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Abstract: In the field of new energy vehicles, 4WD PHEVs show strong energy-saving potential. A
single energy management strategy, nevertheless, has difficulty achieving the energy-saving potential
due to the complex, nonlinear energy system of the 4WD PHEV. To cope with it, a hierarchical
energy management strategy (H-EMS) for 4WD PHEVs is proposed in this paper to achieve energy
management optimization. Firstly, the future speed information is predicted by the speed prediction
method, and the upper energy management strategy adopts the model predictive control (MPC)
based on the future speed information to carry out the power source distribution between the engine
and the battery. Secondly, the lower energy management strategy performs the power component
distribution of the front motor and the rear motor based on an equivalent consumption minimization
strategy (ECMS). Finally, the simulation based on MATLAB/Simulink is performed, validating that
the proposed method has more energy-saving capabilities, and the economy is improved by 11.87%
compared with the rule-based (RB) energy management strategies.

Keywords: energy management strategy (EMS); rule-based (RB); equivalent consumption mini-
mization strategy (ECMS); model predictive control (MPC); four-wheel-drive plug-in hybrid energy
vehicle (4WD PHEV)

1. Introduction

Nowadays, plug-in hybrid electric vehicles (PHEVs) have a high-fuel utilization
efficiency to alleviate the crisis of fossil fuels [1–3]. They have gradually become the focal
point for scientific research and the automobile industry [4,5]. Compared with two-wheel-
drive PHEVs (2WD PHEVs) [6,7], four-wheel-drive PHEVs (4WD PHEVs) are equipped
with extra motors in the rear axle to guarantee a dynamic performance in adverse driving
conditions. However, the power system of 4WD PHEVs with multiple degrees of freedom
leads to a complex energy flow, and thus, it requires a more stringent energy management
strategy to release the advanced energy-saving potential, creating an urgent requirement
for the control structure of high nonlinear systems of 4WD PHEVs.

Designing an extraordinary energy management strategy for PHEVs to release their
energy-saving potential is difficult, especially for 4WD PHEVs with more power re-
sources [8,9]. Additionally, the calculation of multiple control variables for 4WD PHEVs
needs the basis of the determination of exact constraints. Additionally, the real-time capac-
ity of the energy management strategy is also a key point affecting the energy-saving effect.
During the development of the energy management strategy, the existing methods can be
divided into two categories: rule-based energy management strategies and optimization-
based energy management strategies [10]. Although a single control strategy can evaluate
the effect on the vehicle economy, the adaptiveness of variable configurations of PHEVs is
not fully evaluated, especially for 4WD PHEVs with complex energy use.
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Rule-based control strategies can be further divided into strategies with determined
rules [11–13] and strategies with fuzzy rules [14–16]. Both of them can be equipped with
brilliant real-time capacity, and they can be easily deployed in the vehicle controller due
to the mild calculating requirement. However, the stable thresholds for driving mode
switching and the limited changing of the power distribution among power resources
still restrict the energy-saving potential of the complex configuration of PHEVs. As for
optimization-based energy management strategies, different subcategories perform vari-
able effects on the vehicle economy and real-time practice. Global optimization-based
control strategies, such as dynamic programming (DP) [17–19] and Pontryagin’s minimum
principle (PMP) [20–22], can obtain the global optimal sequence of control variables based
on the prior driving information. However, the long calculating time resulting from global
searching and the difficulty of grabbing accurate predictive driving conditions both make
the DP and PMP unpractical strategies for real-time driving.

The instantaneous optimization-based control strategies, such as the equivalent con-
sumption minimization strategy (ECMS) [23–25] and model predictive control (MPC) [26–28],
can give consideration to the real-time application capacity and suboptimization of the
vehicle economy. By using an equivalent factor, ECMS can minimize the equivalent fuel
consumption by equating electric power consumption to fuel consumption [29–31]. How-
ever, the shortcomings of ECMS are also obvious. Firstly, the ECMS only considers the
current information of the driving condition and state of the vehicle, resulting in limited
energy saving. Secondly, although the ECMS is used for optimizing the instantaneous
economy of the vehicle, the sequence of the control variables during the whole driving
process, calculated by the ECMS, has a worse performance on the economy than DP and
PMP, and the gap of the performance on economic optimization between the ECMS and
DP will be widened if the number of control variables is increased, resulting in the un-
suitableness of developing the control strategy for 4WD PHEVs. Thirdly, the equivalent
factor is a bad choice for balancing different types of energy consumption, as there is not an
objective evaluation and optimal effect for energy saving. Therefore, reasonably narrowing
the characteristic gap of power sources is an effective guarantee for the ECMS to evaluate
the vehicle economy more objectively. To sum up, aiming to fully release the energy-saving
potential of the ECMS, choosing suitable control objects, and limiting the number of control
variables are necessary.

The MPC can obtain the optimized control sequence with relatively better global
characteristics to enhance the economic performance based on obtaining short-time future
driving conditions [32–34]. The advantage of MPC is the cooperativeness between the
fast calculation speed and partially global optimal characteristics in the predictive domain.
However, the shortcomings of MPC are also obvious. Firstly, the MPC needs relatively
hard requirements for computational capacity. Secondly, the state function in the MPC
has a direct impact on the performance of the economy. Due to there being a gap between
the state function and the practical system of the vehicle, the gap will be widened if the
complexity of the state function becomes hard. Additionally, it can also make the effect
of the energy management strategy become poor. Thus, the prior problem design of
simplifying the state function and decreasing the number of control variables to achieve
reasonable use of the computing power of the vehicle controller is necessary.

