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Abstract: The research into the tracking methods of unmanned aerial vehicles (UAVs) for agile targets
is multi-disciplinary, with important application scenarios. Using a quadrotor as an example, in
this paper, we mainly researched the tracking-related modeling and application verification of agile
targets. We propose a robust and efficient UAV path planning approach for tracking agile targets
aggressively and safely. This approach comprehensively takes into account the historical observations
of the tracking target and the surrounding environment of the location. It reliably predicts a short
time horizon position of the moving target with respect to the dynamic constraints. Firstly, via
leveraging the Bernstein basis polynomial and combining obstacle distribution information around
the target, the prediction module evaluated the future movement of the target, presuming that it
endeavored to stay away from the obstacles. Then, a target-informed dynamic searching method
was embraced as the front end, which heuristically searched for a safe tracking trajectory. Secondly,
the back-end optimizer ameliorated it into a spatial–temporal optimal and collision-free trajectory.
Finally, the tracking trajectory planner generated smooth, dynamically feasible, and collision-free
polynomial trajectories in milliseconds, which is consequently reasonable for online target tracking
with a restricted detecting range. Statistical analysis, simulation, and benchmark comparisons show
that the proposed method has at least 40% superior accuracy compared to the leading methods in the
field and advanced capabilities for tracking agile targets.

Keywords: tracking agile target; quadrotor path planning; discrete optimization

1. Introduction

Autonomous aerial tracking is broadly applied in aerial photography, inspections,
and security, whereas autonomously tracking a moving target with free intent is rather
challenging. The development of assessment [1], control [2], and program [3] technologies
for autonomous aerial robots can achieve autonomous flights in complex environments,
which have broad application prospects in aerial photography, surveillance, inspection,
patrolling, search/rescue, and other fields. Large numbers of these applications require
aerial robots that are capable of independently following a moving objective. However,
it is still open for the problem of autonomous target tracking in complex surroundings
with guaranteed obstacle avoidance (because of the mixing of multiple possibly conflicting
constraints). As an example, rigid tracking of the target may lead to a collision with
obstacles as a result of the inertia of the aerial robot, lower control authority of the aerial
robot relative to the target objective, and different obstacle structures at various flight
altitudes. A fast turn or stop of the target may cause the tracking trajectory of the flying
robot to be dynamically infeasible in the case of stiff tracking.

As pointed out in [4–6], an inflexible tracking, which blindly moves along the target
observation trajectory and does not fully take into account the constraints of the aerial
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robot, is not advisable. For visual tracking, some hard constraints must be satisfied, such as
obstacle avoidance and dynamic feasibility, otherwise, a collision will occur. Compared
with hard constraints, soft constraints do not have to be strictly adhered to. The tracking
quality is not sensitive to small changes in the distance between the vehicle and the tracked
target. If the target is within the range of the vision sensor most of the time, then short-
term occlusion of the target by obstacles is acceptable. Feasibility issues must be taken
seriously. The quadrotor affected by its own structure and performance has maximum
speed and a maximum acceleration upper limit. Therefore, it is required that the generated
trajectory not exceed these physical parameters, otherwise, it may cause vehicle system
problems and be unable to complete the target following. Some collision events will even
occur in more serious cases. Therefore, in order to ensure the safety and feasibility of the
movement, it is a common practice in engineering applications to appropriately reduce the
tracking quality. A cost function for quadratic programming (QP) was proposed in [7–9], it
incorporated the quadrotor control cost and tracking error over the entire tracking range,
in addition to encoding obstacle avoidance and platform dynamics as linear inequality
constraints for the QP. The quadrotor takes advantage of sensors to identify the target and
the surrounding environment, then the tracking system plans a safe and feasible tracking
trajectory. Moreover, high-frequency replanning is necessary to deal with unexpected and
fully dynamic situations. However, due to the limited onboard computing and sensing
capabilities, it is difficult to satisfy these requirements simultaneously.

There are research results that could (hopefully) solve the problem of onboard sensors
estimating and predicting target movement. A mechanism was proposed in [10], which
utilized an RGB-D camera to strip the target from the image background and then generated
target nodes for tracking. Thanks to the rapid development of computer vision technology,
methods to estimate the position of UAV relative to a moving target using only a monocular
camera [11–14] were also proposed. The method used in [14] accurately reconstructed the
target trajectory in the case that the target height was known. Object locations in road-
constrained scenarios were modeled as multimodal Gaussian distributions and updated
using Bayesian estimation in [15]. The quadrotor could make large-scale movements
appropriately, regardless of whether the objective was not in the sensor range.

