
Citation: Lapusan, C.; Hancu, O.;

Rad, C. Numerical Shape Planning

Algorithm for Hyper-Redundant

Robots Based on Discrete Bézier

Curve Fitting. Machines 2022, 10, 894.

https://doi.org/10.3390/

machines10100894

Academic Editor: Marco Ceccarelli

Received: 1 August 2022

Accepted: 28 September 2022

Published: 3 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Numerical Shape Planning Algorithm for Hyper-Redundant
Robots Based on Discrete Bézier Curve Fitting
Ciprian Lapusan , Olimpiu Hancu * and Ciprian Rad

Department of Mechatronics and Machine Dynamics, Technical University of Cluj-Napoca,
Str. Memorandumului, 28, 400114 Cluj-Napoca, Romania
* Correspondence: olimpiu.hancu@mdm.utcluj.ro

Abstract: The paper proposes a novel numerical method S-GUIDE that provides real-time planning
of the shape of hyper-redundant robots with serial architecture by means of a guidance curve,
represented in parametrized analytical form and in numerical form by a set of key points associated
with the robot structure. To model the shape of the robot, the method uses an equivalent model, and
a shape guidance curve obtained through a controlled adjustment of a Bézier curve. This is achieved
in three computing steps were the robot equivalent structure, it’s associated kinematic parameters
and the robot actuation parameters in joint space are calculated. The proposed method offers several
advantages in relation with the precision, computing time and the feasibility for real-time applications.
In the paper, the method accuracy, execution time, and the absolute error for different work scenarios
are determined, compared and validated.

Keywords: hyper-redundant robot; shape planning; curve fitting; backbone curve

1. Introduction

Hyper-redundant robots (HRRs) are robotic mechanisms with a large or infinite degree
of kinematic and/or actuator redundancy that have many similarities in shape and opera-
tion with snakes, tentacles, and elephants’ trunks as highlighted by Chirikjian et al. in [1,2].
Regarding their morphology, HRRs can be categorized as discrete and continuum/soft
manipulators [3–5]. Discrete HRRs consists of a large and finite number of rigid links
connected in series or a modular design approach where n identical modules (usually
with 1-DoF, 2-DoF or 3-DoF topology [6]) are cascaded in series [7]. If the total number
of degrees-of-freedom (DoF) tend to increase to infinity and the shape is continuously
deformable we are discussing continuum/soft manipulators [8,9]. Both categories have
their own advantages and disadvantages and area of applicability, and one category doesn’t
exclude the other [4,5]. This paper addresses aspects related to discrete HRRs.

In the past few years, many discrete HRRs have been proposed as solutions for
unstructured/dynamic environments where dexterous abilities and obstacle avoidance
capabilities, to name a few, were important requirements to perform complex manipulation
tasks [10]. Yeshmukhametov et al. [11] proposed TakoBot, a discrete hyper-redundant
cable-driven continuum robot arm for harvesting cherry tomatoes with applicability in the
agriculture industry. The robot is made up from 10 modules, each with 2-DoF (one module
includes two discs interconnected through a universal joint) connected in series for a total
of 20-DoF. The authors used an advanced motion planning algorithm based on video
processing techniques to identify the cherry tomatoes and decide how to pick them. Their
results indicates that the harvesting process can be improved by optimizing robot shape and
trajectory. Canali et al. [12] developed SLIM, a cable-driven hyper-redundant robotic system
for inspection and maintenance of infrastructures in industrial facilities. SLIM includes a
12-DoF robotic arm composed of 12 discrete modules, each one having one rotation (1 DoF).
Their objective was to use a null-space approach to test if the robot can follow an imposed

Machines 2022, 10, 894. https://doi.org/10.3390/machines10100894 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10100894
https://doi.org/10.3390/machines10100894
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0003-0995-6220
https://orcid.org/0000-0002-1108-3062
https://orcid.org/0000-0003-3511-107X
https://doi.org/10.3390/machines10100894
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10100894?type=check_update&version=3

Machines 2022, 10, 894 2 of 19

trajectory in the task space if path obstacles and limits of the actuators are considered.
Based on experimental results they concluded that the imposed requirements can be fully
accomplished if the accuracy of trajectory tracking is improved. Tang et al. [13] proposed a
cable-driven hyper-redundant manipulator (CDHRM) for underwater applications. The
robot was designed in such way that extra modules can be added or removed from the
robot structure to offer greater flexibility in exploitation. The authors tested experimentally
a prototype with five modules in an underwater environment for different trajectories and
then compared their tracking results with other types of CDHRMs. Their proposed solution
performed better due to the improved kinematic control algorithm. Besides these examples,
there are many other applications and proposed solutions of HRRs in the medical field,
aerospace industry, rescue scenarios and other unstructured environments. The reader
should consult [14,15].

As can be seen in the literature, HRRs gained a lot of interests in the scientific world
but their applicability is frequently limited to laboratory prototypes for different research
activities. That’s because compared with traditional industrial robots, displacement analy-
sis of HRRs is far more complex. Displacement analysis implies, among others, solving the
robot’s forward kinematic problem (FKP) and inverse kinematic problem (IKP). FKP calcu-
lates the pose (position and orientation) of the end-effector when the inputs of the actuators
are known while IKP calculates the required inputs of the actuators for a prescribed pose
of the end-effector. FKP is used for example in robot shape and posture computation [7,16]
or in simulations [17]. IKP is viewed as the foundation for trajectory planning and shape
control algorithms [18]. Theoretically, due to the hyper redundancy nature of HRRs, IKP
admits an infinite number of solutions [19]. This means that for a prescribed pose of the
end-effector there are multiple shape correspondences (postures) of a HRR that satisfies the
imposed constraints. Therefore, a shape planning strategy for designing motion control
algorithms cannot be accomplished without a complex displacement analysis of HRRs.

As highlighted in [5,20], displacement analysis of HRRs can be solved with qualitative
and quantitative models. Qualitative models are data-driven models based on learning
algorithms that use input/output data sets. Popular approaches use fuzzy logic [21],
genetic algorithms [22] and neural networks [23]. These types of models are very sensitive
to datasets used for training and requires great computational resources. That is the reason
why quantitative models became more popular in the literature. Quantitative models are
classified as geometric and elasticity (mechanical) models. Both, geometric and elasticity
models, are based on the concept of backbone curve (BC), a reference curve that models
the macroscopic shape (spine) of the robot. The way the BC is modelled differentiates one
approach from the other. In the case of geometric models, the piecewise constant curvature
(PCC) approach proposed by Hannan [24] and the non-constant curvature approach (curve
parametrization approach) proposed by Chirikjian [25] are widely used. On the other hand,
elasticity models are usually based on Cosserat/Kirchhoff rod theories and captures, in
addition to geometry of the BC, its elastic deformation by considering material properties
of which it is made [26,27]. Whatever method is used, a choice must be made about the
parametrization scheme of the BC for a particular task of the robot [28].

BC can be parametrized both intrinsically and extrinsically using parametric or non-
parametric geometrical curves [5,20]. Non-parametric curves are not recommended for
shape representation of HRRs due to their limitations [5]. Parametric curves can be ex-
pressed analytically—by using circles, ellipses, lines, helix, etc. or synthetically—by using
Hermite curves, Bézier curves, B-Splines, non-uniform rational basis spline (NURBS),
etc. [29,30]. Although analytical curves can be used to describe the shape of a HRR con-
tinuously from a starting point to a final point, they don’t have any intermediary control
points to adjust the shape of the curve. Synthetic curves, on the other hand, are curves that
are generated based on several control points and offers greater flexibility in controlling
the shape of the BC [31]. Thus, many researchers proposed BC parametrization schemes
using synthetic curves. Chirikjian [32] proposed a modal approach where the BC was
modelled as a spline-like curve restricted to a set of intrinsic modes. However, the choice of

Machines 2022, 10, 894 3 of 19

the modes is not a simple task. Zanganeh et al. [33] parametrized extrinsically a reference
BC by using 3rd and 5th order splines to solve the IKP of HRRs with different topologies.
The approach was validated both for extensible and non-extensible variable geometry
truss manipulators (VGTMs). The improved computational time using synthetic curves
was highlighted also as an important advantage. Zhao et al. [18] proposed an inverse
displacement analysis of a hyper-redundant elephant’s trunk robot (HRETR) by using a
BC parametrized with modal functions. The HRETR robot consists of six discrete parallel
mechanism modules connected in series. The idea was to generate a BC as a reference for
the geometric characteristics of their robot and then to fit the modules of the robot on that
curve. Once the shape of the robot was constructed, they could easily calculate IKP. One
challenge was to find the corresponding shape of the robot configuration on the generated
BC which depends on the robot kinematic configuration. Chibani et al. proposed in [19] a
method for generating optimal reference kinematic configurations for HRRs based on BC
parametrized with splines. Their method was tested on a real robot and lower computing
times were also highlighted here as an advantage. Song et al. proposed in [34] a shape
reconstruction algorithm for a wire-driven HRR based on a cubic Bézier curve and an
electromagnetic sensor. The authors state that the Bézier curve is better than a spline curve
to reconstruct the shape of HRRs if the position of the endpoints and vectors orientation at
those points are known.

Even if the BC-based approaches, as highlighted above, were widely used with differ-
ent methods as a way to solve the IKP of HRRs in the last decades, there are still important
issues that need to be solved. An important aspect is related with the high computational
time that these methods need [35], making them less suitable for real-time implementa-
tion. Another aspect is related with the positioning error due to the numerical algorithms
used to implement the method and due to the fitting process of the robot modules on the
curve [5,36]. Moreover, this error is in close dependence with the length of the robot, and it
increases with the length of the robot. Parametrization of the BC is also an important issue.
Synthetic curves are seen as being more advantageous in this matter due to their implicit
way of construction using discrete data points.