The 4WD PHEVs have multiple power components, and energy management strate-
gies have become a key technology to improve the economy of driving [35–37]. The global
optimization-based control strategy is adopted to optimize the distribution between engine
and battery and the management of the gear ratio [38]. However, the real-time capability
of the global optimization-based control strategy is difficult to guarantee. As for 4WD
pure electric vehicles, the transmission ratio of front/rear motors is optimized to improve
the driving economy [39]. Not only does the power distribution between engine and
battery in 4WD PHEVs have an influence on the economy, but also, the power distribution
between different motors in the front and the rear axle has an impact on the economy. Thus,
advancing the design of the energy management strategy is necessary to give full play
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to the energy-saving potential of 4WD PHEVs with multiple degrees of power freedom,
as it not only considers the suitable distribution between engine and battery, but also the
distribution between different motors in the front and rear axle.

To sum up, to strengthen the real-time capacity of the energy management strategy,
using an instantaneous optimization-based energy management strategy is necessary. As
for fully implementing the advantages of the ECMS and MPC, a reasonable design of
energy-saving problems that decrease the number of control variables of each method is
important for optimizing the energy-saving effect. When it comes to the energy manage-
ment strategy of 4WD PHEVs, advancing the design of the controlling structure to release
the energy-saving potential based on the multiple degrees of power freedom cannot be
ignored. In order to realize the progressive design of the energy management strategy for
4WD PHEVs, the reasonable separation of energy management problems is necessary, and
a hierarchical structure with a multilevel framework and with suitable methods of energy
management can lead to an advanced economic effect.

In this context, this paper presents a hierarchical energy management strategy (H-
EMS). The H-EMS divides the energy management structure into two parts to separate the
controlling complexity and fully release the energy-saving potential of each control method.
The high level of the H-EMS adopts the MPC with just one control variable, namely. the
distribution between engine and battery, for achieving the relatively long-time optimal
economic performance, aiming at fully using the calculational capacity of the vehicle
controller. Besides, a speed predictor is used for obtaining the prior short-time driving
information, and the information is used to support the high level of the H-EMS to optimize
the power distribution between the engine and battery. The low level of the H-EMS uses
the ECMS with just one control variable, namely, the distribution between different motors
in the front and rear axle, aiming at enhancing the electric energy utilization efficiency
and giving full play to the calculation characteristics of the ECMS by reducing the gap
between the control characteristics of the control objects, namely, the motors in the front
and rear axle.

The contributions of this paper are presented as follows:

1. A hierarchical structure of the energy management strategy, namely, the H-EMS for a
4WD PHEV, is used for suitably separating the complexity of energy management,
leading to obtaining the reasonable sequence of control variables to release the energy-
saving potential of the 4WD PHEV with multiple degrees of power freedom.

2. The MPC is used for establishing the high-level framework of the H-EMS to solve
the separated problem of energy management, aiming at reasonably distributing the
power between engine and battery and decreasing the number of control variables to
meet the calculating capacity of the vehicle controller.

3. The ECMS is adopted to establish the low-level framework of the H-EMS to innova-
tively solve the subproblem of energy management with regard to the distribution of
electricity, aiming at obtaining a suitable distribution between the motor in the front
axle and rear axle.

This study is organized as follows: Section 2 presents the introduction to 4WD PHEV
models. Section 3 elaborates on the novel methodology of the energy management strategy
for 4WD PHEV. Section 4 analyzes and compares simulation results. The conclusions are
given in Section 5.

2. Models
2.1. The Studied 4WD PHEV

The 4WD PHEV is preferred in this paper, and its structure is shown in Figure 1. The
vehicle consists of an engine, two motors, and a generator. The engine and the front motor
jointly drive the front wheels to work, and the rear motor drives the rear wheels to work
independently. The front axle is equipped with a generator to adjust the operating points
of the engine. In the series mode, the engine drives the generator to provide energy for the
front/rear motors. The detailed parameters are shown in Tables 1 and 2.
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Figure 1. The schematic of the 4DW PHEV configuration.

Table 1. Vehicle and dynamic component parameters in the 4DW PHEV.

Parameter Unit Value

Vehicle curb weight kg 1860
Vehicle weight kg 2370

Vehicle maximum velocity km/h 170
Wheel rolling radius m 0.35

Frontal area m2 2
Engine maximum power kW @ rpm 110 @ 5200
Engine maximum torque Nm @ rpm 200 @ 5200

Front motor maximum power kW 60
Front motor maximum torque Nm 137
Rear motor maximum power kW 61
Rear motor maximum torque Nm 195

Battery capacity kWh 15
Battery rated voltage V 300

Table 2. Driveline ratio information.

Transmission Ratio Parameters Value

Front axle engine transmission ratio iE= 3.425
Front axle motor transmission ratio iF_M= 9.663
Rear axle motor transmission ratio iR_M= 7.065

Front axle engine-generator transmission ratio iR_M= 2.736

In this paper, the 4WD PHEV is divided into three modes: pure electric mode, series
mode, and parallel mode. In pure electric mode, the front/rear motors drive the front/rear
axles to work, respectively, and the engine is in a shutdown state. In series mode, the clutch
is disconnected, and the engine drives the generator to provide energy for the front/rear
motors; In parallel mode, the clutch is connected, and the engine directly drives the front
wheels to work, as shown in Table 3.

2.2. Vehicle Dynamics Model

This paper studies the fuel economy and establishes the longitudinal dynamics model
of the vehicle. The driving resistance in the longitudinal direction includes the rolling
resistance, air resistance, slope resistance, and acceleration resistance. The equations of the
driving force and wheel-end torque are Equations (1) and (2) [40].