In previous studies, the trajectory planning and control problems of target tracking
were usually dealt with in a local control setting. Due to the development of camera
and computer technology, more researchers have begun to adopt vision-based control
methods. In [16–18], the authors used vision-based control methods that enabled the UAV
to continuously track a locked moving target by taking continuous pictures. However,
this method did not consider the existence of obstacles in the environment, which made
the application scenarios of the device rather limited. To ensure flight safety, the work
in [19,20] utilized reachability to introduce guaranteed-safety online learning, in which the
UAV filtered out control signals that might have led to collisions via computing forbidden
zones in the state space and they used security constraints to select the appropriate control
signal by minimizing conditional entropy. Nonetheless, this method consumed a relatively
large computational cost in the face of complex environments. In addition, it was also more
prone to local minimum problems due to the inability to consider global information.

The previous works in [21–25] utilized the tracking error in the image space as feed-
back to design a tracking controller, which performed well in real-time performance, but the
controller model did not consider safety constraints and could not be applied in complex
scenarios. Works in [26–29] proposed gradient-based iterative learning optimization con-
trol methods to track the target trajectory. Although they performed well in tracking
accuracy, they consumed long computing times and were not suitable for online tracking.
To incorporate collision avoidance, the work in [30] designed a real-time receding horizon
planner, which could more accurately identify targets and generate safe collision-free trajec-
tories. For the sake of tackling the nonlinear optimization problem, the researchers in [31]
proposed an online replanning method (given the model’s predictive control). However,
the methods used in [30–32] could not be applied in practical engineering because it was



Machines 2022, 10, 931 3 of 18

assumed that the shape of the obstacle was an ellipsoid, which was incapable of being
satisfied by the real environment. In addition, these optimization formulas were both
non-convex and were easily stuck in local minima when computing the solution.

Regarding the target prediction method, the study in [33] estimated the future motion
of the target through Kalman filtering, but the motion model was not exquisite enough to be
applied reliably. To be able to apply tracking methods in common environments, the works
in [34,35] made plenty of practical contributions. Under the consideration of trajectory
smoothness, obstacle avoidance, and occlusion, the researchers in [34] designed a cost
function to search the tracked trajectories employing a covariant gradient descent method.
However, the cost function itself was complex and contained some nonlinear terms, which
required high numerical computing power in some challenging environments. The authors
in [4] presented an intent-free planner that predicted the target’s future trajectory based on
the target’s current state [36]. Then, combined with the obtained target predictions, the QP
optimizer performed polynomial fitting to generate the tracking trajectory in [37]. To avoid
the overfitting phenomenon, the method designed a regularization adjustment term to
penalize the speed and acceleration of the target. Although this polynomial regression
prediction method showed desired robustness in general environments, it was still difficult
to exclude the influence of target observation noise.

In order to systematically solve the above problems, this paper designs a tracking
framework to achieve UAV tracking dynamic targets with free intent. In complex tracking
environments, the target can be approximated as a rigid body, whose moving velocity and
acceleration are bounded and continuous without jumps. This paper employs polynomial
regression based on past target observations. By analyzing the environment around the
target, it reliably predicts the destination of the target in a period of time as the tracking
guidance point. The Bernstein basis polynomial could satisfy dynamic constraints in
regression prediction applications and generate target future motion prediction trajectories.
In practical applications, the UAV cannot always locate the target firmly for the occlusion
of obstacles, the limited perception range, and uncertain target intention. For this reason,
a mechanism was designed in this paper, it can make the UAV relocate the target as soon as
possible after losing the target.

This paper proposes a heuristic function for a motion dynamics search in the tracking
trajectory planning module. The method combines the current position of the target and the
future prediction to generate a series of extended nodes located in free space. Afterward,
the back-end optimizer generates the spatial–temporal optimal safe trajectory. Finally,
the method is integrated into a customized UAV system with a complete setup for target
tracking. Extensive experimental data confirm the effectiveness of the proposed method,
which helps the UAV achieve active and safe target tracking. In addition, compared with
the leading data in the field, the integrated system achieved better performance with fewer
computing resources. The main contributions of this paper are as follows:

• A prediction method for tracking targets with free intention is proposed, which is
based on a polynomial regression design and takes into account the surrounding
environment of the target. The proposed method has at least 40% superior accuracy
compared to the leading methods in the field.

• A secure tracking trajectory planning strategy is presented, which consists of a dy-
namic search front end considering dynamic constraints and a spatiotemporally opti-
mal trajectory optimizer as a back-end.

• A fully functional UAV path planning approach forming a system-level solution for
tracking targets was designed, which integrates the proposed method and percep-
tion functions.

