz of ORB-SLAM2.

4.1.2. RPE Evaluation Experiment

Table 2 shows the results of the relative translation error. On the sequences (Fr3_s_static,
Fr3_w_xyz, Fr3_w_rpy, Fr3_w_half), the algorithm proposed in this paper has achieved the
best results. On the scene Fr3_w_static, compared with the results published by Fan [8],
the results obtained by our method are slightly worse.
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Table 2. Relative translation error (M).

Sequence
ORB-SLAM2 Dyna-SLAM DS-SLAM Fan [8] Our Method

RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D.

Fr3_s_static 0.0095 0.0046 0.0126 0.0067 0.0078 0.0038 0.0087 0.0038 0.0073 0.0036
Fr3_s_xyz 0.0118 0.0057 0.0147 0.0079 - - - - 0.0143 0.0076
Fr3_s_rpy 0.0264 0.0211 0.0316 0.0191 - - - - 0.0326 0.0185
Fr3_s_half 0.0229 0.0166 0.0192 0.009 - - - - 0.0222 0.0107

Fr3_w_static 0.1928 0.1773 0.0089 0.0044 0.0102 0.0038 0.0102 0.0049 0.0144 0.0081
Fr3_w_xyz 0.4834 0.3663 0.0217 0.0119 0.0333 0.0229 0.0204 0.0107 0.0182 0.0087
Fr3_w_rpy 0.3880 0.2823 0.0448 0.0262 0.1503 0.1168 0.0616 0.0357 0.0425 0.0239
Fr3_w_half 0.3216 0.2629 0.0284 0.0149 0.0297 0.0152 0.0274 0.0140 0.0243 0.0109

Table 3 lists the relative rotation errors of several methods. In the sequences (Fr3_s_static,
Fr3_w_xyz, and Fr3_w_rpy), the RMSE of our method is best. Although ORB-SLAM2 achieves
the best results in the sequences (Fr3_s_xyz, Fr3_s_rpy, and Fr3_s_half), it performs poorly
in highly dynamic scenes. In the scene Fr3_s_xyz, the results of our method are close to the
current best results. In the sequences (Fr3_s_half, Fr3_s_rpy, Fr3_w_static, and Fr3_w_half),
the results of our algorithm are worse than the current best results.

Table 3. Relative rotation error (radius).

Scene Sequence
ORB-SLAM2 Dyna-SLAM DS-SLAM Fan [8] Our Method

RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D.

Less
Dynamic

Scenes

Fr3_s_static 0.2881 0.1244 0.3416 0.1642 0.2735 0.1215 0.2782 0.1210 0.2673 0.1178
Fr3_s_xyz 0.4976 0.2772 0.5162 0.2882 - - - - 0.5062 0.2759
Fr3_s_rpy 0.7613 0.3954 0.833 0.470 - - - - 0.8206 0.4154
Fr3_s_half 0.576 0.2651 0.649 0.3155 - - - - 0.6945 0.3427

Highly
Dynamic

Scenes

Fr3_w_static 3.5991 3.2457 0.2612 0.1259 0.2690 0.1215 0.2631 0.1119 0.3336 0.1630
Fr3_w_xyz 8.8419 6.6762 0.6284 0.3848 0.8266 0.2826 0.6227 0.3807 0.6033 0.3749
Fr3_w_rpy 7.5906 5.4768 0.9894 0.5701 3.0042 2.3065 1.3831 0.8319 1.0791 0.6658
Fr3_w_half 6.6515 5.3990 0.7842 0.4012 0.8142 0.4101 0.7440 0.3459 0.8101 0.3947

4.1.3. Results Analysis of the ATE and RPE

The ATE and RPE results show that most SLAM systems perform well in a less
dynamic environment because the main area of the person is stationary or moving slightly,
and the feature points on the person are used to participate in tracking; this can enhance
tracking robustness and lower relative errors. This is also the reason why the RPE accuracy
of ORB-SLAM2 on the two sequences Fr3_s_xyz and Fr3_s_rpy is higher than that of Dyna-
SLAM, DS-SLAM, Fan [8], and our method. However, slow movement still affects the
tracking. On the two sequences (Fr3_s_static and Fr3_s_half), compared with ORB-SLAM2,
the method using mask optimization achieves better or comparable accuracy, thus reflecting
that using the dynamic area mask to eliminate dynamic points can also adapt to the less
dynamic scene.