Ft = mg f cos αslap +
CD Av2

21.15
+ mg sin αslap + σm

dv
dt

(1)
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Treq = Ftr = r(mg f cos αslap +
CD Av2

21.15
+ mg sin αslap + σm

dv
dt

) (2)

where Ft is the tangential driving force generated by the driving wheel; m is the curb weight
of the vehicle; g is the gravitational acceleration; f is the coefficient of rolling resistance;
aslap is the road slope; CD is the air resistance coefficient; A is the frontal area of the vehicle;
σ is the rotational mass conversion factor; Treq is the required torque; and r is the wheel
rolling radius.

Table 3. Operating states of vehicle components under different modes.

Operating Modes Illustration

Pure electric mode
The battery provides all the power for the front/rear

motors to drive the vehicle, and the engine and
generator are in shutdown state.

Series mode
The engine drives the generator to provide electric

energy for the front/rear motors, and the battery also
provides electric energy output.

Parallel mode
The clutch is closed, and the engine directly drives the

vehicle. The front/rear motors assist the engine to drive
the vehicle.

2.3. Engine Model

Engine fuel consumption can be obtained by looking up the table of engine speed
and torque. The engine map is shown in Figure 2. Since the research focus of this paper
is the fuel economy, the physical part of the engine model is simplified, and only the
fuel consumption characteristics of the engine are considered. The static engine diagram
modeling method is adopted to establish the engine model, and the instantaneous fuel
consumption of the engine can be calculated by Equation (3).

f ueleng =
Pengbengt

3600
(3)

where f ueleng is the fuel consumption; beng is the instantaneous fuel consumption rate
(g/Kwh); t is the time (s); and Peng is the power of the engine.
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2.4. Motor/Generator Model

In this paper, the front/rear motors and generators are permanent magnet synchronous
motors (PMSMs), and the efficiency can be obtained by looking up the speed/torque table.
According to the calibration data of the experiment, the front/rear motors and generator
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maps are shown in Figure 3. This paper ignores the dynamic performance and thermal
performance of synchronous motors in the process of establishing models. According to
different driving modes, the efficiency of the motors and the generator can be calculated by
Equations (4) and (5).

Pm =

{
nmTm

9550ηm
, Tm ≥ 0

nmTm
9550 ηm, Tm < 0

(4)

Pgen =
ngenTgen

9550
ηgen (5)

where Pm is the power of the front/rear motors; nm is the speed of the front/rear motors;
Tm is the torque of the front/rear motors; ηm is the efficiency of the front/rear motors; Pgen
is the power of the generator; ngen is the speed of the generator; Tgen is the torque of the
generator; and ηgen is the efficiency of the generator.
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2.5. Battery Model

The physical and chemical characteristics of the battery are very complex; therefore, it
is difficult to establish an accurate battery model through an accurate mathematical model.
In this paper, according to the calibration data of the experiment, the internal-resistance
map of the battery is established with the look-up table method, which can quickly and
effectively obtain the internal resistance of the battery. The internal-resistance diagrams of
the battery are shown in Figure 4.

In this paper, the electrochemical characteristics and temperature-rise characteristics
during the charging and discharging process of the battery are ignored. Only the open-
circuit voltage, internal resistance, and current of the battery are studied, and the first-order
RC model of the battery is established. The power of the battery can be expressed in
Equation (6) [41].

Pb = VL Ib = VOC Ib − Ib
2R0 (6)

The current of the battery can be expressed in Equation (7).

Ib =
VOC −

√
VOC

2 − 4PbR0

2R0
(7)

where Pb is the power of the battery; VL is the terminal voltage of the battery; VOC is the
open-circuit voltage of the battery; R0 is the internal resistance of the battery; and Ib is the
current of the battery.
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By adopting the ampere-hour integration method, the SOC of the battery can be
expressed in Equation (8).

SOC = SOCi −
1

Qb

∫
Ibdt (8)

The SOC change rate of the battery is expressed in Equation (9).

S
.

OC = − Ib
Qb

= −
VOC −

√
V2

OC − 4PbR0

2R0Qb
(9)

where SOCi is the initial SOC value and Qb is the capacity of the battery.

3. Methodology

This chapter illustrates the structure of the novel energy management strategy. The
strategy can be divided into two subframeworks, which are at the level for obtaining future
driving conditions and the level for suitably managing the energy flow of the complex
energy system in the 4WD PHEV.

The high level needed for obtaining driving conditions requires the use of the GRNN
to predict the short-time future speed of the vehicle accurately. The input of the GRNN
is historical, short-time speed data that can be transferred by the controller area network
(CAN). The level of energy management adopts a hierarchical structure for the optimal
economic performance of the complex energy system, which is named the H-EMS in this
paper. The MPC and ECMS are both functional, but have a unique function in the H-EMS.
The MPC is used for optimal cooperation between the engine and battery based on using
the predicted speed by the GRNN, which can give full play to the perspectives of predictive
control in the MPC. The ECMS is used for optimal collaboration efficiency between the
front motor and rear motor, aiming at entirely using the calculating speed of the ECMS to
alleviate the calculating load of the vehicle controller. Therefore, the control framework of
the H-EMS in the 4WD-PHEV depends on the driving modes, which can be divided into
three subcategories: pure electric mode, series mode, and parallel mode. Regardless of the
driving mode, the priority of power distribution between the engine and battery by using
the MPC is always higher than that of the power distribution of electrical components by
using the ECMS.

The details of the novel energy management strategy process are presented in Figure 5.
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3.1. Vehicle Speed Prediction Based on GRNN

As a radial basis neural network, the General Regression Neural Network (GRNN)
adds a summation layer between the hidden layer and the output layer, and it is suitable
for solving nonlinear problems. The GRNN is composed of four layers: the input layer,
model layer, summation layer, and output layer.