2. Problem Description

This paper focuses on dynamic target movement prediction and tracking trajectory
planning. In terms of target locating, the camera on the UAV recognizes the artificial
marker to obtain its relative position to the target. The trajectory representation scheme
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adopts the spline curve used in [3] due to the differential flatness property of quadrotors.
A trajectory planning method applied to static targets is proposed in [35], this paper
continues to develop on the basis of this method to ensure obstacle avoidance and dynamic
feasibility. In the constructed global 3D map, combined with the target observation with
noise interference and the distribution of obstacles around the target position, this paper
designs a cost function that includes the error of the entire prediction range, the UAV control
cost, and the predicted future movement of the target. The tracking trajectory was obtained
by minimizing the cost function in QP. Here, obstacle avoidance and dynamic feasibility are
described as linear inequality constraints of QP. Security is defined as a hard constraint of
trajectory planning, whose priority should be guaranteed. Tracking error is a soft constraint
that can change elastically. Inspired by [4], this paper reliably predicts the movement of
the target over a period of time according to the distribution of obstacles around the target.
The motion planner connects the target prediction with the target historical observation
and uses polynomial regression to generate the tracking trajectory. The architecture of the
overall UAV path planning approach is illustrated in Figure 1. This approach assumes that
the UAV has the environment and target information. After locating the target position,
the algorithm predicts its future movement based on the distribution of obstacles around
the target, and generates a tracking trajectory that combines the historical observation of
the target.

In this paper, the proposed trajectory generation method combines global obstacle
information, which can effectively avoid the problem of falling into local minima. That
is to say, as long as the airborne sensor finds the existence of an obstacle on the planned
trajectory, the approach will replan a go-around trajectory to the target position. Due to
this mechanism, the UAV can locate the target again through the go-around trajectory after
the target is blocked by the obstacle for a short time. The method optimizes all constraints
in one go and generates a safe and dynamically feasible flight trajectory.

Figure 1. UAV path planning approach architecture diagram.

2.1. Design Assumptions

Target tracking is rather complex in engineering, which involves knowledge in mul-
tiple technical fields, such as hardware, positioning, mapping, planning, and control.
The target-aware detection technique in [38] has solved most problems in real-world engi-
neering. The aerial navigation scheme in [39] has also been verified in various application
scenarios. On this basis, this paper focuses on designing target motion prediction and UAV
tracking trajectory planning modules to form a complete aerial path. In these two module
designs, the following assumptions are made.

• The sensing range of the omnidirectional distance sensor configured by the UAV
system is limited. The existence of obstacles can be detected online through the sensors.

• The target motion conforms to the dynamic characteristics, the change of velocity
and acceleration are continuous and have an upper limit. The target does not stop
suddenly or reverse movement.

• The UAV can observe the pose of the target and noise online and estimate its state.
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2.2. Architecture of UAV Path Planning Approach

The octree structure is an efficient technique for representing obstacle information
in the environment, which stores the obstacle information in a 3D cubic grid of variable
size. Figure 2 describes the flow of the target tracking trajectory planning algorithm.
Firstly, the approach uses onboard sensors to observe the current position and historical
trajectory of the target (Figure 2a), then predicts the target’s moving position in the future
by analyzing the distribution of obstacles around the target. The polynomial is applied
to fit the approximate target trajectory (Figure 2b). Next, the estimated target trajectory is
offset along the ds direction to obtain a rigid trajectory of target tracking, which usually
interferes with obstacles (Figure 2c). After that, using the map grid path traversed by the
rigid tracking trajectory, the initial flight corridor of the UAV can be formed (Figure 2d).
However, the flight corridor could not meet the safety requirements, the multi-start A*
algorithm is used to adjust the interference part to find a collision-free go-around corridor
(Figure 2e). This flight corridor is connected with the current position of the drone, then the
A* algorithm is used to generate a safe tracking flight corridor for the drone. Finally, in the
case of satisfying the dynamic constraints, a QP-based method was adopted to optimize
the safe and dynamically feasible tracking trajectories (Figure 2f).

(a) (b)

(c) (d)

Figure 2. Cont.
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(e) (f)

Figure 2. Graphical illustration of the algorithmic pipeline. (a) Observe the target trajectory by the
onboard sensor. (b) Predict the target trajectory considering nearby obstacles. (c) Offset along the
ds vector to generate rigid target tracking trajectories. (d) Connect to the drone and generate initial
flight corridor. (e) Generate the re-planned flight corridor considering obstacles avoidance. (f) The
back-end optimizer generates a feasible tracking trajectory.

3. Target Motion Estimation and Prediction

In this section, we first introduce the target motion estimation and prediction method
based on the distribution of obstacles, and then explain the relocation rule after the tracking
target is lost.