In this context, the paper addresses the problem of determining the shape of HRRs
with serial architecture by means of a guidance curve (BC), represented in parametrized
analytical form and in numerical form by a set of key points associated with the robot
structure. The main contribution of the paper is the proposed S-GUIDE method which
uses a novel algorithm that fits an equivalent model on the parametrized guidance curve
with high precision, the absolute error related to the method being of the order of microns.
The accuracy does not depend on the length of the robot and can be indirectly controlled
through a method input parameter. The execution time of the method allows its use in the
development of real-time control algorithms of HRRs.

The S-GUIDE method can be used with different types of synthetic curves (spline,
Bézier, Hermite etc.) to generate the BC. In this work the cubic Bézier curve was used due
to the following advantages. The cubic Bézier curves are based on Bernstein polynomials
(which have analytical solutions) and the solution of the curve is unique. A Bézier curve has
endpoints common with a polygon and the tangents at the endpoints of the curve coincide
with the first and last element of the polygon. This property allows defining the orientation
and positioning of an end of the curve (robot end-effector in BC approach) by modifying
two control points (last element of the polygon). If the geometry of a Bézier curve is
modified, it never oscillates far from the control points (this allows to the curve-shifting
algorithms to quickly find solutions in the immediate vicinity of a previous solution). Bézier
curves can also be combined by joining their ends (common tangent) to form a composite
curve whose geometry can be modified via control points. This property is exploited in the
literature for dealing with the obstacle avoidance problem. A disadvantage of these type of
curves is that the length of the curve is not in closed form, but it can be calculated using
numerical methods.

Machines 2022, 10, 894 4 of 19

The paper is structured as follows. Chapter 2 presents aspects regarding the conceptual
description of the shape planning algorithm, while in Chapter 3 the performance of the
proposed algorithm is evaluated, and the proposed S-GUIDE method is numerically tested
for a virtual HRR (Python). The method accuracy, execution time, the absolute error for
different work scenarios is determined, compared and validated. Finally, the paper ends
with the conclusions.

2. Conceptual Description of Shape Planning Algorithm

For HRRs, the control of the shape during the handling operation (shape planning)
is of distinct importance, especially in unstructured work environments. As previously
seen, the shape of the robot can be simply described by a curve that follows the core of the
robot, addressed in the literature as the backbone curve. The way of selecting this curve
involves different approaches [2,37]. In this paper the BC is described (defined) by a set of
key points Pi associated with the robot whose shape must be controlled. The Pi points are
determined by constructing a simplified equivalent representation of the robot in the form
of a virtual serial structure (see Figure 1), where the virtual joints are the Pi points. The
simplified equivalent representation, with the choice of the Pi points, needs to be carried
out so that the reconstruction of the robot is achievable starting from this representation.

Machines 2022, 10, x FOR PEER REVIEW 5 of 19

𝑙𝑚𝑎𝑥 = 𝑚𝑎𝑥
𝑖𝜖{1,…,𝑛}

𝑙𝑖

(2)

Under these specified assumptions the shape of the robot in the manipulation task

can be controlled (guided) through a shape guidance curve (BC), by changing its param-

eters (the control points).

For solving the problem described above, a method is proposed (S-GUIDE) that uses

numerical algorithms for iterative generation of the robot shape guide curve (BC) This

allows it to run based on constraints related to the orientation and position imposed on

the end-effector by path planning, which allows the transition from a shape space to a

joint space (shape inverse problem, SIP [38]) and all of these in real-time operation. The

proposed method is applied for HRRs which the equivalent model can be described

through a serial topology with predefined lengths li for each element as presented in Fig-

ure 1.

P0

P1

P2

P3

Pn-1

Pn

G

l2

l0

ln-1

l1

ln

Figure 1. Kinematic diagram—equivalent robot model.

The S-GUIDE method is structured on three steps which run sequentially. In the ini-

tial step the operating specifications (inputs) are updated at each sample time, in the third

step the values of the joint’s displacements are provided which ensures robot folding on

the imposed shape, thus completing the specified task through path planning. Table 1

briefly describes the specific steps of the proposed method. Their extensive description is

detailed next.

Step 1—task specification: the algorithm inputs refer to the robot’s geometric charac-

teristics, end-effector pose (position and orientation) and algorithm specific parameters

(ex.: calculation precision of the robot BC). The robot’s geometric parameters (Figure 1)

are: number of links n, length of the robot links 𝑙𝑖 {𝑖 = 0…𝑛}, position 𝑃0(𝑥0, 𝑦0, 𝑧0) and

orientation 𝛼0, 𝛽0, 𝛾0 of the fixed frame and the maxim angle between two adjacent ele-

ments 𝜃𝑚𝑎𝑥. The end-effector pose is defined through its position 𝐺(𝑥, 𝑦, 𝑧) and orienta-

tion 𝐺𝛼, 𝐺𝛽, 𝐺𝛾. The algorithm parameters are: the maximum admitted error 𝑒𝑏𝑧 for cal-

culating the candidate Bézier curve and the maximum admitted error 𝑒𝑟𝑒 in calculating

the robot equivalent model.

Figure 1. Kinematic diagram—equivalent robot model.

In this context, assuming that (1) the modeling of the robot’s shape can be expressed
through a parameterized curve on the entire robot’s working space, assuming that (2) a
joint space solution exists for a shape described by such a curve, then the control of the
shape of the robot in a manipulation task could be performed by controlling the parameters
of this curve. In other words, under the specified assumptions the shape of the robot in the
manipulation task can be controlled (guided) by means of a parametric curve, called the
BC in the literature, used here as a shape guidance curve.

The first assumption involves that the shape of a HRR to be modeled by a spatial
curve. If the robot’s backbone is described by a set of key points Pi associated with the
centers of rotation of the robotic structure, then the problem is reduced to determining the
curve passing through those points, the trivial solution leading to polynomial curves. So,

Machines 2022, 10, 894 5 of 19

the problem is not to find any curve that approximates the shape of the robot, but rather to
identify a curve with a mathematical description as simple as possible that would allow
modeling the shape of the robot described by the Pi points. The paper provides solutions
in this sense using Bézier curves, curves with notable properties, for example these curves
allow to define the orientation and position of the end-effector by only two parameters
(two control points).

The second assumption (the existence of a solution in joint space) is conditioned by
the robot’s architecture (kinematic configuration); therefore, any demonstration must be
related to the specified targeted robot. In the current case, the research aimed a specific
configuration (Python robot, a serially linked elements each defined by the length li),
detailed in Chapter 3, which uses only universal joints to perform the motion. For a certain
known architecture of a robot and a shape guidance curve, the problem of finding joint
displacements which ensures the correspondence between robot and the imposed shape is
called the shape inverse problem [38]. The solution existence for inverse shape problem is
demonstrated and detailed in [38]. For a Python robot configuration, the existence of the
solution for the inverse shape problem is conditioned only by the curvature value k of the
shape guidance curve, which is limited by:

k ≤ 1
2lmax

(1)

where:
lmax = max

iε{1,...,n}
li (2)

Under these specified assumptions the shape of the robot in the manipulation task can
be controlled (guided) through a shape guidance curve (BC), by changing its parameters
(the control points).

For solving the problem described above, a method is proposed (S-GUIDE) that uses
numerical algorithms for iterative generation of the robot shape guide curve (BC) This
allows it to run based on constraints related to the orientation and position imposed on the
end-effector by path planning, which allows the transition from a shape space to a joint
space (shape inverse problem, SIP [38]) and all of these in real-time operation. The proposed
method is applied for HRRs which the equivalent model can be described through a serial
topology with predefined lengths li for each element as presented in Figure 1.

The S-GUIDE method is structured on three steps which run sequentially. In the initial
step the operating specifications (inputs) are updated at each sample time, in the third
step the values of the joint’s displacements are provided which ensures robot folding on
the imposed shape, thus completing the specified task through path planning. Table 1
briefly describes the specific steps of the proposed method. Their extensive description is
detailed next.

Table 1. S-GUIDE method. Short description and symbolic graphical representation of each method
steps.

I. Task Specifications II. Robot Shape Planning III. Shape Inverse Problem

Specifying the robot’s geometric
characteristics, end-effector pose

(position and orientation) and algorithm
specific parameters. (See Figure 2a)

Based on the operational specifications, a
candidate 3D Bézier parametric curve for

modeling the shape of the robot is
generated (A1). Further, the candidate

curve is iteratively adjusted (BC of HRR)
simultaneously with the reconstruction of

an equivalent model of the robot (A2).
(See Figure 2b)

For a particular robotic structure (here, a
Python robot) and a planned 3D shape
the joint displacements are determined
(based on step 3 results). (See Figure 2c)

Machines 2022, 10, 894 6 of 19

Machines 2022, 10, x FOR PEER REVIEW 6 of 19

The shape of the HRR through the associated Bézier curve (robot BC) is calculated

between points P1 and Pn (Figure 1) which defines the position of the first and final joint

in the structure. In addition, the position of these points 𝑃1(𝑥1, 𝑦1, 𝑧1) and 𝑃𝑛(𝑥𝑛, 𝑦𝑛, 𝑧𝑛)

are calculated from the input data.

Step 2– robot shape planning: this step is composed of 2 algorithms, A1 −B-Curve

candidate iterative generator and A2—Robot equivalent model reconstruction.

Table 1. S-GUIDE method. Short description and symbolic graphical representation of each method

steps.

I. Task Specifications II. Robot Shape Planning III. Shape Inverse Problem

Specifying the robot’s geometric char-

acteristics, end-effector pose (position

and orientation) and algorithm spe-

cific parameters. (See Figure 2a)

Based on the operational specifica-

tions, a candidate 3D Bézier parametric

curve for modeling the shape of the ro-

bot is generated (A1). Further, the candi-

date curve is iteratively adjusted (BC of

HRR) simultaneously with the recon-

struction of an equivalent model of the

robot (A2). (See Figure 2b)

For a particular robotic structure

(here, a Python robot) and a planned

3D shape the joint displacements are

determined (based on step 3 results).