On a highly dynamic scene, due to the interference of rapid human movement, the
ORB-SLAM2 algorithm cannot accurately distinguish whether the feature point is a dy-
namic point or a static point and cannot perform correct tracking in a highly dynamic
environment. When comparing ORB-SLAM2 and PLD-SLAM, Dyna-SLAM, and our
method, the results show that the methods that use the dynamic object mask to filter out
dynamic points can obtain better accuracy. When comparing Dyna-SLAM with PLD-SLAM
and our method, we can find that the method that uses line structural constraints can obtain
better ATE accuracy. Compared with PLD-SLAM, we use the line and plane structure
constraints and the method of mask optimization to achieve better accuracy in the ATE and
the translation part of RPE. Our method performs best on three of the four groups of highly
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dynamic data, which shows that the mask optimization method and structural constraints
method proposed in this paper can improve the tracking accuracy.

4.1.4. Evaluation of Tracking Rate

The tracking rate is defined as the successfully tracked ratio (STR), which represents
the ratio between the number of successfully tracked frames (NSTF) and the total number
of frames. STR reflects tracking stability.

Table 4 shows the tracking rates of ORB-SLAM2, Dyna-SLAM, DS-SLAM, Fan [8], and
our algorithm. The table shows that our method tracked all the frames in the sequences
(Fr3_s_static, Fr3_s_rpy, Fr3_s_half, Fr3_w_static, Fr3_w_xyz, and Fr3_w_half). Only in
scene Fr3_w_rpy was the successfully tracked ratio of our method less than best because
the algorithm proposed in this paper eliminates dynamic objects, and dynamic objects no
longer participate in tracking. When dynamic objects occupy a larger part of the image,
tracking will be less stable. The tracking results of eight sequences show that our method
has achieved the best tracking rate as a whole. Compared with ORB-SLAM2, our method
improves the successfully tracked ratio by 0.9% on average, and compared with Dyna-
SLAM, our method improves the tracking rate by 17.8% on average, thus reflecting that our
method uses accurate mask segmentation and fully uses the line and plane information in
the scene, thereby improving the robustness of tracking.

Table 4. Tracking rate of eight sequences in the TUM dataset.

Scene Sequence
Total ORB-SLAM2 Dyna-SLAM DS-SLAM Fan [8] Our Method

NSTF STR NSTF STR NSTF STR NSTF STR NSTF STR

Less
Dynamic

Scenes

Fr3_s_static 679 675 99.4% 675 99.4% 676 99.6% 676 99.6% 679 100%
Fr3_s_xyz 1219 1219 100% 1219 100% - - - - 1219 100%
Fr3_s_rpy 795 773 97% 760 96% - - - - 781 98%
Fr3_s_half 1074 1074 100% 1074 100% - - - - 1074 100%

Highly
Dynamic

Scenes

Fr3_w_static 717 714 99.6% 375 52.3% 714 99.6% 714 99.6% 717 100%
Fr3_w_xyz 827 809 97.8% 757 91.5% 826 99.9% 826 99.9% 827 100%
Fr3_w_rpy 866 825 95.3% 546 63.1% 864 99.8% 864 99.8% 858 98%
Fr3_w_half 1021 942 99.3% 525 51.4% 1018 99.7% 1018 99.7% 1021 100%