3.1. Target Path Prediction

According to the previous assumption, the target motion is smooth. The Bézier curve
could fit the target motion well, so this paper uses the Bézier curve to depict the target
prediction trajectory. The n-degree Bézier curve can be expressed as

B(t) =
n

∑
i=0

wihi
n(t), (1)

where each hi
n is the basis of the polynomial, [w0, w1, . . . , wn] is the set of control points of

the Bézier curve.
The relative position of the target and the UAV can be observed utilizing the onboard

sensor, then when the position of the UAV is known, the observation sequence of the target
position with noise interference in the global frame can be obtained through coordinate
transformation. tL is defined as the current time, t1 is the start time of the sliding window,
and there are L observations during the time period [t1, tL]. In this paper, the 3D position
of the target at time t ∈ R is denoted as p(t) ∈ R3, the value of the Euclidean signed
distance field at a position p of the prior map is defined as φ(p). A fixed-input fixed-output
vector of length L is then obtained, which stores historical observations and correspond-
ing timestamps of the target. This vector is represented as Q = [q1, q2, . . . , qL], where
qi = [pti , ti].

This paper designs a weight factor wti to distinguish the confidence of observations at
each time. It can be expressed as

wti = f (ti) =

{
tanh

(
ct

tL−ti

)
, (i = 1, 2, . . . , L− 1)

1, (i = L).
(2)

The credibility of observations with different timestamps cannot be treated equally. The older
the target observation value, the lower the reference significance for target prediction. Ob-
viously its weight in the cost function should be relatively small. As the time difference
between ti and the current time tL increases, the value of hyperbolic tangent function
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tanh(x) decreases rapidly. This mathematical property can be effectively applied in the
calculation of confidence levels for different observations.

In the target prediction algorithm, the UAV collects historical observations of the
target at discrete time points t1, t2, . . . , tL. The target then goes to the target waypoint
for a short time, which is calculated considering the area that the target can reach in a
period of time τ and distribution of obstacles around the target. To predict the target’s
future trajectory B̂(τ), the algorithm designs a discrete position path ξ = {z1, z2, . . . , zNT}
(zi ∈ R3 and NT > L) that covers the target’s past observations and the predicted path
between the current position and the waypoint. Considering that the target will effort
to avoid obstacles, simultaneously in order to avoid overfitting, an obstacle avoidance
adjustment term and an acceleration adjuster are added to the cost function to guarantee
the security and smoothness of the predicted target trajectory. The optimization formula
B̂(τ) is expressed as follows

min
ξ

L

∑
i=1

wti

∥∥B̂(ti)− pi
∥∥2

2︸ ︷︷ ︸
estimation residual

+Lλt

∫ tm

tl

∥∥∥B̂(2)(t)
∥∥∥2

2
dt︸ ︷︷ ︸

acceleration regulator

+λ f

NT

∑
n=1

fobs(zn)︸ ︷︷ ︸
obstacle

, (3)

where λt is used to adjust the weighting of the regulator; λ f is used to adjust the effect
of obstacles on position prediction; tm is the time limit for predicting the target trajectory;
[t1, tL] is the time period during which the target observation is actually performed; [tL, tm]
is the short time range for predicting the target motion. The prediction is used to generate
the tracking trajectories. The second term implies that the target will minimize its deriva-
tives and the efficiency of its ego-motion. The integral of the l2 norm of the polynomial
has a quadratic closed form, so the second term is a constraint-free QP, which has a closed
form solution [40]. The function fobs is used to explain the behavioral principle of the
target. Under the condition of satisfying dynamic feasibility, the target tends to move
forward the free space. It is a non-convex cost function inherited from φ(p), which can be
solved through the scheme in [41]. Equation (3) can be organized into a standard form for
covariant optimization as

min
ξ

1
2

ρ‖Aξ − b‖2︸ ︷︷ ︸
prior term

+ fobs(ξ)︸ ︷︷ ︸
obstacle term

. (4)

Equation (4) can be solved with ∆ξ = −α
(

AT A
)−1(

ρ
(

AT Aξ − ATb
)
+∇ fobs(ξ)

)
, where α

is the step size.
As shown in Figure 3, a geometric path ξ is obtained from Formulas (1)–(4), where

zL+1, . . . , zNT represents the prediction of the target from current target position to the
waypoint. These discrete waypoints can be used to complete the target trajectory prediction.

Figure 3. The prediction of the target motion.
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3.2. Time Prediction

To reduce computational complexity, each point zi in ξ is assigned a time node ti
and is specified to have a constant velocity. The historical observation points of the target
zn(n ≤ L) do not need too many constraints, simply assign observation timestamps.
The following rule is used to allocate the times for predicted locations zn(n > L).

tn = tn−1 +
‖zn − zn−1‖

v
, (5)

where v =
∑L−1

n=1‖xp,n−xp,n+1‖
tL−t1

indicates the average velocity of the acquired observations.
That is to say, the transit time of the point in Formula (3) can be estimated based on the
constant velocity v. With this time allocation strategy, the future trajectory of the target in
the time window (t, t + H] can be predicted with the interpolation

B̂(τ) =
(tn+1 − τ)zn + (τ − tn)zn+1

tn+1 − tn
(tn < τ < tn+1). (6)

To show the real-time performance of the proposed approach, the frequency of a single
prediction optimization routine is set to a minimum of 15 Hz, which helps to find rela-
tively inexpensive trajectories. Thanks to the existence of the obstacle avoidance item fobs,
the approach can find better prediction results based on the obstacle distribution.