(See Figure 2c)

Pn(x,y,z)
On(x,y,z)

P1(x,y,z)
O1(x,y,z)

(a) (b) (c)

Figure 2. S-GUIDE method steps (a) Task specification initial points (b) Attached robot shape on the

Bézier curve (c) Robot shape based on the algorithm results.

The algorithm A1- B-curve candidate iterative generation creates the Bézier candidate

curve B(t) (Figure 3a) that is further used to define the robot BC (Figure 3b). For this, first

the length reference for the Bézier candidate curve is calculated:

𝑙𝑡 = ∑ 𝑙𝑖
𝑛
𝑖=1 (3)

Next, the Bézier control points 𝐵0, 𝐵1, 𝐵2 and 𝐵3 are initialized. The position of 𝐵0

and 𝐵3 (starting and ending point of the B(t) curve) are associated with the points P1 and

Pn of the robot that describe the position of the first and last joints in the kinematic chain.

The other two points 𝐵1 and 𝐵2, are placed on two support lines that pass through B0 and

B1 and are colinear with the z axis of the 𝑂0𝑥0𝑦0𝑧0 and 𝑂𝑛𝑥𝑛𝑦𝑛𝑧𝑛 coordinate systems. By

varying the position of B1 and B2 the length of the Bézier curve B(t) can be modified. The

initial values for the two points are inherited from the solution found in the previous run

Figure 2. S-GUIDE method steps (a) Task specification initial points (b) Attached robot shape on the
Bézier curve (c) Robot shape based on the algorithm results.

Step 1—task specification: the algorithm inputs refer to the robot’s geometric charac-
teristics, end-effector pose (position and orientation) and algorithm specific parameters
(ex.: calculation precision of the robot BC). The robot’s geometric parameters (Figure 1)
are: number of links n, length of the robot links li {i = 0 . . . n}, position P0(x0, y0, z0) and
orientation α0, β0, γ0 of the fixed frame and the maxim angle between two adjacent ele-
ments θmax. The end-effector pose is defined through its position G(x, y, z) and orientation
Gα, Gβ, Gγ. The algorithm parameters are: the maximum admitted error ebz for calculating
the candidate Bézier curve and the maximum admitted error ere in calculating the robot
equivalent model.

The shape of the HRR through the associated Bézier curve (robot BC) is calculated
between points P1 and Pn (Figure 1) which defines the position of the first and final joint in
the structure. In addition, the position of these points P1(x1, y1, z1) and Pn(xn, yn, zn) are
calculated from the input data.

Step 2– robot shape planning: this step is composed of 2 algorithms, A1 −B-Curve
candidate iterative generator and A2—Robot equivalent model reconstruction. (see Figure 2).

The algorithm A1- B-curve candidate iterative generation creates the Bézier candidate
curve B(t) (Figure 3a) that is further used to define the robot BC (Figure 3b). For this, first
the length reference for the Bézier candidate curve is calculated:

lt = ∑n
i=1 li (3)

Next, the Bézier control points B0, B1, B2 and B3 are initialized. The position of B0
and B3 (starting and ending point of the B(t) curve) are associated with the points P1 and
Pn of the robot that describe the position of the first and last joints in the kinematic chain.
The other two points B1 and B2, are placed on two support lines that pass through B0 and
B1 and are colinear with the z axis of the O0x0y0z0 and Onxnynzn coordinate systems. By
varying the position of B1 and B2 the length of the Bézier curve B(t) can be modified. The
initial values for the two points are inherited from the solution found in the previous run
of the S-GUIDE method. When the method is running for the first time, the position along
the two-guidance lines for B1 and B2 are lt/2 and −lt/2, respectively.

Machines 2022, 10, 894 7 of 19

Machines 2022, 10, x FOR PEER REVIEW 7 of 19

of the S-GUIDE method. When the method is running for the first time, the position along

the two-guidance lines for 𝐵1 and 𝐵2 are 𝑙𝑡/2 and −𝑙𝑡/2, respectively.

The discretization of the Bézier curve is defined by the parameter ∆𝑡. The value of

this parameter is calculated using Equation (4).

∆𝑡 ≤
𝑒𝑟𝑒∙10

𝑙𝑡
 (4)

The Bézier candidate curve is determined next in an iterative process by increas-

ing/decreasing the distance between 𝐵0 and 𝐵1, and 𝐵3 and 𝐵2, respectively. At each it-

eration, the discretized Bézier curve B(t) is calculated using the equation:

𝐵(𝑡) = (1 − 𝑡)3𝐵0 + 3(1 − 𝑡)
3𝑡𝐵1 + 3(1 − 3)𝑡

2𝐵2 + 𝑡
3𝐵3 (5)

where t = 0…1 with ∆𝑡 increment.

For this curve, the length is calculated and compared with the target value 𝑙𝑡.

𝑒1 = 𝑙𝑡 − ∑ √∆𝑥𝑗
2 + ∆𝑦𝑗

2 + ∆𝑦𝑗
2𝑛𝑏𝑒𝑧

𝑗=1 (6)

where: 𝑛𝑏𝑒𝑧 =
1

∆𝑡
—number of discretized points on the Bézier curve.

∆𝑥𝑗—cartesian distance along x axis between two consecutive points on B(t)

∆𝑦𝑗—cartesian distance along y axis between two consecutive points on B(t)

∆𝑧𝑗—cartesian distance along z axis between two consecutive points on B(t)

If the absolute value of the error |𝑒1| (Equation (6)) is greater than 𝑒𝑏𝑧, new positions

for the 𝐵1 and 𝐵2 are calculated. The new positions results from adding to the current

position of 𝐵1 and 𝐵2 along the support lines by the value 𝑒1/3. If |𝑒1| is smaller or

equal to 𝑒𝑏𝑧 the iteration stops, and the obtained B(t) curve is considered the candidate

Bézier curve.

End effector
position

B1

B0

B2

B3

Candidate
B-curve B(t)

Fix
frame

End effector
position

P1"

Robot
backbone

BR(t)

Fix
frame

P2"

P3"

P4"

P5"

P6"

P7"

P8

Equivalent
robot model

Candidate
element

(a) (b)

Figure 3. Robot shape planning (a) calculating the candidate Bézier curve (algorithm A1) (b) recon-

struction of the equivalent robot model (Algorithm A2).
Figure 3. Robot shape planning (a) calculating the candidate Bézier curve (algorithm A1) (b) recon-
struction of the equivalent robot model (algorithm A2).

The discretization of the Bézier curve is defined by the parameter ∆t. The value of this
parameter is calculated using Equation (4).

∆t ≤ ere·10
lt

(4)

The Bézier candidate curve is determined next in an iterative process by increas-
ing/decreasing the distance between B0 and B1, and B3 and B2, respectively. At each
iteration, the discretized Bézier curve B(t) is calculated using the equation:

B(t) = (1− t)3B0 + 3(1− t)3tB1 + 3(1− 3)t2B2 + t3B3 (5)

where t = 0 . . . 1 with ∆t increment.
For this curve, the length is calculated and compared with the target value lt.

e1 = lt −∑nbez
j=1

√
∆x2

j + ∆y2
j + ∆y2

j (6)

where: nbez = 1
∆t —number of discretized points on the Bézier curve.

∆xj—cartesian distance along x axis between two consecutive points on B(t)
∆yj—cartesian distance along y axis between two consecutive points on B(t)
∆zj—cartesian distance along z axis between two consecutive points on B(t)
If the absolute value of the error |e1| (Equation (6)) is greater than ebz, new positions

for the B1 and B2 are calculated. The new positions results from adding to the current
position of B1 and B2 along the support lines by the value e1/3. If |e1| is smaller or equal to
ebz the iteration stops, and the obtained B(t) curve is considered the candidate Bézier curve.

Machines 2022, 10, 894 8 of 19

The positions for the control points B1 and B2 are memorized and used as a starting
point to calculate the first Bézier candidate curve in the next S-GUIDE cycle, for the next
position and orientation of the end-effector defined by its trajectory.

The algorithm A2-Robot equivalent model reconstruction uses the candidate Bézier curve
B(t) to further refine it in order to be able to reconstruct an equivalent robot model (ERM)
on the backbone curve BR(t) (Figure 3b). The ERM is further used, in S-GUIDE step 3, to
calculate the SIP.

The backbone curve BR(t) is iteratively obtained by adjusting the candidate Bézier
curve B(t). At each step in the iteration the ERM is reconstructed from P1 to Pi−1. The
length dn−1 of the final element in the model is obtained by calculating the distance between
the points Pi−1” (point belonging to the equivalent robot model) and point Pn calculated in
step 1 from the position of end-effector. The obtained distance dn−1 is compared with the
length of the n−1 element ln−1, resulting in the error e2 (Equation (7)).

e2 = dn−1 − ln−1 (7)

If the error |e2| is greater than the imposed ere new positions for the points B1 and B2
are calculated. The new position is obtained by adding to the current positions of the two
points along the support lines the value e2/3 and−e2/3, respectively. After this adjustment
the backbone curve BR(t) is recalculated, and the iterative process on A2 starts from the
beginning. The iteration loop ends when the condition |e2| < ere is fulfilled.