In this paper, the vehicle speed information VHistory[·] in the past ten seconds is
taken as the GRNN input, and the vehicle speed information VFuture[·] from the next five
seconds is the output. During the GRNN training process, the training sample is shown
as Trx = {trx1, trx2, . . . , trxm}, and the dimension of each sample is 10; thus, trxi is shown
as trxi = [v1, v2, . . . , v10]. Similarly, the label set is shown as Try =

{
try1, try2, . . . , trym

}
, and

tryi is shown as tryi = [y1, y2, . . . , y5]. The structure diagram is shown in Figure 6.
In the GRNN, the number of neurons in the input layer is equal to the dimension of

the sample input, and each neuron directly transmits the input variables to the model layer.
The model layer and the input layer are fully connected. In the model layer, the neurons
have the same number as samples, and the transfer function is expressed in the exponential
form of the square of the Euclid distance, as shown in Equation (10).

pi = exp[− (V − Trxi)
T(V − Trxi)

2σ2 ] i = 1, 2, . . . , m (10)

where pi is the output value of the i-th neuron and V is the input sample.
In the summation layer, the neurons are divided into two categories. The first category

is the sum of the output of the model layer. Furthermore, the connection weight between
the pattern layer and each neuron is 1. Additionally, the other category is calculated as a
weighted summation of neurons in all mode layers. The transfer functions are shown in
Equations (11) and (12).

SD =
m

∑
i=1

exp[− (V − Trxi)
T(V − Trxi)

2σ2 ] (11)
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SNj =
m

∑
i=1

qij exp[− (V − Trxi)
T(V − Trxi)

2σ2 ] j = 1, 2, . . . , k(k = 5) (12)

where qij is the weight value of the i-th neuron in the model layer and the j-th neuron in
the summation layer.
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In the output layer, the number of nodes is equal to the dimension of tryi. The output
function is shown in Equation (13).

yk =
SD
SNj

(13)

In the actual application process, the historical vehicle speed information is composed
of high-dimensional data sets, and some noise points appear in it. The GRNN is highly
fault-tolerant and robust. The vehicle speed prediction method of the GRNN can be more
suitable for the application in this paper.

3.2. Optimal Management of Power Sources Based on MPC

The optimal management of the 4WD PHEV power sources directly affects the driving
economy of the vehicle. In this paper, the MPC is applied in the 4WD PHEV for the
cooperated optimization between engine and battery, and quadratic programming (QP) is
adopted to obtain the optimal distribution coefficient and improve the driving economy of
the vehicle. The MPC has the advantages of rolling optimization and feedback correction,
and it can solve the optimization problems of multi-input and multi-output systems. In
this paper, the SOC is selected as the state variable, the equivalent fuel consumption as the
observed variable, Pall as the disturbance variable, and the proportion of the battery output
energy to the vehicle demand energy as the control variable. The equation of the state and
the equation observation are established in Equations (14) and (15).

x(t + 1) = x(t) +
.
x(t) = x(t)− VOC −

√
VOC

2 − 4Pall(t)u(t)R(t)
2R(t)Cb

(14)

y(t + 1) = m f uel(t) + mequ(t) =
Pall(t)(1− u(t))ηe

3600
+

Pall(t)u(t)λ
Qb

(15)

where Pall(t) is the demand power of the vehicle at time k; u(t) is the proportion of battery
output power to vehicle demand power at time k; R(t) is the internal resistance of the
battery at time k; Cb is the capacitor of the battery; m f uel is the fuel consumption of the
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engine; mequ is the electricity that is equivalent to the fuel consumption; ηe is the fuel
consumption rate of the engine (g/Kwh); and λ is the equivalent factor.

In the process of establishing the MPC model, the input of the power Pall of the vehicle
is involved. This paper assumes driving on a flat and straight road and does not consider
the influence of the slope on the vehicle. Only the acceleration resistance, rolling resistance,
and air resistance are considered in the driving process. According to the obtained predicted
vehicle speed and vehicle dynamics model, the power required to meet the normal driving
of the vehicle is calculated, and the calculation formula is established in Equation (16).

pall = pj + p f + pw =
σmva
1000η

+
mg f v
1000η

+
CD A
1632η

v3 (16)

where Pall is the demand power of the vehicle; Pj is the power of the accelerate resistance;
Pf is the power of the rolling resistance; Pw is the power of the air resistance; v is the vehicle
speed (m/s); a is the acceleration; and η is the total efficiency of the motors.

The above-mentioned model is highly nonlinear, which makes it very difficult to solve
it. In this paper, the Taylor first-order expansion is adopted to linearize the engine-generator
set near the high-efficiency operating points. The expansion equations are established in
Equations (17) and (18).

.
x = −

VOC −
√

V2
OC − 4PalluR

2RCb
= Âx + B̂u + Ĉv (17)

y = D̂x + Êu + F̂ (18)

According to Â = ∂ f
∂x |x=x0,u=u0,Pall=Pall0,R=R0 , B̂ = ∂ f

∂u |x=x0,u=u0,Pall=Pall0,R=R0 ,

Ĉ = ∂ f
∂v |x=x0,u=u0,Pall=Pall0,R=R0 and Equation (15), the linearization coefficients are estab-

lished in Equation (19). Â = 0; B̂ =
−Pall0

Cb
(Voc

2 − 4R0Pall0 u0)
− 1

2 ; Ĉ = − u0
Cb
(Voc

2 − 4R0Pall0 u0)
− 1

2 ;

D̂ = 0; Ê = 3600Pallλ−Pall ηeQ
3600Q ; F̂ = Pallηe

3600 ;
(19)

where x0, u0, Pall0, and R0 are the initial values of the state variable, control variable, distur-
bance variable, and battery internal resistance in the linearization process, respectively.