3.3. Target Relocate

When the UAV tracks the movement of the target, it is inevitable that the tracking
target will be lost due to the occlusion of obstacles. Generally, the drone will call the sensor
to search for the target location after reaching the last target observation point, but this rigid
method sometimes has significant limitations. This paper proposes an effective strategy to
enable UAVs to respond quickly while losing targets, and actively exploring and relocating
the targets by predicting the target trajectory. The detailed process design is illustrated in
Figure 4.

The predicted trajectory in Figure 4a is generated with Bézier regression. When not
considering the obstacles around the target, the predicted trajectory may interfere with the
obstacles. The target relocation strategy proposed in this paper can avoid similar problems.
Firstly, the loss of the target causes the relocation mechanism to be triggered. By analyz-
ing the surrounding environment of the last target observation point, combined with the
target prediction algorithm mentioned above, the predicted position of the target within
a period of time can be obtained (Figure 4b). Then to generate a flight corridor (Figure 4c),
the predicted trajectory of the target is connected with the current position of the UAV.
Based on the flight corridor, the tracking trajectory can be further optimized. During relo-
calization, if new obstacles are observed on the tracked trajectory, the backend optimizer
will regenerate a safe and dynamically feasible tracking trajectory (Figure 4d). Compared
with the Bézier regression prediction, the proposed strategy analyzes the surrounding
environment of the target lost point when predicting the target. The target prediction
result is more accurate so that the system resource can be used more in the subsequent
relocation work.
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(a) (b)

(c) (d)

Figure 4. The expanded description of the relocation strategy. (a) The target motion prediction
based on the Bézier regression interferes with the nearby obstacle. (b) The proposed target motion
prediction considers the obstacles around the target lost point. (c) The predicted trajectory of the
target and the current position of the UAV are connected to generate a flight corridor. (d) The backend
optimizer regenerates a safe and dynamically feasible flight trajectory.

4. Safe Tracking Trajectory Planning

This section introduces the safe tracking trajectory planning scheme, which includes
target-informed dynamic tracking path searching and spatial–temporal optimal trajec-
tory generation.

4.1. Dynamic Tracking Path Searching

Hybrid A* algorithm [42] is an efficient, practical, and widely used algorithm, which
extends the nodes generated by the discretized control input to search for safe and dynami-
cally feasible trajectories. The dynamic search method proposed in this paper is based on
it, then a heuristic function is designed, which can make full use of the target prediction
trajectory to quickly search the target tracking trajectory.

The state of UAV is represented as a vector x = (px, py, pz, vx, vy, vz)T . The acceleration
is denoted as the control input u ∈ u := [−amp, amp]3 ⊂ R3. Then u is discretized as

uN :=
{
−amt,− na−1

na
amt, · · · , na−1

na
amt, amt

}
in each dimension. The expansion duration is

denoted as ∆T :=
{

1
nt

∆Tm, 2
nt

∆Tm · · · , nt−1
nt

∆Tm, ∆Tm

}
. The state transition equation can

be represented as follows:

xk =

[
1 ∆T
0 1

]
xk−1 +

1
2

[
∆T

2∆T

]
uN , (7)

where xk−1 represents the previous state. Given xk−1, uN , and ∆T, motion primitives can
be generated by expanding the nodes. At most, (2na + 1)3 · nt motion primitives can be
generated in a single expansion process.
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The cost function of a node is expressed as fc = gc + hc, where gc denotes the actual
cost from the initial state x0 to the current state xc, hc represents the heuristic cost, which
makes searching faster. The energy-time cost function is mainly related to the control-effort
and the time of a trajectory, the proposed method trades off these two factors by minimizing
them. The energy-time cost function is expressed as follows:

Jt(T) =
∫ T

0
‖u(τ)‖2dτ + ρT. (8)

The motion primitives are generated by the discretized input uN and ∆T in a sin-
gle expansion process. Then the cost of a motion primitive can be represented as ec =(
‖uN‖2 + ρ

)
∆T. Therefore, assuming there are m motion primitives that make up the

optimal path x0 to xc, gc can be determined as

gc =
m

∑
i=1

ei =
m

∑
i=1

(
‖uNi‖2 + ρ

)
∆Ti. (9)

The heuristic function hc can significantly accelerate the search speed of the algorithm,
which consists of two parts and is expressed as follows:

hc = D
(
xc, xg

)
+ Wt(Ht − tc), (10)

where D
(
xc, xg

)
represents the Euclidean distance from the current state of the UAV xc to

the destination state xg. To make the search results forward-looking, this paper adopts the
weighted value of xtc and xtp instead of the goal state xg to yield

xg = (1− σ)xtc + σxtp, (11)

where σ represents the weight. xtp propagates along B̂(t) in the wake of the increasing path
expansion time τ. In this paper, the time axis of the path expansion process is designed
to synchronize with the target predicted trajectory. To be specific, at time τ of the path
expansion, xtp(τ) =