The reconstruction process of the ERM in the above iteration is accomplished by
sequentially adding elements in model (Figure 3b) at each level the sequence:

- The position of point Pj
′ {j = 2 . . . n−1} belonging to the backbone curve BR(t) is

determine by finding a segment (candidate element) on the BR(t) curve that has the
length ≈ lj−1. The length of the candidate element is measured between the point Pi

′

ε BR(t) and the point Pj−1” ε ERM that defines the end of the previous element.
- For each obtained Pj

′ the spherical coordinates are measured in respect to a coordinate
system placed in Pj−1” that has the orientation of the global coordinate system.

azj = arctan2
(

Pxj − Pxj−1, Pzj − Pzj−1
)

elj = arctan2
(

Pzj − Pzj−1, Pyj − Pyj−1
) (8)

- Using the angles azj and elj and the length lj, the elements j−1 from the ERM is
constructed by finding the position of point P′′j ε ERM using Equation (9).

P′′xj = P′′xj−1 + lj cos
(
elj
)

cos
(
azj
)

P′′yj = P′′yj−1 + lj cos
(
elj
)

sin
(
azj
)

P′′zj = P′′zj−1 + lj sin
(
elj
) (9)

After finalizing A2, the output is the robot’s ERM (defined by a set of points P′′i {i = 1 . . . n}
and their spherical coordinates).

Step 3 – shape inverse problem: in the third step the obtained ERM is validated and
the kinematic parameters for the inverse shape problem are calculated.

For validating the ERM model, the angle θi {i = 1 . . . n} between every two consecu-
tive elements in the model are calculated (Equation (12)). The two elements are described
as vectors (Equations (10) and (11)) and the angle calculation is reduced to find the angle
between the two.

vi−1 =
[

P′′xi − P′′xi−1, P′′yi − P′′yi−1, P′′zi − P′′zi−1

]
(10)

vi =
[

P′′xi+1 − P′′xi, P′′yi+1 − P′′yi, P′′zi+1 − P′′zi

]
(11)

θi = atan2(||vi−1x vi||, vi−1·vi) (12)

Machines 2022, 10, 894 9 of 19

All values of θi are verified to be less than θmax. If the condition is not fulfilled the
input data (robot configuration and the end-effector pose) fails to have a solution that could
be described by the method.

Next the rotation matrix for each element in the ERM is calculated. For this, first the
absolute angles for each element along the x and y axis is calculated using Equation (13).

αi = asin
(

dxi√
dyi

2+dzi
2

)
βi = atan2(dxi, dzi)

(13)

where: dxi = Pxi − Pxi−1
dyi = Pyi − Pyi−1
dzi = Pzi − Pzi−1

The 0
i R rotation matrix is obtained using:

0
i R =

 cosβi 0 sinβi
0 1 0

−sinβi 0 cosβi

1 0 0
0 cosαi −sinαi
0 sinαi cosαi

 (14)

For calculating the actuation angles θxi and θyi in each of the universal joint, each
point Pi from the ERM model is represented in a local coordinate system attached to the
i−1 element, that have the z axis colinear with the element. These values are obtained by
multiplying the inverse rotation matrix 0

i−1R with the position vector of point Pi. i−1Pxi
i−1Pyi
i−1Pzi

 = inv(0
i−1R)

Pxi
Pyi
Pzi

 (15)

These positions (Equation (15)) are used to calculate the θxi and θyi {i = 1 . . . n} relative
angles using:

θxi = asin

(
i−1Pxi√

i−1Pyi
2+i−1Pzi

2

)
θyi = atan2

(i−1Pxi, i−1Pzi
) (16)

For the Python robot, its shape is defined by the angles θxi, θyi.

3. Numerical Results

The experimental results were developed using the MATLAB/Simulink environment
developed by MathWorks. These experiments aimed to assess the performance of the
method and to validate the results by planning the shape of the robot Python for a given
manipulation task.

3.1. Performance Assessment of the S-GUIDE Method

In this section, the S-GUIDE method precision is evaluated, and the time needed for
one processing cycle (Figure 4) is determined.

Machines 2022, 10, 894 10 of 19Machines 2022, 10, x FOR PEER REVIEW 10 of 19

Figure 4. Step processing cycle.

The spline curve which defines the end effector trajectory was discretized in m = 26

sections/points that represent the reference for the end-effector (G point position and ori-

entation). In the first case the orientation of the end-effector was constant (𝐺𝛼 =

−110 [𝑑𝑒𝑔], 𝐺𝛽 = 0 [𝑑𝑒𝑔], 𝐺𝛾 = 0 [𝑑𝑒𝑔]), and in the second case the orientation of the end-

effector varied (𝐺𝛼 = −110…− 20 [𝑑𝑒𝑔], 𝐺𝛽 = 0 [𝑑𝑒𝑔], 𝐺𝛾 = 0 [𝑑𝑒𝑔]). The obtained back

bone curves for the two experiments are presented in Figure 5.

End Effector
trajectory

BackBone
curves

P12

G
z

[m
m

]

G1

Gm

P11

P10

P9

P8

P7

P6

P5

P4

P3

P2

P1

P0

End Effector
trajectory

BackBone
curves

P1

G
z

[m
m

]

G1

Gm

P12 P11

P10

P9

P8

P7

P6

P5

P4

P3

P0

P2

(a) (b)

Figure 5. Calculation of the BC for a 3D imposed trajectory (a) constant orientation for the end-

effector (b) variable orientation for the end-effector.

For each obtained BC (posture), the absolute position errors 𝑒𝐺𝑖{𝑖 = 1. .𝑚} for the

end-effector were calculated. The 𝑒𝐺𝑖 error is directly connected to the values of 𝑒𝑟𝑒 and

Figure 4. Step processing cycle.

First, the method was tested for calculating the backbone shape of a robot structure
that is composed from n = 12 element that have identical length li. Two experiments were
developed that imposed a 3D trajectory for the end-effector through a spline curve defined
by four points in the robot’s workspace.

The spline curve which defines the end effector trajectory was discretized in
m = 26 sections/points that represent the reference for the end-effector (G point posi-
tion and orientation). In the first case the orientation of the end-effector was constant
(Gα = −110 [deg], Gβ = 0 [deg], Gγ = 0 [deg]), and in the second case the orientation
of the end-effector varied (Gα = −110 . . .− 20 [deg], Gβ = 0 [deg], Gγ = 0 [deg]). The
obtained back bone curves for the two experiments are presented in Figure 5.

For each obtained BC (posture), the absolute position errors eGi{i = 1 . . . m} for the
end-effector were calculated. The eGi error is directly connected to the values of ere and ∆t.
The BCs presented in Figure 5 are calculated using ere = 0.001 [mm] and ∆t is calculated
using Equation (4) (∆t = 0.0001).

In order to evaluate the influence of parameter ∆t in relation with eGi, two other values
were used for ∆t. The values used for ∆t were: 0.0005 (does not fulfil Equation (4)) and
0.00005 (fulfil Equation (4)). The obtained variations of the absolute position errors eGi for
the two experiments with constant and variable end-effector orientations are presented in
Figure 6.

It was observed that for the situation where the parameter ∆t did not fulfil the con-
dition in Equation (4) there were spikes in the absolute errors due to the impossibility to
find a final solution that respects the imposed ere parameter for the ERM. For the situation
where ∆t fulfiled the condition in Equation (4) the mean absolute errors (MAE) for eGi are
presented in Table 2.

Machines 2022, 10, 894 11 of 19

Machines 2022, 10, x FOR PEER REVIEW 10 of 19

Figure 4. Step processing cycle.

The spline curve which defines the end effector trajectory was discretized in m = 26

sections/points that represent the reference for the end-effector (G point position and ori-

entation). In the first case the orientation of the end-effector was constant (𝐺𝛼 =

−110 [𝑑𝑒𝑔], 𝐺𝛽 = 0 [𝑑𝑒𝑔], 𝐺𝛾 = 0 [𝑑𝑒𝑔]), and in the second case the orientation of the end-

effector varied (𝐺𝛼 = −110…− 20 [𝑑𝑒𝑔], 𝐺𝛽 = 0 [𝑑𝑒𝑔], 𝐺𝛾 = 0 [𝑑𝑒𝑔]). The obtained back

bone curves for the two experiments are presented in Figure 5.

End Effector
trajectory

BackBone
curves

P12

G
z

[m
m

]

G1

Gm

P11

P10

P9

P8

P7

P6

P5

P4

P3

P2

P1

P0

End Effector
trajectory

BackBone
curves

P1

G
z

[m
m

]

G1

Gm

P12 P11

P10

P9

P8

P7

P6

P5

P4

P3

P0

P2

(a) (b)

Figure 5. Calculation of the BC for a 3D imposed trajectory (a) constant orientation for the end-

effector (b) variable orientation for the end-effector.

For each obtained BC (posture), the absolute position errors 𝑒𝐺𝑖{𝑖 = 1. .𝑚} for the

end-effector were calculated. The 𝑒𝐺𝑖 error is directly connected to the values of 𝑒𝑟𝑒 and

Figure 5. Calculation of the BC for a 3D imposed trajectory (a) constant orientation for the end-effector
(b) variable orientation for the end-effector.

Machines 2022, 10, x FOR PEER REVIEW 11 of 19

∆𝑡. The BCs presented in Figure 5 are calculated using 𝑒𝑟𝑒 = 0.001 [𝑚𝑚] and ∆𝑡 is calcu-

lated using Equation (4) (∆𝑡 = 0.0001).

In order to evaluate the influence of parameter ∆𝑡 in relation with 𝑒𝐺𝑖, two other

values were used for ∆𝑡. The values used for ∆𝑡 were: 0.0005 (does not fulfil Equation

(4)) and 0.00005 (fulfil Equation (4)). The obtained variations of the absolute position er-

rors 𝑒𝐺𝑖 for the two experiments with constant and variable end-effector orientations are

presented in Figure 6.

(a) (b)

Figure 6. Variation of the absolute positioning error 𝑒𝐺𝑖 (a) for constant orientation of the end−ef-

fector (b) for variable orientation of the end−effector.