Average
STR 900 879 98.6% 741 81.7% - - - - 897 99.5%

4.1.5. Comparison of the Error Metric and Tracking Rate between the Items of the
Proposed Method

To verify the contributions of different modules in our method to the stability and
accuracy of tracking, an experiment was carried out, and the results are shown in Table 5.
Our method is based on ORB-SLAM2, M represents the use of Mask-RCNN, CR represents
the mask optimization method using connected component analysis and reference frame-
based method, and LP represents the use of line and plane constraints. We can see that
the performance of M + CR + LP is the best for all the sequences in terms of the tracking
accuracy and successful tracking ratio. The results of the M + CR method are better than
the results of method M because the mask segmented by M has an under-segmentation
phenomenon, some dynamic points participate in tracking. M + CR refines the mask
extracted by M, and these dynamic points are further excluded, so the overall accuracy is
improved. After the mask optimization, some feature points with small movements on the
moving person and the chair are also removed, so the overall accuracy is improved. In the
sequence (Fr3_s_xyz, Fr3_s_half, Fr3_w_xyz, Fr3_w_half), the performances of M + CR and
M + CR + LP are better than the performance of M in the tracking accuracy. In the sequence
(Fr3_s_static and Fr3_w_static), we note that the results of the method M + CR + LP have
slightly improved compared to the results of method M + CR. Yet, the contribution of
the LP term is not so great because in these two sequences the camera is approximately
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stationary relative to the scene, which helps predict the next pose of the camera and the
feature point matching. In the static regions, some static feature points can be tracked from
the beginning to the end, and in the dynamic regions, the feature points with large errors
can be easily removed by projection error and a depth check. In the experiment, after mask
optimization, some feature points with small movements on the moving person and the
chair were also removed, so the overall accuracy was slightly improved.

Table 5. Comparison of the error metric and tracking rate between the items of the proposed method
in the TUM dataset.

Sequence Total Frame
M M + CR M + CR + LP

ATE NSTF STR ATE NSTF STR ATE NSTF STR

Fr3_s_static 679 0.0068 679 100% 0.0063 676 100% 0.0060 679 100%
Fr3_s_xyz 1219 0.0132 1219 100% 0.0126 1216 100% 0.0117 1219 100%
Fr3_s_rpy 795 0.0273 748 94.1% 0.0228 756 95.1% 0.021 781 98%
Fr3_s_half 1074 0.0207 1074 100% 0.0197 1074 100% 0.0173 1074 100%

Fr3_w_static 717 0.0172 717 100% 0.0167 717 100% 0.016 717 100%
Fr3_w_xyz 827 0.0212 827 100% 0.0182 827 100% 0.0140 827 100%
Fr3_w_rpy 866 0.0332 820 94.7% 0.0342 838 96.8% 0.0303 858 98%
Fr3_w_half 1021 0.0459 1021 100% 0.0366 1021 100% 0.0227 1021 100%

All frames can be tracked successfully on all sequences except for the sequences
(Fr3_s_rpy and Fr3_s_rpy). The sequences (Fr3_s_rpy and Fr3_s_rpy) are a great challenge
for robust tracking because of their complex camera movement. In the Fr3_w_rpy sequence,
compared to method M, although more frames are tracked successfully by using M + CR,
the tracking accuracy has decreased. The method M + CR + LP improves the tracking
accuracy and tracks more frames, which indicates that the point, line, and plane constraints
proposed can improve the tracking accuracy and stability.

4.1.6. Dense Reconstruction of the TUM Dataset

The eight sequences of the TUM dataset were reconstructed by using our method
and the Refusion system. The results are shown in Figure 19; whether in the highly or
lowly dynamic scene, our method can remove the dynamic objects well and obtain a clean
reconstruction result for the static background. In the reconstruction results of Refusion,
dynamic objects are reconstructed. Among the four highly dynamic sequences, there
are many overlapping traces of human movement in the reconstruction results of highly
dynamic scenes. In the results of owly dynamic scenes, dynamic objects such as people
and chairs are all reconstructed. This experiment shows that our method can reconstruct
the static background well.