{
ptp, vtp

}
=
{

B̂(τ), B̂(1)(τ)
}

.
The minimum dynamic cost of an optimal path is solved by an optimal boundary

value problem (OBVP) proposed in [43]. Based on this method, the paper defines the OBVP
distance D

(
xc, xg

)
for the question under study, which is the minimum cost solved by the

problem between xc and xg.
For another, Wt(Ht − τ) is design as a time penalty term, where Wt represents the

weight and Ht denotes the sum of expected expansion time. The original intention of
introducing this term is to trade off the optimality and computational efficiency, but the
experiment shows that it greatly speeds up the search velocity of the algorithm. It makes
the algorithm prefer to choose the adjacent region of the current node, rather than the
whole state space. Since the search area is greatly reduced, the algorithm runs much faster.
The results verify that planners can find satisfactory solutions in most scenarios.

4.2. Spatial–Temporal Optimal Trajectory Generation

The optimization algorithm proposed in [37] expresses the tracking trajectory by
piecewise polynomials. In this paper, a back-end trajectory optimizer is designed based
on this method, which optimizes the intermediate waypoints qw and the piece time T of
piecewise polynomial trajectories. The method cleverly reduces the optimization variables
involved, which makes it possible to generate a spatiotemporal optimal trajectory p(t) in
a given flight corridor. Firstly, a flight corridor F is generated according to the trajectory
obtained from the front end analysis, which can be represented as follows:

F =
M⋃

i=1

Ci, (12)
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where each Ci =
{

x ∈ R3 | Aci x ≤ bci

}
represents a finite cube. F is used as the input to

minimize the cost function

JΣ(qw, T) = JS(qw, T) + JF(qw) + JD(qw, T). (13)

The one-dimensional smoothness cost JS(qw, T) is denoted as follows:

JSµ
=

M

∑
i=1

∫ Ti

0

∥∥∥p(3)iµ (t)
∥∥∥2

dt. (14)

This logarithmic barrier term JF(qw) is designed as

JF(qw) = −υ
M−1

∑
i=1

i+1

∑
j=i
ET ln

[
bcj −Acj qwi

]
, (15)

where υ is a constant coefficient, E is denoted as an all-ones vector and ln [·] is the entry-
wise natural logarithm. This term could guarantee that each qwi is constrained in Ci ∩ Ci+1.
JD(qw, T) is designed as a penalty to adjust the aggressiveness of the whole tracking
trajectory, it can be expressed as

JD(qw, T) = ρt

M

∑
i=1

Ti+

ρv

M−1

∑
i=1

ι

(∥∥∥∥ qwi+1 − qwi−1

Ti+1 + Ti

∥∥∥∥2
− v2

m

)
+

ρa

M−1

∑
i=1

ι

∥∥∥∥∥
(
qwi+1 − qwi

)
/Ti+1 −

(
qwi − qwi−1

)
/Ti

(Ti+1 + Ti)/2

∥∥∥∥∥
2

− a2
m

,

(16)

where ι(x) = max(x, 0)3, vm and am are, respectively, the maximum velocity and maximum
acceleration of the tracker.

In the algorithm, in the schematic diagram shown in Figure 5, the black part represents
the obstacles in the environment, and the distance between the target and the obstacles
will have a cascade change on the trajectory cost. The closer the distance from the obstacle,
the higher the collision probability of the UAV. The proposed algorithm tends to predict
the position of the target in the range of time τ in the safe area, which mainly trades off
the dynamic consumption and the path hazard to generate a series of predicted target
nodes. The green curve represents the target predicted trajectory, the red curve indicates
the expansion process of the UAV. The details of the proposed algorithm are shown in
Algorithm 1.

Figure 5. An illustration of the dynamic tracking path searching method.
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Algorithm 1 Trajectory searching for dynamic tracking.

Input: openlist Φo, closelist Φc, current node nc, predicted trajectory B̂(t), initial
state X0, goal state Xg.