It was observed that for the situation where the parameter ∆𝑡 did not fulfil the con-

dition in Equation (4) there were spikes in the absolute errors due to the impossibility to

find a final solution that respects the imposed 𝑒𝑟𝑒 parameter for the ERM. For the situa-

tion where ∆𝑡 fulfiled the condition in Equation (4) the mean absolute errors (MAE) for

𝑒𝐺𝑖 are presented in Table 2.

Table 2. Variation of MAE.

Experiment
MAE (∆𝒕 = 𝟎. 𝟎𝟎𝟎𝟏)

(mm)

MAE (∆𝒕 = 𝟎. 𝟎𝟎𝟎𝟎𝟓)

(mm)

Constant orientation for end −effector 0.0012 0.00077

Variable orientation for end −effector 0.0019 0.00076

Decreasing or increasing the value of the parameters 𝑒𝑟𝑒 (directly influencing the ∆𝑡

parameter through Equation (4)) influenced the computational time. As a result, depend-

ing on the application and the hardware resources for the control system the precision of

the algorithm could be adjusted to best suit each situation. The average time needed for

computing each step in the method for different 𝑒𝑟𝑒 values for a robot structure with 12

modules (24 DoF) is presented in Table 3. The experiments were developed in MATLAB

using a Lenovo working station with an i7 − 10750H processor at 2.6 GHz running Win-

dows 10 OS developed by Microsoft.

It was observed (Table3) that the time needed to compute steps 3.1 and 3.2 was not

influenced by the variation of the 𝑒𝑟𝑒. Step 3 (3.1 and 3.2) calculation time was directly

connected with the robot topological configuration. The A1 and A2 computational times

was influenced by the variation of 𝑒𝑟𝑒. Decreasing the 𝑒𝑟𝑒 directly decreased parameter

∆𝑡, that influenced the discretization step of the candidate Bézier curve and the process of

calculating the robot backbone and ERM reconstruction.

Figure 6. Variation of the absolute positioning error eGi (a) for constant orientation of the end−effector
(b) for variable orientation of the end−effector.

Table 2. Variation of MAE.

Experiment MAE (∆t=0.0001)
(mm)

MAE (∆t=0.00005)
(mm)

Constant orientation for end −effector 0.0012 0.00077

Variable orientation for end −effector 0.0019 0.00076

Decreasing or increasing the value of the parameters ere (directly influencing the ∆t
parameter through Equation (4)) influenced the computational time. As a result, depending
on the application and the hardware resources for the control system the precision of
the algorithm could be adjusted to best suit each situation. The average time needed for
computing each step in the method for different ere values for a robot structure with 12
modules (24 DoF) is presented in Table 3. The experiments were developed in MATLAB
using a Lenovo working station with an i7−10750H processor at 2.6 GHz running Windows
10 OS developed by Microsoft.

Machines 2022, 10, 894 12 of 19

Table 3. Cycle time for different imposed values for ere.

Method Imposed Error ere
(mm)

Step 2 A1 Time
(s)

Step 2 A2
Time

(s)

Step 3.1 Time
(s)

Step 3.2 Time
(s)

Cycle Time
(s)

ere = 0.5 0.000384 0.000318 0.000054 0.000103 0.000859

ere = 0.1 0.000403 0.000334 0.000055 0.000105 0.000897

ere = 0.05 0.000391 0.000507 0.000055 0.000106 0.001059

ere = 0.01 0.000441 0.0013 0.000060 0.000108 0.001909

ere = 0.005 0.000490 0.0022 0.000062 0.000106 0.002858

ere = 0.001 0.0011 0.0114 0.000061 0.000103 0.012664

ere = 0.0005 0.0022 0.0251 0.000062 0.000107 0.027469

It was observed (Table 3) that the time needed to compute steps 3.1 and 3.2 was not
influenced by the variation of the ere. Step 3 (3.1 and 3.2) calculation time was directly
connected with the robot topological configuration. The A1 and A2 computational times
was influenced by the variation of ere. Decreasing the ere directly decreased parameter ∆t,
that influenced the discretization step of the candidate Bézier curve and the process of
calculating the robot backbone and ERM reconstruction.

The cycle time was further evaluated for four HRR robots that had 18, 24, 30 and
36 DoF that had elements with same length li = ct. The obtained average times for a cycle
after completing the trajectory (discretized in 26 points) are presented in Table 4.

Table 4. Cycle time for robots with different DoFs and imposed values for ere

Method Imposed Error ere
(mm)

Cycle Time for HRR
18 DoF

(s)

Cycle Time for HRR
24 DoF

(s)

Cycle Time for HRR
30 DoF

(s)

Cycle Time for HRR
36 DoF

(s)

ere = 0.5 0.000846 0.000859 0.001414 0.001414

ere = 0.1 0.000867 0.000897 0.001649 0.001726

ere = 0.05 0.001037 0.001059 0.001731 0.002053

ere = 0.01 0.001665 0.001909 0.004247 0.004725

ere = 0.005 0.002714 0.002858 0.006968 0.008511

ere = 0.001 0.01012 0.012664 0.03328 0.041637

ere = 0.0005 0.02274 0.027469 0.064486 0.064486

In Figure 7 the obtained cycle times for ere that vary from 0.1 mm to 0.0005 mm are
presented. As can be observed, for ere errors that were equal or higher than 0.05 mm the
total cycle processing time was less than 2.1 ms for all four HRRs. These values make the
S-GUIDE method suitable for real-time application implementation.

Machines 2022, 10, 894 13 of 19

Machines 2022, 10, x FOR PEER REVIEW 12 of 19

Table 3. Cycle time for different imposed values for 𝑒𝑟𝑒.

Method Imposed

Error 𝒆𝒓𝒆

(mm)

Step 2 A1

Time

(s)

Step 2 A2

Time

(s)

Step 3.1 Time

(s)

Step 3.2 Time

(s)

Cycle Time

(s)

𝑒𝑟𝑒 = 0.5 0.000384 0.000318 0.000054 0.000103 0.000859

𝑒𝑟𝑒 = 0.1 0.000403 0.000334 0.000055 0.000105 0.000897

𝑒𝑟𝑒 = 0.05 0.000391 0.000507 0.000055 0.000106 0.001059

𝑒𝑟𝑒 = 0.01 0.000441 0.0013 0.000060 0.000108 0.001909

𝑒𝑟𝑒 = 0.005 0.000490 0.0022 0.000062 0.000106 0.002858

𝑒𝑟𝑒 = 0.001 0.0011 0.0114 0.000061 0.000103 0.012664

𝑒𝑟𝑒 = 0.0005 0.0022 0.0251 0.000062 0.000107 0.027469

The cycle time was further evaluated for four HRR robots that had 18, 24, 30 and 36

DoF that had elements with same length 𝑙𝑖 = 𝑐𝑡. The obtained average times for a cycle

after completing the trajectory (discretized in 26 points) are presented in Table 4.

Table 4. Cycle time for robots with different DoFs and imposed values for 𝑒𝑟𝑒.

Method Imposed

Error 𝒆𝒓𝒆

(mm)

Cycle Time for

HRR 18 DoF

(s)

Cycle Time for

HRR 24 DoF

(s)

Cycle Time for

HRR 30 DoF

(s)

Cycle Time for

HRR 36 DoF

(s)

𝑒𝑟𝑒 = 0.5 0.000846 0.000859 0.001414 0.001414

𝑒𝑟𝑒 = 0.1 0.000867 0.000897 0.001649 0.001726

𝑒𝑟𝑒 = 0.05 0.001037 0.001059 0.001731 0.002053

𝑒𝑟𝑒 = 0.01 0.001665 0.001909 0.004247 0.004725

𝑒𝑟𝑒 = 0.005 0.002714 0.002858 0.006968 0.008511

𝑒𝑟𝑒 = 0.001 0.01012 0.012664 0.03328 0.041637

𝑒𝑟𝑒 = 0.0005 0.02274 0.027469 0.064486 0.064486

In Figure 7 the obtained cycle times for 𝑒𝑟𝑒 that vary from 0.1 mm to 0.0005 mm are

presented. As can be observed, for 𝑒𝑟𝑒 errors that were equal or higher than 0.05 mm the

total cycle processing time was less than 2.1 ms for all four HRRs. These values make the

S-GUIDE method suitable for real-time application implementation.

Figure 7. Cycle time variation for different 𝑒𝑟𝑒 values. Figure 7. Cycle time variation for different ere values.

3.2. S-GUIDE Method Testing for the Python Robot

For validating the S-GUIDE method, the IKP for a 24-DoF hyper-redundant robot
Python was calculated for a given task. The robot structure consisted of n = 12 identical
modules that were serially connected through universal joints (Figure 8). Each module
had 2 DoF allowing two relative rotations between the upper and lower platform of each
module along the Oix and Oiy {i = 1 . . . 12} local coordinate axis [7]. The actuation of each
module was accomplish using two pairs of bellows that work in tandem in order to impose
the rotation angles in the universal joints (Figure 8a).

Machines 2022, 10, x FOR PEER REVIEW 13 of 19

3.2. S-GUIDE Method Testing for the Python Robot

For validating the S-GUIDE method, the IKP for a 24-DoF hyper-redundant robot

Python was calculated for a given task. The robot structure consisted of n = 12 identical

modules that were serially connected through universal joints (Figure 8). Each module

had 2 DoF allowing two relative rotations between the upper and lower platform of each

module along the Oix and Oiy {i = 1...12} local coordinate axis [7]. The actuation of each

module was accomplish using two pairs of bellows that work in tandem in order to im-

pose the rotation angles in the universal joints (Figure 8a).

(a) (b)

Figure 8. Python robot (a) detailed view of a module (b) CAD model.