In this paper, the driving modes of the 4WD PHEV are subdivided into three modes:
the pure electric mode, series mode, and parallel mode. There are some differences in the
selection of initial values for the series model and the parallel model in the linearization
process. In series mode, the engine is completely decoupled from the ground, and the
initial value should be selected near the optimal operating points of the engine. In parallel
mode, the engine is coupled with the ground, and the initial value should be selected
near the optimal operating points of the engine speed. In the actual calculation process,
the above-linearized model needs to be transformed into a discrete model, as shown in
Equations (20) and (21).

x(t + 1) = Ax(t) + Bu(t) + Cv(t) = x(t) +
−Pall0

Cb
(Voc

2 − 4R0Pall0u0)
− 1

2 u(t) +− u0

Cb
(Voc

2 − 4R0Pall0u0)
− 1

2 v(t) (20)

y(t + 1) = Eu(t) + F =
3600Pall(t)λ− Pall(t)ηe(t)Q

3600Q
u(t) +

Pall(t)ηe(t)
3600

(21)

The iterative process of the state variable x and the observed variable y in the controlled
time domain T are established in Equations (22) and (23).
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x(t + 1) = Ax(t) + Bu(t) + Cv(t)
x(t + 2) = A2x(t) + ABu(t) + Bu(t + 1) + ACv(t) + Cv(t + 1)

...
x(t + T) = ATx(t) + AT−1Bu(t) + · · ·+ Bu(t + T − 1) + AT−1Cv(t) + Cv(t + T − 1)

(22)

y(t + 1) = Eu(t) + F
y(t + 2) = Eu(t + 1) + F

...
y(t + T) = Eu(t + T − 1) + F

(23)

Finally, the iterative expression of the state variable matrix and the observed variable
matrix in the controlled time domain T are established in Equations (24) and (25).

X(t) = Ax(t) + BU(t) + CV(t) (24)

Y(t) = EU(t) + F (25)

In the 4WD PHEV, in order to prevent excessive power consumption of the battery,
the terminal SOC in the controlled time domain needs to be limited in the charge-retention
stage (CS). The terminal expression of the SOC is established in Equation (26).

x(t + T) = ATx(t) + ψU(t) + ϕV(t) (26)

where ψ =
[

AT−1B AT−2B · · · B
]
; ϕ =

[
AT−1C AT−2C · · · C

]
.

In practice, the low SOC influences the life of the battery. Therefore, the SOC must
be limited while ensuring the minimum equivalent fuel consumption. The optimization
problem is solved at each sampling moment in the controlled time domain T, and the
objective function is established in Equation (27).

J = RM‖Y(t)−Yre f ‖2 + Qsign([x(t + T)− xopt])[x(t + T)− xopt]

s.t. x(t + T) = ATx(t) + ψU(t) + ϕV(t)
Y(t) = EU(t) + F
xmin ≤ x ≤ xmax
umin ≤ u ≤ umax

(27)

where Yre f is the reference value of the observed variable, and in order to obtain the smallest
actual objective value, Yre f should be set as a small value; R and Q are the weight matrices
in the objective function; M is the weight matrix of each step in the controlled time domain
T; xopt is the reference value of the state variable; xmin and xmax are the minimum and
maximum values of the state variables, respectively; and umin and umax are the minimum
and maximum values of the control variables, respectively.

Many constraints are involved in the MPC solution process, and the analytical solution
is difficult to obtain. This paper adopts the numerical solution method to convert the
objective function into the quadratic programming (QP) problem to solve. The QP problem
is established in Equation (28).

u = argmin( 1
2 U(k)T HU(k) + f TU(k) + d)

s.t. βu ≤ ω
(28)

where H is the diagonal positive definite matrix. f T and d are constant matrices, where the
constant matrix d has nothing to do with the control variable U(t), and for the convenience
of calculation, the constant matrix d can be ignored in the process of solving the QP problem.
In the control process, certain constraints should be imposed on the control variable to
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ensure that the power components work within a reasonable range, and β and ω are the
constraint matrices.

Converting Equation (27) into the QP problem, the parameters of the matrices are
established in Equations (29)–(32).

H = ET RME (29)

f = FT RME + Yre f
T RME + sign(x(t + T)− xopt)QψT (30)

β = [

−Pall 0 · · · 0

0
. . . 0

...
. . .

...
0 0 · · · −Pall

]

T×T

(31)

ω = [PEngine_max − Pall ; · · · PEngine_max − Pall ]T×1 (32)

where PEngine_max is the maximum power of the engine.
Solving the above QP problem can obtain the optimal control variable for each step in

the controlled time domain. The MPC is adopted to solve the optimal local solution. In the
controlled time domain, multiple control variables can be solved, but only the first set of
control variables is applied at the current moment, and the above process is repeated at the
next moment to realize rolling optimization. The power source distribution coefficient of
each step is obtained, and finally, the driving economy of the vehicle is improved.

3.3. Optimal Management of Power Components between the Front Motor and the Rear Motor
Based on ECMS

As an energy management strategy of instantaneous optimization, the ECMS essen-
tially equates the power consumption of the battery with fuel consumption. In
Section 3.2, the MPC is adopted to solve the optimal power source distribution coeffi-
cient. The front/rear motors are coupled with the ground to drive the front/rear wheels
directly, and there are certain differences in the map diagrams of the front/rear motors.
Due to the difference in the map diagrams between the front motor and rear motor, the
power component distribution coefficient between the front motor and the rear motor also
directly affects the economy of driving.

In this paper, the ECMS is adopted to realize the energy distribution between the front
motor and the rear motor, and the equivalent fuel consumption expression is established in
Equation (33).