Output: Target tracking trajectory F .
1: initialization ()
2: while Φo is not empty do
3: nc ← FindMinCostNode(Φo)
4: Xg ← GenerateGoal(nc, B̂(t))
5: if Reach(nc, Xg) or AnalyticExpand(nc, Xg) Then
6: return OptimalSearchPath()
7: end if
8: Φc.push_back(nc)
9: nodes← Expand(nc)

10: for ni in nodes do
11: Xg ← GenerateGoal(ni, B̂(t))
12: if Nofeasible(nc, ni) or ni ∈ Φc Then
13: continue
14: end if
15: go ← nc.g+EdgeCost(nc, ni)
16: if ni /∈ Φo Then
17: Φo.push_back(ni)
18: else if go > ni.g Then
19: continue
20: end if
21: ni.parent← nc
22: ni.g← go
23: ni. f ← ni.g+Heuristic(ni, Xg)
24: end for
25: end while
26: return Target tracking trajectory F

5. Numerical Case Study

In this section, we conduct a large number of simulation experiments on the proposed
approach in a variety of different scenarios. We then compare the experimental results
with state-of-the-art methods in the field. The results demonstrate that the proposed
algorithm has strong robustness and high efficiency, and it has excellent performance in
target movement prediction and safe trajectory generation.

5.1. Implementation Details

We validated the proposed algorithm in multiple dense environments. For the sim-
ulation, we used a complex city model, which included multiple non-convex obstacles;
the target moved freely and autonomously and hid behind the obstacles. In the simulation
experiment, the target was set as a freely moving car. In order to be detected by sensors,
the car was equipped with a recognizable tag. The visual fiducial system proposed in [44]
ws used to detect the tag. In addition, to enhance the perception range of the system, we
configured three cameras to form a broad field-of-view camera array. The target detection
sensor had a range of 10 m and a field of view of 120 degrees. With credit given to the
broad view, the drone did not have to struggle to maintain a relative angle to the target.
Meanwhile, the algorithm correspondingly planned the tangential direction of the UAV
motion to ensure a safe flight. For the sake of verifying the effectiveness of the proposed
approach, we equipped a laptop with an Intel i7 CPU and 16 GB RAM, the replanning
frequency of the approach was set to 15 Hz, the simulation experiments were performed in
RVIZ under the ROS development environment.
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5.2. Experimental Results

We presented several aggressive and safe aerial tracking experiments in cluttered
environments, as shown in Figure 6. The proposed algorithm has obvious advantages in
the face of complex environments. By identifying the distribution of obstacles, it can predict
the intent of the target well, which provides more time for the back-end optimization of
the trajectory.

Figure 6. Active and safe aerial tracking experiment in a complex environment.

The back-end optimizer (attributed to the efficient effect of the target prediction
algorithm) obtained more optimization time; therefore, the UAV could track moving targets
safely and smoothly in these challenging environments. The excellent performance of the
proposed approach was verified in a variety of complex scenarios. As shown in Figure 7a,
in a complex environment, the closer the target was to the obstacle, the greater the danger to
the target. Under the principle of ensuring the safety of the trajectory and minimum costs,
the algorithm was inclined to predict that the target would advance along the direction
with minimum costs. The tight distribution of obstacles conversely provided a safe corridor
range for target prediction, and made the prediction results more accurate in the complex
environment I.

In another complex environment II shown in Figure 7b, the obstacles were enclosed to
form a corridor that was similar to a straight line. Although the target could move freely,
there were no other choices in the forward direction. The proposed algorithm also made
a rather excellent prediction of the target movement, which verified its excellence.

However, in some open areas, due to the absence of obstacle threats and the considera-
tion of minimum costs, the algorithm tended to predict that the target would remain in the
current state, and did not predict the sudden and large movement changes of the target in
time. In the open environment I shown in Figure 7c, the target movement had high safety
in all directions due to few surrounding obstacles. Since the target had free intentions, there
was more uncertainty in the choice of the moving route. In this environment, the proposed
algorithm was based on the consideration of the minimum cost of the path, and tended
to predict that the target kept moving in the current state. It was difficult to predict the
sudden large-scale movement change of the target in time shown in the circle mark.
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(a) (b)

(c) (d)

Figure 7. Performance of the proposed prediction algorithm in a variety of scenarios. (a) Performance
of the proposed prediction algorithm in complex environment I. (b) Performance of the proposed
prediction algorithm in complex environment II. (c) Performance of the proposed prediction algorithm
in open environment I. (d) Performance of the proposed prediction algorithm in open environment II.

Similarly, in another open environment II shown in Figure 7d, the algorithm predicted
that the target would keep going straight at circle mark 1, but the target executed a large
change in direction. At circle mark 2, the algorithm predicted that the target would move
away from the obstacle, but the target actually moved and did not deliberately avoid the
obstacle. This was not because the algorithm was inaccurate, but the target had the ability
to move freely.

The more constrained the environment, the smaller the moving space range of the tar-
get. This is why the algorithm performed better in a complex environment. Although there
were more choices for target movements in the open area, the algorithm could not pre-
dict some rapid and large direction changes of the target in advance. Moreover, as few
factors threatened the flight safety of the drone in this environment, the drone had greater
flexibility in adjusting the tracking trajectory, which did not drastically reduce the track-
ing performance.