The robot is intended to be used in farming activities that are related to fruit/vegeta-

ble harvesting. For this reason, the last module integrated a soft gripper produced by Soft-

Gripping Co. [10]. In relation to the aforementioned activities, the robot’s tasks are:

- remain in a home position until a harvest command is received

- determine the needed trajectory from the home position to the object to grasp

- perform grasping

- place the object in designated containers and return to the home position.

In the developed experiment, the S-GUIDE method was used to calculate the robot’s

shape for a task of grasping an object placed in the robot’s workspace. The robot started

from the home position and using an already determined trajectory the robot’s inverse

shape was calculated for the whole process.

In order to simulate the process, a model of the robot was implemented in

MATLAB/Simulink using Simscape components. Simscape allows the attachment of sen-

sors in the robot’s structure that can be used to measure the kinematic parameters of the

robot. The input for the robot model are the angles for the universal joints. During simu-

lations the ideal representation of the robot is used, which does not take into consideration

any potential joint manufacturing errors, deflection of joints due to mechanical loads or

the control system performance. Using this representation, it allowed the evaluation of

the S-GUIDE method’s algorithm errors obtained due to deviation from the imposed tra-

jectory.

In the developed experiment, a grasping task was simulated. The robot started to

move from the home position at Gx = 0 mm Gy = 390 mm and Gz = 435 mm with the orien-

tation Gα = −110 deg, Gβ = 0 deg and Gγ = 0 deg (Figure 9b). From this position the end-

effector moved to Gx = 0 mm, Gy = 578 mm and Gz = 345 with the final orientation Gα = −90

deg, Gβ = 0 deg, and Gγ = 0 deg (Figure 9c). The transition between the start and stop points

was implemented using a spline with three intermediary points, the orientation Gα was

changed linearly between the initial value to the final value.

Figure 8. Python robot (a) detailed view of a module (b) CAD model.

The robot is intended to be used in farming activities that are related to fruit/vegetable
harvesting. For this reason, the last module integrated a soft gripper produced by SoftGrip-
ping Co. [10]. In relation to the aforementioned activities, the robot’s tasks are:

- remain in a home position until a harvest command is received
- determine the needed trajectory from the home position to the object to grasp
- perform grasping
- place the object in designated containers and return to the home position.

In the developed experiment, the S-GUIDE method was used to calculate the robot’s
shape for a task of grasping an object placed in the robot’s workspace. The robot started
from the home position and using an already determined trajectory the robot’s inverse
shape was calculated for the whole process.

Machines 2022, 10, 894 14 of 19

In order to simulate the process, a model of the robot was implemented in MAT-
LAB/Simulink using Simscape components. Simscape allows the attachment of sensors
in the robot’s structure that can be used to measure the kinematic parameters of the robot.
The input for the robot model are the angles for the universal joints. During simulations
the ideal representation of the robot is used, which does not take into consideration any
potential joint manufacturing errors, deflection of joints due to mechanical loads or the
control system performance. Using this representation, it allowed the evaluation of the
S-GUIDE method’s algorithm errors obtained due to deviation from the imposed trajectory.

In the developed experiment, a grasping task was simulated. The robot started to
move from the home position at Gx = 0 mm Gy = 390 mm and Gz = 435 mm with the
orientation Gα = −110 deg, Gβ = 0 deg and Gγ = 0 deg (Figure 9b). From this position the
end-effector moved to Gx = 0 mm, Gy = 578 mm and Gz = 345 with the final orientation
Gα = −90 deg, Gβ = 0 deg, and Gγ = 0 deg (Figure 9c). The transition between the start and
stop points was implemented using a spline with three intermediary points, the orientation
Gα was changed linearly between the initial value to the final value.

Machines 2022, 10, x FOR PEER REVIEW 14 of 19

The parameters used as input data for the S‐GUIDE method were: the number of

modules 𝑛 ൌ 12, length of each element 𝑙௜ ሼ𝑖 ൌ 0 … 12ሽ resulting in the total length of the
robot being 799 mm, and a maximum angle between two adjacent elements 𝜃௠௔௫ ൌ
30 𝑑𝑒𝑔. The initial position of the end‐effector, and the position and orientation of the base
was as mentioned above. The parameters 𝑒௕௭ and 𝑒௥௘ are 0.5 mm and 0.05 mm.

The obtained backbone curves for the robot along the imposed trajectory are dis‐

played in Figure 9a.

BackBone
curves

G
z
[m

m
]

End Effector
trajectory

(a)

(b)

(c)

Figure 9. Python virtual model in Simscape (a) backbone curve for the imposed trajectory (b) initial

position (c) final position.

For each robot pose during the trajectory transition of the end‐effector, the S‐GUIDE

method provides the joint angles 𝜃௫௜ and 𝜃௬௜ {i = 1..12} for all robot modules. The varia‐

tion of the joint angles during the simulation is presented in Figure 10. The obtained val‐

ues vary smoothly during the simulation.

(a) (b)

Figure 9. Python virtual model in Simscape (a) backbone curve for the imposed trajectory (b) initial
position (c) final position.

The parameters used as input data for the S-GUIDE method were: the number of
modules n = 12, length of each element li {i = 0 . . . 12} resulting in the total length of the
robot being 799 mm, and a maximum angle between two adjacent elements θmax = 30 deg.
The initial position of the end-effector, and the position and orientation of the base was as
mentioned above. The parameters ebz and ere are 0.5 mm and 0.05 mm.

The obtained backbone curves for the robot along the imposed trajectory are displayed
in Figure 9a.

For each robot pose during the trajectory transition of the end-effector, the S-GUIDE
method provides the joint angles θxi and θyi {i = 1 . . . 12} for all robot modules. The
variation of the joint angles during the simulation is presented in Figure 10. The obtained
values vary smoothly during the simulation.

Machines 2022, 10, 894 15 of 19

Machines 2022, 10, x FOR PEER REVIEW 14 of 19

The parameters used as input data for the S-GUIDE method were: the number of

modules 𝑛 = 12, length of each element 𝑙𝑖 {𝑖 = 0…12} resulting in the total length of the

robot being 799 mm, and a maximum angle between two adjacent elements 𝜃𝑚𝑎𝑥 =

30 𝑑𝑒𝑔. The initial position of the end-effector, and the position and orientation of the base

was as mentioned above. The parameters 𝑒𝑏𝑧 and 𝑒𝑟𝑒 are 0.5 mm and 0.05 mm.

The obtained backbone curves for the robot along the imposed trajectory are dis-

played in Figure 9a.

BackBone
curves

G
z

[m
m

]

End Effector
trajectory

(a)

(b)

(c)

Figure 9. Python virtual model in Simscape (a) backbone curve for the imposed trajectory (b) initial

position (c) final position.

For each robot pose during the trajectory transition of the end-effector, the S-GUIDE

method provides the joint angles 𝜃𝑥𝑖 and 𝜃𝑦𝑖 {i = 1..12} for all robot modules. The varia-

tion of the joint angles during the simulation is presented in Figure 10. The obtained val-

ues vary smoothly during the simulation.

(a) (b)

Figure 10. Variation of the joint angles (a) angle θxi (b) angle θyi.

The variation of the imposed position for P12 (reference value) and the position
resulting at the robot’s 12th universal joint (the associated point P12 on the robot) are
presented in Figure 11a. The obtained absolute errors between the two parameters along
the Ox, Oy and Oz axis are displayed in Figure 11b.

Machines 2022, 10, x FOR PEER REVIEW 15 of 19

Figure 10. Variation of the joint angles (a) angle 𝜃𝑥𝑖 (b) angle 𝜃𝑦𝑖.

The variation of the imposed position for P12 (reference value) and the position re-

sulting at the robot’s 12th universal joint (the associated point P12 on the robot) are pre-

sented in Figure 11a. The obtained absolute errors between the two parameters along the

Ox, Oy and Oz axis are displayed in Figure 11b.

(a) (b)

Figure 11. Simulation results (a) variation of the end-effector position along the Ox, Oy and Oz axis

(b) variation of the absolute error.

The obtained MAE errors during the simulation were: 0 mm for Px12 position, 0.051

mm for Py12 position and 0.0151 mm for Pz12 position. These values were in the same range

as the imposed ere, and were characterized by slight random fluctuation around ere.

The imposed trajectory (blue) and the simulation results (red) for the end-effector

positions are presented in Figure 12a. The end-effector position error 𝑒𝑇 is presented in

Figure 12b. The obtained MAE, 0.0537 mm and 0.006%, represents the method error (S-

GUIDE algorithm) for a preset input parameters (𝑒𝑏𝑧 = 0.5 mm 𝑒𝑟𝑒 = 0.05 mm) and for

an ideal robot (without joint errors, structure bending and torsion etc.).

Reference

Simulation

(a) (b)

Figure 12. Simulation results (a) end-effector trajectory (b) position error.

3.3. Discussions and Results Comparison

Figure 11. Simulation results (a) variation of the end-effector position along the Ox, Oy and Oz axis
(b) variation of the absolute error.

The obtained MAE errors during the simulation were: 0 mm for Px12 position,
0.051 mm for Py12 position and 0.0151 mm for Pz12 position. These values were in the same
range as the imposed ere, and were characterized by slight random fluctuation around ere.

The imposed trajectory (blue) and the simulation results (red) for the end-effector
positions are presented in Figure 12a. The end-effector position error eT is presented
in Figure 12b. The obtained MAE, 0.0537 mm and 0.006%, represents the method error
(S-GUIDE algorithm) for a preset input parameters (ebz = 0.5 mm ere = 0.05 mm) and for
an ideal robot (without joint errors, structure bending and torsion etc.).

Machines 2022, 10, 894 16 of 19

Machines 2022, 10, x FOR PEER REVIEW 15 of 19

Figure 10. Variation of the joint angles (a) angle 𝜃𝑥𝑖 (b) angle 𝜃𝑦𝑖.