.
meqv(x(t), u(t), t) = λ

.
mF_Motor(x(t), u(t), t)

ηF
+ λ

.
mR_Motor(x(t), u(t), t)

ηR
(33)

where
.

meqv(x(t), u(t), t) is the instantaneous equivalent fuel consumption at time t;
λ

.
mF_Motor(x(t), u(t), t) is the instantaneous equivalent fuel consumption of the front motor

at time t; and λ
.

mR_Motor(x(t), u(t), t) is the instantaneous equivalent fuel consumption of
the rear motor at time t. λ is the equivalent factor, where the electricity consumption of the
vehicle is equivalent to the fuel consumption through the equivalence factor, and thus, the
value is mainly related to the fuel price and the operating efficiency of the vehicle. This
paper adopts a constant equivalent factor through real data, which is 3.5; x(t) is the value
of the SOC at time t; ηF is the efficiency of the front motor; ηR is the efficiency of the rear
motor; and u(t) is the proportion of the front motor output energy to the front/rear motor
output total energy at time t.

In order to improve the economy of the actual driving, the equivalent fuel consump-
tion of the front/rear motors should reach the minimum value. Therefore, the ECMS
optimization objective function is established in Equation (34).



Machines 2022, 10, 947 13 of 24

J(t) = min
∫ t

0
[

.
meqv(x(t), u(t), t)]dt =min

∫ t

0
[λ

.
mF_Motor(x(t), u(t), t)

ηF
+ λ

.
mR_Motor(x(t), u(t), t)

ηR
]dt (34)

The Hamilton function is established in Equation (35).

H(x(t), u(t), λ(t) , t) = λ

.
mF_Motor(x(t), u(t), t)

ηF
+ λ

.
mR_Motor(x(t), u(t), t)

ηR
(35)

The optimal solution is obtained through calculation, which makes the Hamilton
function obtain the minimum value in the finite set, and the formula is established in
Equation (36).

u∗(t) = argminH(x(t), u(t), λ(t), t) (36)

When the Hamilton function obtains the optimal solution, Equation (37) should reach
the minimum value:

.
x(t) = ∂H

∂λ =
.

mF_Motor(x(t),u(t),t)
ηF

+
.

mR_Motor(x(t),u(t),t)
ηR

s.t. TF_Motor_min(t) ≤ TF_Motor(t) ≤ TF_Motor_max(t)
TR_Motor_min(t) ≤ TR_Motor(t) ≤ TR_Motor_max(t)

SOCmin(t) ≤ SOC ≤ SOCmax(t)
umin(t) ≤ u(t) ≤ umax(t)

(37)

where TF_Motor_min(t) and TF_Motor_max(t) are the minimum torque and maximum torque of
the front motor at time t, respectively; TR_Motor_min(t) and TR_Motor_max(t) are the minimum
torque and maximum torque of the rear motor at time t, respectively; umin(t) and umax(t)
are the minimum and maximum values of the control variables at time t, respectively; and
SOCmin(t) and SOCmax(t) are the minimum and maximum values of the SOC at time t,
respectively.

According to the characteristics of the different maps between the front motor and rear
motor in the 4WD PHEV, the ECMS is adopted to reasonably distribute the power output
of the front/rear motors, and the economy of the vehicle is further improved. Aiming at
the complex energy system of the 4WD PHEV, the H-EMS is adopted to realize multilayer
energy management, and it can give full play to the energy-saving potential of the vehicle.

4. Simulation Results and Analysis

This chapter introduces the simulation results. Firstly, aiming to evaluate the predictive
accuracy of the GRNN, this chapter uses three methods, namely, random forest (RF),
support vector machine (SVM), and GRNN, to compare the accuracy. Secondly, in order to
prove the effectiveness of the H-EMS, this paper adopts the MATLAB/Simulink simulation
platform to build a 4WD PHEV model. In the simulation of the World Light Vehicle Test
Cycle (WLTC), the four different energy management strategies based on the RB strategy,
ECMS, MPC strategy, and H-EMS are compared and analyzed. Validating the H-EMS
proposed in this paper can better improve the economy of driving, and the economy of the
H-EMS strategy is improved by 11.87% compared with the RB strategy.

4.1. Comparison and Analysis of Predictive Speed

The accuracy of the predicted vehicle speed directly affects the economic effect of the
H-EMS. In this paper, three types of predictive methods based on the GRNN, SVM, and
RF are analyzed and compared to prove that the GRNN has a very good prediction effect.
The prediction results are shown in Figure 7, and the error comparison table is shown in
Table 4.
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Table 4. The error comparison table based on RF, SVM, and GRNN.

Method Error Type Future_1 s Future_2 s Future_3 s Future_4 s Future_5 s

RF
RMSE 0.5485 1.8764 3.5222 5.0659 6.4615
MSE 0.3009 3.5208 12.4060 25.6625 41.7512
MAE 0.1925 1.4398 2.6971 3.9259 5.0814

SVM
RMSE 0.5480 1.2754 2.5912 3.7971 4.8743
MSE 0.3003 1.6266 6.7142 14.4183 23.7588
MAE 0.3543 1.5684 2.8285 4.0516 5.1991

GRNN
RMSE 0.5461 1.2748 2.5959 3.8034 4.8855
MSE 0.2982 1.6252 6.7387 14.4660 23.8681
MAE 0.3560 1.5670 2.8274 4.0497 5.1976

In this paper, the vehicle speed information in the past 10 s is adopted to predict the
speed information in the next 5 s. The prediction results are shown in Figure 7. The vehicle
is in the acceleration state from 600 s to 610 s, and the predicted speed change is closer
to the actual speed based on the GRNN and SVM, but the predicted results based on the
RF have a large deviation from the actual speed. Compared with the SVM, the predicted
speed is closer to the real speed based on the GRNN in the first 2 s, but the SVM shows a
better prediction of the speed trend from 3 s to 5 s. The vehicle is in the deceleration state
from 600 s to 610 s. Compared with the RF, the predictive speed decline is relatively gentle
and closer to the decline of the actual vehicle speed based on the GRNN and SVM. From
1600 s to 1700 s, the vehicle is in the high-speed stage, the speed is relatively stable, and
the different speed prediction methods based on the GRNN, SVM, and RF all show good
prediction effects. As shown in Figure 7, the predicted velocity based on the RF has a large
deviation from the actual velocity at the inflection point, but the prediction results based
on the GRNN and SVM change gently with small fluctuations.