5.3. Benchmark Comparisons

In order to show the excellence of our proposed research method, we compared the
target motion prediction method and the tracking trajectory planner described in this paper
with the cutting-edge methods in the field. The baseline environment was built over an area
of 25× 25× 3.5 m , which contained 180 randomly generated obstacles with various shapes
and structures.

Firstly, we compared the difference between the actual future moving position of the
target and the predicted result with [4]. Since the path planner in [4] is quite different from
the design principle proposed in this paper, there is no comparison significance. In order to
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quantify the difference terms, we took advantage of the average distance error ē between
the future target position p f (t) and the predicted trajectory P̂(t). ē can be computed by

ē =

L f

∑
i=1

∥∥∥P̂(tc + i · ts)− p f (tc + i · ts)
∥∥∥2

L f
, (17)

where tc denotes the current time, ts = 0.05 s represents the sample interval, and L f = 50
expresses the sampling size. During the observation, the ground truth of the target location
is often disturbed by Gaussian noise with zero means. To this end, we designed three
gradually increasing noise levels to show the contrast effects. Gaussian noise with standard
deviations of 0.05, 0.3, and 0.6 m represent low noise, medium noise, and high noise
environments, respectively. The common parameter for the two comparison methods was
set to (n = 5, L = 30, tp − tL = 2.5 s, wp = 15). To reduce the impact of chance errors, more
than 20,000 target motion predictions were generated in each environment.

Compared with the method in [4] at different levels of noise interference environments,
the proposed target motion prediction method had significant advantages on the average
distance error as shown in Figure 8. The computation time of the proposed method was
approximately 0.5 ms, while that of the method [4] was about 0.3 ms. Both methods showed
high performance in computational speed. Although the proposed method took a little
longer (regarding computation time), the prediction accuracy was improved by at least
40%, which verified the practicability of the proposed algorithm. It is obvious that the
proposed target motion prediction method is more accurate and reliable.

Afterward, we compared our work with [4] in terms of the tracking trajectory planner.
The target moved freely through the scenario in each simulated tracking task. In order to
objectively compare the two planners, the actual position of the target future trajectory
was directly provided as input. In order to quantify the comparative results of these two
methods, some quantitative indicators were developed in this paper. We propose a concept
called effective tracking time, in which the distance between the UAV and the target in
the x − y plane is less than 3 m before it can be counted as an effective tracking time.
Meanwhile, we designed the tracking rate rt, which is the ratio of the effective tracking
time to the total tracking time. In order to highlight the performance differences between
the two planners, we set different difficulty-tracking scenarios. The computation time and
rt are compared in 200 tracking missions for each scenario.

Figure 8. Target motion prediction method comparison.

From Table 1, it can be seen that, compared with method [4], our proposed planner not
only occupies much lower computing resources, but also achieves better tracking effects. It
shows strong robustness and efficiency. This is attributed to the high-frequency replanning
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of the proposed planner, which can make it react better in some extreme situations, such as
a sudden turn or acceleration of the target.

Table 1. Tracking trajectory planner comparison in multiple complex situations.

Scenario Method t f ront (ms) tback (ms) ttotal (ms) rt (%)

v̄ = 1.2 m/s Proposed 5.8 1.1 6.9 97.3

vm = 2.3 m/s Method [4] 222.7 11.3 234.0 91.4

v̄ = 1.6 m/s Proposed 11.6 1.6 13.2 92.1

vm = 3.0 m/s Method [4] 240.5 11.4 251.9 85.1

v̄ = 2.1 m/s Proposed 14.9 2.5 16.9 86.3

vm = 3.9 m/s Method [4] 363.8 10.9 274.7 69.3

6. Conclusions and Future Work

This paper presents a safe and efficient system for UAVs to track dynamic moving
targets in complex environments. Extensive experiments and benchmark comparisons
have confirmed the robustness and efficiency of the proposed approach. The approach
is mainly composed of two modules: target motion prediction and path searcher. In the
target motion prediction module, we used the Bézier regression to predict the future
movement of the target based on the distribution of obstacles around the target and past
observations. The experimental results demonstrated that the proposed method is excellent
in dealing with complex scenes with high accuracy and efficiency. However, in some
open environments, the algorithm cannot timely predict the extreme motions of the target,
such as approaching obstacles or suddenly turning around. However, this problem can be
solved by the path searcher mentioned later. In order to obtain safe tracking trajectories
in complex scenes, this paper proposes a heuristic dynamic searcher, which can generate
safe and dynamically feasible tracking trajectories based on a previous target motion
prediction. The excellent performance of the searcher can be observed from the benchmark
comparison results.

In the future, we will focus on the multi-angle tracking of multiple UAVs to a single
target and the formation flight of multiple drones. In addition, we will explore more
practical object recognition methods, so that the proposed approach could be applied to
more diversified scenes.
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