Figure 19. Results of the static background reconstruction. The first row shows the result recon-
structed by our method. The second row shows the results reconstructed by ORB-SLAM2. The
eight columns from left to right are Fr3_w_static, Fr3_w_xyz, Fr3_w_rpy, Fr3_w_half, Fr3_s_xyz,
Fr3_s_static, Fr3_s_rpy, and Fr3_s_half.
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4.2. Experiments on Real Scenes

To prove the effectiveness of our method, we collected actual scene data for related
experiments. Office desktops were used as the experimental scene. We fixed the depth
camera in a position so that the ground truth pose of the depth camera was the identity
matrix, and the person moved in front of the camera. To verify that our algorithm can work
well in not only a highly dynamic environment but also a lowly dynamic environment, we
designed two experiments: one is a highly dynamic scene, in which people move quickly
in the scene; the other is a lowly dynamic scene, in which people move slowly around
one position. In these two scenes, people also sometimes make contact with the static
background. Kinect v2 is used to capture data sequences, and the sequences are collected
at a frame rate of 30 Hz with a resolution of 424 × 512 pixels.

The experimental results are shown in Table 6. In a lowly dynamic scene, as shown
in the left image in Figure 20a,c, ORB-SLAM2 is disturbed by dynamic objects. The path
gradually deviates from the ground truth value in a circular shape. The left image in
Figure 20a,c also shows that the result of ORB-SLAM2 has a large deviation from the
ground truth value. As Figures 19d and 20b show, the ATE of our method is very close to
the ground truth value in these two sequences. This paper also compares the effects of dense
reconstruction. As shown in Figure 21, our method reconstructs the static background well
in both highly dynamic scenes and lowly dynamic scenes, while part or all of the person is
reconstructed by using the Refusion algorithm.

Table 6. ATE evaluation accuracy results on real scenes (M).

Sequence ORB-SLAM2 Our Method

Lowly dynamic real scenes 0.1792 0.004
Highly dynamic real scenes 0.421 0.0008

Figure 20. ATE for real scenes. The left column shows the results of ORB-SLAM2, and the right
column shows the results of our method. (a) ATE of ORB-SLAM2 in lowly dynamic real scenes.
(b) ATE of our method in lowly dynamic real scenes. (c) ATE of ORB-SLAM2 in highly dynamic real
scenes. (d) ATE of our method in highly dynamic real scenes.
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Figure 21. Dense reconstruction results. The left column shows the results of our method, and the
right column shows the results of Refusion. (a) Dense reconstruction using our method in lowly
dynamic real scenes. (b) Dense reconstruction using Refusion in lowly dynamic real scenes. (c) Dense
reconstruction using our method in highly dynamic real scenes. (d) Dense reconstruction using
Refusion in highly dynamic real scenes.

The results of the two sequences show that our method has higher camera tracking
accuracy in real scenes and can reconstruct static backgrounds well.

5. Conclusions

In this paper, we proposed a robust and high-precision tracking and a clean static
background reconstruction method. We divide our method into two stages. In the first
stage, our method is based on ORB-SLAM2. To segment the dynamic object area accurately,
the connected component segment method and a reference frame-based mask optimization
method are used to refine the mask produced by Mask-RCNN. The dynamic features are
filtered out by using the dynamic object mask and depth and projection check method, and
feature points, lines, and planes in the nondynamic area are used to build optimization
models to improve the robustness and accuracy of tracking. Sparse maps often fail to
meet actual needs. Therefore, in the second stage, we construct a dense model of the
static background by using TSDF fusion. First, the pose and mask information of the first
stage are used for dense tracking and to obtain a depth map of the static area. Second,
we designed algorithms to deal with divisible areas and indivisible areas. Static areas
are extracted and fused into the map by using the TSDF method, the mesh of the static
background is obtained by using the marching cube algorithm, and the reconstruction
mesh is further optimized in the postprocessing. The experimental results on the public
TUM datasets and real scenes prove that our method cannot only improve the tracking
robustness and tracking accuracy but also reconstruct a clean and dense static background
model in a dynamic environment.

Although our method has good performance, it also has some limitations in pose
evaluation and background reconstruction. Mask-RCNN and connected component analy-
sis methods are time-consuming, thus leaving our method unable to operate in real-time
and limiting its practical use. Furthermore, we removed dynamic objects from the scene
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without judging their specific motion state. When dynamic objects are static and occupy a
large foreground, removing the dynamic objects will affect the stability of the system. The
above-mentioned limitations will be addressed in our further research work.
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