As shown in Table 4, compared with the RF, the prediction results based on the RF and
SVM have more minor errors and a good prediction effect. The error of the GRNN in the
first 2 s is lower than that in the SVM, but the SVM shows more minor errors than the GRNN
from 3 s to 5 s. In this paper, the MPC as an upper energy management strategy adopts the
[0.5 0.2 0.1 0.1 0.1] credibility allocation in the application of future information; thus, this
paper pays more attention to the prediction information in the first 2 s. In summary, the
GRNN is more suitable for the application of the predictive speed scene in this paper.
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4.2. Comparison and Analysis of SOC, Fuel Consumption, and Equivalent Fuel Consumption

This paper adopts the equivalent fuel consumption to compare the economy of the
vehicle under different energy management strategies. Firstly, the 4WD PHEV model is
built by the MATLAB/Simulink simulation platform. Secondly, the WLTC simulation
driving condition is selected, and the initial SOC of the battery and equivalent factor are
set as 34.4% and 3.5, respectively. The MPC prediction time domain is five simulation
steps, and the weight matrix M = [0.5 0.2 0.1 0.1 0.1]. The simulation results are shown in
Figures 8–10.
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Figure 10. Variation curves of vehicle speed and equivalent fuel consumption under different
strategies.

As shown in Figure 8, the SOC of the RB strategy fluctuates between 0.28 and 0.36.
When the SOC reaches 0.28, the CS mode is chosen. In CS mode, the engine generates extra
power to make the generator charge the battery, resulting in an increase in the SOC. When
the SOC reaches 0.36, the CD mode is chosen. In CD mode, the vehicle tends to use battery
power to drive the vehicle. The SOC curves of the ECMS, MPC, and H-EMS have a similar
trend across the whole driving cycle, but the SOC curve of the H-EMS is always higher
than that of the ECMS and MPC, and the gap between the SOC curve of the H-EMS and
others gradually becomes large, demonstrating the advanced electricity-saving potential of
the H-EMS.

As shown in Figure 9, when it comes to fuel consumption, the consumption of the
RB strategy has the smallest value amongst the whole control strategy. From 1500 s to
1600 s, the fuel consumption of the RB strategy remains unchanged, illustrating that the
engine is not working during that duration. However, in that duration, the speed is rising,
and the acceleration is relatively high. The economy cannot be promised if the motors
provide all the required power for driving. The trend of other curves of fuel consumption is
similar, but the one of the H-EMS is the lowest. It is obvious that the gap between the fuel
consumption of the H-EMS and others becomes larger. Thus, for the fuel-saving potential,
the H-EMS has a relatively better performance than the ECMS and MPC.

Aiming to evaluate the comprehensive energy-saving potential, Figure 10 shows
the comparison of the equivalent fuel consumption among control methods, and the
detailed statistics are shown in Table 5. Compared with others, the value of the equivalent
fuel consumption of the H-EMS is the lowest, indicating the best energy-saving potential.
Although the fuel consumption of the RB strategy is the smallest, the value of the equivalent
fuel consumption is the highest, reaching 972.7 g. As for the value of the ECMS, the
equivalent fuel consumption of the vehicle is 897.6 g, which is 7.72% lower than that of
the RB strategy. As for the MPC strategy, the equivalent fuel consumption of the vehicle is
888.0 g, which is 8.71% lower than that of the RB strategy. As for the H-EMS, the equivalent
fuel consumption of the vehicle is 857.2 g, which is 11.87% lower than that of the RB
strategy. Therefore, the H-EMS has the best energy-saving potential compared with other
energy management strategies in the equivalent fuel consumption. Aiming at analyzing
the energy-saving ability of each framework in the H-EMS, an analysis of the operating
points of the engine and motors is necessary.
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Table 5. Data comparison table under different strategies.

Control Strategy Fuel Consumption (g) Terminal SOC Equivalent Fuel
Consumption (g)

Economy (Relative to
RB)

RB 884.4 0.320 972.7
ECMS 997.9 0.360 897.6 7.72%
MPC 965.5 0.366 888.0 8.71%

H-CMS 962.0 0.373 857.2 11.87%

4.3. Qualitative Comparison and Analysis of Component Performance

In order to reveal the performance of different energy management strategies, the
operating state of each component is analyzed and compared.

As shown in Figure 11, for the RB strategy, the engine operating points are distributed
near the brake-specific fuel consumption (BSFC), proving the rationality of the RB strategy
in engine control. However, the distribution of some operating points is higher than that of
the BSFC. The distribution of these operating points is concentrated from 2400 r/min to
2800 r/min, and the torque from 100 Nm to 140 Nm, whose fuel consumption per unit time
of the engine is high. This proves that the RB control strategy is not robust with regard to
the energy-saving control of the engine. As for the ECMS, it is hard to conclude a regular
distribution of operating points of the engine, indicating the ability to adjust for the engine
through the ECMS during energy management. The operating points of the MPC and
H-EMS are similar. The operating points in both strategies are near the BSFC, illustrating
the fuel-saving capacity of the strategies. However, the adjusting ability of both strategies
is also obvious because the distributions of some operating points in both strategies are
under the BSFC, and they have scattered states.
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Aiming to deeply analyze the performance of the engine in different energy manage-
ment strategies, the torque curves are shown in Figure 12. From 800 s to 1150 s, the engine
torque in the RB strategy is relatively high because of the battery-charging requirement.
However, at that time, other energy management strategies operate the engine at a lower
torque to balance the consumption of electricity and fuel, resulting in better energy savings
than the RB strategy. From 1600 s to 1800 s, the ECMS, MPC, and H-EMS operate the
engine in a high-torque state, and the vehicle speed and required power are high at that
time, which means the efficiency of the engine is high. Compared with the RB strategy,
although the trend of the torque curves in the ECMS, MPC, and H-EMS is different, the
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values of curves are close. However, the more reasonable distribution statement of the
engine in the H-EMS and MPC compared to the ECMS can illustrate an advanced adjust-
ment and operating ability, which also illustrates the good performance of the high-level
H-MPC. Aiming to further analyze the comparison of electric components to discuss the
energy-saving ability of the low-level H-EMS, the simulation results of front/rear motors
are shown in Figures 13–16.