The variation of the imposed position for P12 (reference value) and the position re-

sulting at the robot’s 12th universal joint (the associated point P12 on the robot) are pre-

sented in Figure 11a. The obtained absolute errors between the two parameters along the

Ox, Oy and Oz axis are displayed in Figure 11b.

(a) (b)

Figure 11. Simulation results (a) variation of the end-effector position along the Ox, Oy and Oz axis

(b) variation of the absolute error.

The obtained MAE errors during the simulation were: 0 mm for Px12 position, 0.051

mm for Py12 position and 0.0151 mm for Pz12 position. These values were in the same range

as the imposed ere, and were characterized by slight random fluctuation around ere.

The imposed trajectory (blue) and the simulation results (red) for the end-effector

positions are presented in Figure 12a. The end-effector position error 𝑒𝑇 is presented in

Figure 12b. The obtained MAE, 0.0537 mm and 0.006%, represents the method error (S-

GUIDE algorithm) for a preset input parameters (𝑒𝑏𝑧 = 0.5 mm 𝑒𝑟𝑒 = 0.05 mm) and for

an ideal robot (without joint errors, structure bending and torsion etc.).

Reference

Simulation

(a) (b)

Figure 12. Simulation results (a) end-effector trajectory (b) position error.

3.3. Discussions and Results Comparison

Figure 12. Simulation results (a) end-effector trajectory (b) position error.

3.3. Discussions and Results Comparison

The developed experiments aimed to test the S-GUIDE method from three perspectives:
precision, computational time and quality of the obtained solution. The precision of the
results for the method is directly connected with the algorithm parameter ere. During the
developed experiments the imposed values for the ere parameter varied from 0.0005 mm to
0.5 mm. It was observed that varying this value directly influenced the computational time
of the method. For the developed experiments where the structures with DoFs varying from
18 to 36, a good tradeoff for ere was the value 0.05 mm (the length of the robots varied from
605 mm to 1211 mm) at which the computational time for all tested robots was less than
2.1 ms. If the value for the ere parameter was increased the computational time decreased
(e.g., for an ere = 0.5 for an 18-DoF structure the computational time was 0.846 ms).
The experimental results emphasize that the robot joints have incremental and uniform
movements that ensured a fluid motion of the structure along the imposed trajectories.

In the proposed algorithm, another advantage is the fact that the precision of the
solution remains in the same range for a given value of the ere parameter and does not
depend on the robot’s number of modules or length.

To evaluate the performance of the proposed S-GUIDE method, the obtained results
were compared with the results presented in the literature that used other techniques to
calculate the robot’s shape and IKP. The comparation took in account the execution time
and the end-effector position error:

- a comparative study between different algorithms for solving the IKP problem for a
10-DoF structure was presented in [36]. The authors used an exhaustive method and
error optimization algorithms for this purpose. It was observed that the exhaustive
methods gave good results on positioning errors, but the processing time was fairly
high and not applicable for real-time applications (ex.:18 s for a 4 DoF structure).
Using error optimization algorithms (Patternsearch, Genetic algorithms, Multistart
and Simulannelbnd), the computation time for a 10-DoF robot varied from 0.5 s to
14 s with errors that ranged from 4 to 10 mm. Using S-GUIDE for a 24-DoF robot, the
computational time was 0.001 s with an average positioning error of 0.0537 mm.

- Another method proposed for calculating the inverse kinematics of HRRs called PASO
is based on a particle swarm optimization algorithm and was presented in [35]. Using
this method for a 30-DoF robot (ReMod3D) a processing time of 1.57 s with an average
positioning error of 0.46 mm was obtained. Using S-GUIDE for a robot with 30 DoF
the processing time was 0.001731 s with a similar positioning precision.

Machines 2022, 10, 894 17 of 19

- A good performance in relation to the computational time was obtained using the
natural CCD algorithm presented in [39]. For a 20-DoF robot (integrates joints with
2 DoF) the processing time was around 0.05 s with a precision of 0.1. Using S-GUIDE
for a 24-DoF robot the computational time was 0.001 s with a precision of 0.006%.

From the above comparisons, the proposed method offers good execution time and
positioning errors in relation to state-of-the-art algorithms. The obtained precision and
low computational time make this method a good candidate for integration into control
algorithms for these type of robots.

There are also some method limitations: the proposed algorithm’s search BC solutions
for a given orientation for the robot base does not modify the orientation of the base in
order to calculate a wider range of solutions when the joint angle limit is reached. The
S-GUIDE method calculates the HRR’s IKP solution using a cubic Bézier curve, further
developments which combine multiple cubic Bézier curves aim to increase the robustness
of the path planning and include functionalities for obstacle avoidance.

4. Conclusions

The proposed S-GUIDE method allows the planning the shape of HRRs with serial
architecture, obtaining and driving the shape of this class of robots in real-time manipula-
tion processes. To model the shape of the robot, the method uses an equivalent model, a
shape guidance curve (BC) obtained through a controlled adjustment of a Bézier curve. The
method is characterized by high precision (of the order of microns) which is maintained
regardless of the length of the robot. For a HRR composed of 12 modules (Python), the
following results were obtained: the processing time related to one cycle is less than 2 ms,
with a precision of 0.0537 mm.

In addition, the precision can be adjusted through the ere input parameter, which gives
an important advantage in real-time applications (e g., for a method error of 0.05 mm, for
all tested HRRs (18 DoF-36 DoF) configurations, the execution time is below 2 ms, if the
imposed error increases, the execution times related to the method decrease).

The proposed method can also be extended to HRRs with other topologies which can
be functionally reduced to the equivalent model the method works with.

Author Contributions: Conceptualization, C.L. and O.H.; methodology, C.L., O.H. and C.R.; software,
C.L.; validation, C.L., O.H. and C.R.; formal analysis, C.L., O.H. and C.R.; investigation, C.R., O.H.
and C.L.; resources, C.L., O.H. and C.R.; data curation, C.L.; writing—original draft preparation, C.L.,
C.R. and O.H.; writing—review and editing, C.L., C.R. and O.H.; visualization, C.L.; supervision,
O.H.; project administration, O.H.; funding acquisition, O.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Romanian Ministry of Education and Research, CCCDI—
UEFISCDI, project number PN-III-P2-2.1-PED-2019-4939, within PNCDI III https://uefiscdi.gov.ro/
proiect-experimental-demonstrativ-ped (accessed on 21 July 2022).

Acknowledgments: This work was supported by a grant from the Romanian Ministry of Education
and Research, CCCDI—UEFISCDI, project number PN-III-P2-2.1-PED-2019-4939, within PNCDI III”.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Chirikjian, G.S.; Joel, W.B. An obstacle avoidance algorithm for hyper-redundant manipulators. In Proceedings of the IEEE

International Conference on Robotics and Automation, Cincinnati, OH, USA, 13–18 May 1990; pp. 625–631. [CrossRef]
2. Chirikjian, G.S. Theory and Applications of Hyperredundant Robotic Mechanisms. Ph.D. Thesis, Department of Applied

Mechanics, California Institute of Technology, Pasadena, CA, USA, 22 May 1992. Available online: https://thesis.library.caltech.
edu/4458/1/Chirikjian_gs_1992.pdf (accessed on 21 July 2022).

3. Rad, C.; Hancu, O.; Lapusan, C. Aspects regarding “soft” grasping in smart agricultural harvesting tasks. Acta Tech. Napoc. Ser.
Appl. Math. Mech. Eng. 2020, 63, 389–394.

https://uefiscdi.gov.ro/proiect-experimental-demonstrativ-ped
https://uefiscdi.gov.ro/proiect-experimental-demonstrativ-ped
http://doi.org/10.1109/ROBOT.1990.126052
https://thesis.library.caltech.edu/4458/1/Chirikjian_gs_1992.pdf
https://thesis.library.caltech.edu/4458/1/Chirikjian_gs_1992.pdf

Machines 2022, 10, 894 18 of 19

4. Martín-Barrio, A. Design, Modelling, Control and Teleoperation of Hyper-Redundant Robots. Ph.D. Thesis, Universidad
Politécnica de Madrid, Madrid, Spain, 2 November 2020. Available online: https://oa.upm.es/65161/1/ANDRES_MARTIN_
BARRIO.pdf (accessed on 21 July 2022).

5. Singh, I. Curve Based Approach for Shape Reconstruction of Continuum Manipulators. Ph.D. Thesis, Universite de Lille, Lille,
France, 2018. Available online: https://hal.archives-ouvertes.fr/tel-01967054/document (accessed on 21 July 2022).

6. Liu, J.; Tong, Y.; Liu, J. Review of snake robots in constrained environments. Robot. Auton. Syst. 2021, 101, 103785. [CrossRef]
7. Lapusan, C.; Hancu, O.; Rad, C. Shape Sensing of Hyper-Redundant Robots Using an AHRS IMU Sensor Network. Sensors 2022,

22, 373. [CrossRef] [PubMed]
8. Walker, I.D. Continuous backbone “continuum” robot manipulators. ISRN Robot. 2013, 2013, 726506. [CrossRef]
9. Kolachalama, S.; Lakshmanan, S. Continuum robots for manipulation applications: A survey. J. Robot. 2020, 2020, 4187048.

[CrossRef]
10. Rad, C.; Hancu, O.; Lapusan, C. Data-Driven Kinematic Model of PneuNets Bending Actuators for Soft Grasping Tasks. Actuators

2022, 11, 58. [CrossRef]
11. Yeshmukhametov, A.; Koganezawa, K.; Yamamoto, Y.; Buribayev, Z.; Mukhtar, Z.; Amirgaliyev, Y. Development of Continuum

Robot Arm and Gripper for Harvesting Cherry Tomatoes. Appl. Sci. 2022, 12, 6922. [CrossRef]
12. Canali, C.; Pistone, A.; Ludovico, D.; Guardiani, P.; Gagliardi, R.; De Mari Casareto Dal Verme, L.; Sofia, G.; Caldwell, D.G. Design

of a Novel Long-Reach Cable-Driven Hyper-Redundant Snake-like Manipulator for Inspection and Maintenance. Appl. Sci. 2022,
12, 3348. [CrossRef]

13. Tang, J.; Zhang, Y.; Huang, F.; Li, J.; Chen, Z.; Song, W.; Zhu, S.; Gu, J. Design and Kinematic Control of the Cable-Driven
Hyper-Redundant Manipulator for Potential Underwater Applications. Appl. Sci. 2019, 9, 1142. [CrossRef]

14. Lapusan, C.; Rad, C.; Hancu, O. Kinematic analysis of a hyper-redundant robot with application in vertical farming. IOP Conf.
Ser. Mater. Sci. Eng. 2021, 1190, 012014. [CrossRef]

15. Martin, A.; Terrile, S.; Barrientos, A.; del Cerro, J. Hyper-redundant robots: Classification, state-of-the-art and issues. Rev. Iberoam.
De Automática E Inf. Ind. 2018, 15, 351–362. [CrossRef]

16. Lee, C.; An, D. AI-Based Posture Control Algorithm for a 7-DOF Robot Manipulator. Machines 2022, 10, 651. [CrossRef]
17. Lapusan, C.; Hancu, O.; Rad, C. Quaternion-Based Approach for Solving the Direct Kinematics of a Modular Hyper Redundant

Robot. Acta Tech. Napoc. Ser. Appl. Math. Mech. Eng. 2020, 63, 363–366.
18. Zhao, Y.; Jin, L.; Zhang, P.; Li, J. Inverse Displacement Analysis of a Hyper-redundant Elephant’s Trunk Robot. J. Bionic Eng. 2018,

15, 397–407. [CrossRef]
19. Chibani, A.; Mahfoudi, C.; Chettibi, T.; Merzouk, R.; Zaatri, A. Generating optimal reference kinematic configurations for

hyper-redundant parallel robots. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2015, 229, 867–882. [CrossRef]
20. Bieze, T.M. Contribution to the Kinematic Modeling and Control of Soft Manipulators Using Computational Mechanics. Ph.D.

Thesis, Universite de Lille, Lille, France, 24 October 2017. Available online: https://hal.archives-ouvertes.fr/tel-03516545
/document (accessed on 21 July 2022).

21. Qi, P.; Liu, C.; Zhang, L.; Wang, S.; Lam, H.-K.; Althoefer, K. Fuzzy logic control of a continuum manipulator for surgical
applications. In Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), Bali, Indonesia, 5–10
December 2014; pp. 413–418. [CrossRef]

22. Runge, G.; Peters, J.; Raatz, A. Design optimization of soft pneumatic actuators using genetic algorithms. In Proceedings of the
IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, Macao, 26 March 2018; pp. 393–400. [CrossRef]

23. Melingui, A.; Lakhal, O.; Daachi, B.; Mbede, J.B.; Merzouki, R. Adaptive Neural Network Control of a Compact Bionic Handling
Arm. IEEE/ASME Trans. Mechatron. 2015, 20, 2862–2875. [CrossRef]

24. Hannan, M.W.; Walker, I.D. Novel kinematics for continuum robots. In Advances in Robot Kinematics; Lenarčič, J., Stanišić, M.M.,
Eds.; Springer: Dordrecht, Netherlands, 2000; pp. 227–238.

25. Chirikjian, G.S. Conformational Modeling of Continuum Structures in Robotics and Structural Biology: A Review. Adv. Robot.
2015, 29, 817–829. [CrossRef] [PubMed]

26. Trivedi, D.; Lotfi, A.; Rahn, C.D. Geometrically Exact Models for Soft Robotic Manipulators. IEEE Trans. Robot. 2008, 24, 773–780.
[CrossRef]

27. Trivedi, D.; Rahn, C.D.; Kier, W.M.; Walker, I.D. Soft robotics: Biological inspiration, state of the art, and future research. Appl.
Bionics Biomech. 2008, 5, 99–117. [CrossRef]

28. Wang, T.; Lin, B.; Chong, B.; Whitman, J.; Travers, M.; Goldman, D.I.; Blekherman, G.; Choset, H. Reconstruction of backbone
curves for snake robots. IEEE Robot. Autom. Lett. 2021, 6, 3264–3270. [CrossRef]

29. Zeid, I. Mastering CAD/CAM, 1st ed.; McGraw-Hill Science/Engineering/Math: New York, NY, USA, 2004.
30. Sarcar, M.M. Computer Aided Design and Manufacturing, 1st ed.; Prentice-Hall of India Pvt. Ltd: Delhi, India, 2008.
31. Pérez, L.H.; Aguilar, M.C.M.; Montés Sánchez, N.; Montesinos, A.F. Path Planning Based on Parametric Curves. In Advanced Path

Planning for Mobile Entities; Róka, R., Ed.; IntechOpen: London, UK, 2017; pp. 125–143.
32. Chirikjian, G.S.; Burdick, J.W. A modal approach to hyper-redundant manipulator kinematics. IEEE Trans. Robot. Autom. 1994, 10,

343–354. [CrossRef]
33. Zanganeh, K.E.; Angeles, J. The inverse kinematics of hyper-redundant manipulators using splines. In Proceedings of the IEEE

International Conference on Robotics and Automation, Nagoya, Japan, 21–27 May 1995; pp. 2797–2802. [CrossRef]

https://oa.upm.es/65161/1/ANDRES_MARTIN_BARRIO.pdf
https://oa.upm.es/65161/1/ANDRES_MARTIN_BARRIO.pdf
https://hal.archives-ouvertes.fr/tel-01967054/document
http://doi.org/10.1016/j.robot.2021.103785
http://doi.org/10.3390/s22010373
http://www.ncbi.nlm.nih.gov/pubmed/35009919
http://doi.org/10.5402/2013/726506
http://doi.org/10.1155/2020/4187048
http://doi.org/10.3390/act11020058
http://doi.org/10.3390/app12146922
http://doi.org/10.3390/app12073348
http://doi.org/10.3390/app9061142
http://doi.org/10.1088/1757-899X/1190/1/012014
http://doi.org/10.4995/riai.2018.9207
http://doi.org/10.3390/machines10080651
http://doi.org/10.1007/s42235-018-0030-z
http://doi.org/10.1177/0959651815583423
https://hal.archives-ouvertes.fr/tel-03516545/document
https://hal.archives-ouvertes.fr/tel-03516545/document
http://doi.org/10.1109/ROBIO.2014.7090366
http://doi.org/10.1109/ROBIO.2017.8324449
http://doi.org/10.1109/TMECH.2015.2396114
http://doi.org/10.1080/01691864.2015.1052848
http://www.ncbi.nlm.nih.gov/pubmed/27030786
http://doi.org/10.1109/TRO.2008.924923
http://doi.org/10.1155/2008/520417
http://doi.org/10.1109/LRA.2021.3062331
http://doi.org/10.1109/70.294209
http://doi.org/10.1109/ROBOT.1995.525679

Machines 2022, 10, 894 19 of 19

34. Song, S.; Li, Z.; Yu, H.; Ren, H. Shape reconstruction for wire-driven flexible robots based on Bézier curve and electromagnetic
positioning. Mechatronics 2015, 29, 28–35. [CrossRef]

35. Collins, T.; Shen, W.M. PASO: An Integrated, Scalable PSO-Based Optimization Framework for Hyper-Redundant Manipulator Path
Planning and Inverse Kinematics; Technical Report No. ISI-TR-697; Information Sciences Institute, University of Southern California
(USC) Viterbi School of Engineering: Los Angeles, CA, USA, 2016.

36. Espinoza, M.S.; Gonçalves, J.; Leitao, P.; Sánchez, J.L.G.; Herreros, A. Inverse kinematics of a 10 DoF modular hyper-redundant
robot resorting to exhaustive and error-optimization methods: A comparative study. In Proceedings of the 2012 Brazilian Robotics
Symposium and Latin American Robotics Symposium, Fortaleza, Brazil, 16–19 October 2012; pp. 125–130. [CrossRef]

37. Gravagne, I.A.; Walker, I.D. Manipulability, force, and compliance analysis for planar continuum manipulators. IEEE Trans. Robot.
Autom. 2002, 18, 263–273. [CrossRef] [PubMed]

38. Mochiyama, H.; Shimemura, E.; Kobayashi, H. Shape correspondence between a spatial curve and a manipulator with hyper
degrees of freedom, In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in
Theory, Practice and Applications, Victoria, BC, Canada, 17 October 1998; Volume 1, pp. 161–166. [CrossRef]

39. Martin, A.; Barrientos, A.; Del Cerro, J. The natural-CCD algorithm, a novel method to solve the inverse kinematics of hyper-
redundant and soft robots. Soft Robot. 2018, 5, 242–257. [CrossRef] [PubMed]

http://doi.org/10.1016/j.mechatronics.2015.05.003
http://doi.org/10.1109/SBR-LARS.2012.28
http://doi.org/10.1109/TRA.2002.1019457
http://www.ncbi.nlm.nih.gov/pubmed/12492083
http://doi.org/10.1109/IROS.1998.724613
http://doi.org/10.1089/soro.2017.0009
http://www.ncbi.nlm.nih.gov/pubmed/29565775

	Introduction
	Conceptual Description of Shape Planning Algorithm
	Numerical Results
	Performance Assessment of the S-GUIDE Method
	S-GUIDE Method Testing for the Python Robot
	Discussions and Results Comparison

	Conclusions
	References