As shown in Figures 13–16, the RB strategy adopts fixed thresholds to control the
vehicle, and the front/rear motors still output a larger torque at a high speed than others.
As shown in Figure 14, when the front motor is around 1200 s, the RB strategy has a larger
negative torque than the other three strategies, indicating that the engine provides more
torque to drive the front motor to charge the battery. As shown in Figure 16, the rear motor
is in a shutdown state at around 1200 s. The engine is fixedly connected with the front
motor at around 1200 s, and the engine outputs more torque to drive the front motor to
charge the battery. Compared with the MPC and ECMS, since the front/rear motors adopt
a fixed distribution coefficient, the front/rear motors’ operating point distribution and
torque output are basically the same under these two different strategies.
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As shown in Figure 13, the front motor based on the H-EMS has a higher efficiency at
around 4000 r/min than that of the MPC and ECMS. As shown in Figure 15, for the H-EMS,
the operating points of the rear motor are obviously located in a higher efficiency range
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than that of the MPC and ECMS. According to the difference between the front motor map
and the rear motor map, the low-level framework of the H-EMS reasonably distributes
the proportion of the power output of the front motor and the rear motor, which further
improves the driving economy of the vehicle.

4.4. Quantitative Comparison and Analysis of Component Performance

Aiming to quantitatively analyze the performance of energy management strategies,
this chapter illustrates the proportion of operating points of power components in the
different operating states.

As shown in Figure 17, the proportions in [0, 1) of the instantaneous equivalent fuel
consumption in other strategies are obviously larger than the one in the RB strategy. The
proportions in [−3, 0) in the four strategies are similar, as are the proportions in [2, 6).
Furthermore, the proportion in [1, 2) has the lowest value in the H-EMS among these
strategies. For determining the average instantaneous equivalent fuel consumption, the
mathematical expectation of the one in each strategy is calculated. The expectation in the
H-EMS is 0.35 g, which is the lowest one among these strategies. It can indicate that the
H-EMS is equipped with the best comprehensive energy-saving potential. On the contrary,
the RB strategy has the poorest energy-saving potential, which has an expectation of 0.40 g
based on the pie chart.
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As shown in Figure 18, the pie chart of the efficiency of the front motor in each strategy
is illustrated. Although the proportion in [85%, 90%) of the front motor in the RB strategy
has the max occupation, the proportions in [70%, 80%) and [80%, 85%) are smaller than
that of others. The proportion in each field is close among the ECMS, MPC, and H-EMS;
therefore, the analysis of mathematical expectations for the efficiency of the front motor in
these strategies is necessary. The value of each expectation is 79.15%, 78.31%, 78.35%, and
78.36% in the RB strategy, ECMS, MPC, and H-EMS, respectively. These expectations are
close, and thus, the energy-saving potential demonstrated in the front motor is similar to
these energy management strategies.
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As shown in Figure 19, obviously, the proportions of the high efficiency of [85%, 90%)
and [80%, 95%) in the rear motor occupy the relatively largest area in the pie compared
with the one in other strategies. However, the proportion in [60%, 65%) is also the biggest
among that of other strategies. As for calculating the mathematical expectation with regard
to the efficiency of the rear motor in these strategies, the expectation has a similar amount in
the RB strategy, ECMS, and MPC, which reaches 75.27%, 74.82%, and 75.20%, respectively.
However, the expectation in the H-EMS, which reached 78.58%, has a nearly 3% advantage
compared with the others. It can illustrate the advanced energy-saving ability in the
electricity distribution in the low-level framework of the H-EMS.

Based on the above analysis, the H-EMS improves the remarkable economy by rea-
sonably separating the energy-saving problem into the subproblem. Additionally, the
hierarchical structure of the H-EMS has an advanced energy-saving ability as it uses
suitable energy management methods, and it contains the high-level framework that is
established by the MPC for optimizing the distribution between fuel consumption and
electricity, and the low-level framework that is established by the ECMS for optimizing the
electric distribution between front motor and rear motor.
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5. Conclusions

In this paper, an energy management strategy based on the H-EMS is proposed for
a 4WD PHEV and gives full play to the energy-saving potential of cooperative control
between a 4WD PHEV’s multipower sources and multipower components. The GRNN
is adopted to predict the future speed of the vehicle, which can provide future driving
information for the energy management strategy. The H-EMS adopts a hierarchical control
strategy, where the upper strategy adopts the MPC strategy to distribute the power output
among multipower sources, and the lower strategy adopts the ECMS with relatively less
computational load to distribute the energy of the front/rear motors. In order to verify
the effectiveness of the novel method proposed in this paper, the simulation results are
compared using MATLAB/Simulink, and the economy of the H-EMS strategy is improved
by 11.87% compared with the RB strategy.

However, the deviation of speed prediction and the error of the linearization process
of the MPC lead to the final control effect not reaching the best state. In future scientific
research, the speed prediction error and MPC linearization error shall be solved to improve
the vehicle economy further.
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