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Abstract: Nowadays, most deep-learning-based bearing fault diagnosis methods are studied under
the condition of steady speed, while the performance of these models cannot be fully played under
time-varying conditions. Therefore, in order to facilitate the practical application of a deep learning
model in bearing fault diagnosis, a vibration–speed fusion network is proposed, which utilizes a
transformer with a self-attention module to extract vibration features and utilizes a sparse autoencoder
(SAE) network to extract sparse features from speed pulse signal. The vibration–speed fusion network
enables the efficient fusion of different signals in a high-dimensional vector space with a high degree of
model interpretability, without additional signal processing steps. After tuning the hyperparameters
of the network, the key segments of the bearing’s time-domain vibration signals can be optimally
extracted, the network performance is much better than traditional deep learning methods, and the
classification accuracy can reach 95.18% and 99.85% on the two public bearing datasets from the Xi’an
Jiaotong University and the University of Ottawa.

Keywords: intelligent fault diagnosis; transformer; time-varying rotational speed; feature visualiza-
tion

1. Introduction

Rolling bearings are widely used in aerospace engineering, industrial manufacturing,
military equipment, and other fields [1]. However, as bearings sustain a lot of thermal
and compressive stresses when supporting the rotating shaft and other components for
high-speed rotation, they are prone to wear and tear, and fail to meet the requirements,
or even break down and cause the transmission system to collapse [2,3]. Therefore, it
is necessary to monitor the health status of bearings during operation to improve the
efficiency of machinery operation and reduce equipment failure [4]. A prognostics and
health management system for key components such as bearings has been established
at NASA to achieve the goal of a low failure rate of complex systems through real-time
monitoring [5]. This high real-time, highly interactive health monitoring approach replaces
traditional methods such as spectrum analysis [6], acoustic emission [7], and thermal
imaging [8].

Under the actual working conditions, the bearing speed is prone to change, and the
internal parts of the bearing will produce uneven force changes under variable speed,
which leads to bearing failure under variable working conditions. At the same time, due to
the influence of speed change, the effect of the time–frequency spectrum analysis method
based on bearing vibration signals in the extraction of early, weak fault characteristics will
be seriously reduced, resulting in a higher difficulty of early fault diagnosis under variable
working conditions than that of constant working conditions [9]. However, the prerequisite
of most current bearing fault diagnosis methods is constant speed, which means that in order
to ensure the stability of monitoring, the existing bearing condition monitoring system needs
to be further optimized and improved to adapt to more complex working conditions. In the
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study of bearing fault feature extraction under variable speed, the order spectrum analysis
method based on angular domain resampling is similar to the traditional spectrum analysis
method, mainly by interpolating the collected rotational speed phase signals to obtain a
clearer order spectrum and enhance the extraction effect of bearing fault signal features under
variable speed conditions [10]. However, the effect of this method suffers in the case of a
strong rotational speed variation and suffers from the same drawbacks as traditional spectrum
analysis methods, both of which rely on a manual selection of features. As shown in Figure 1,
the spectra of the constant-speed bearing (model: 6205-2RS JEM SKF) and the variable-speed
bearing (model: NSK6203) were obtained by a fast Fourier transform (FFT) during the test
period, from which it can be seen that a serious “spectrum blurring” phenomenon occurred in
the case of the variable speed.
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Figure 1. Spectrum blurring phenomenon at time-varying speed.

At present, deep learning is increasingly used in various fields because of its own
excellent performance, especially in the field of signal analysis, and its excellent feature ex-
traction capability can effectively overcome the shortcomings of traditional methods [11–15].
However, the bearing vibration features drift under variable speed, and the generalizabil-
ity of the conventional model based on deep learning is significantly reduced. To solve
this problem, there are two main research directions: one is to improve the network or
enhance the bearing signal preprocessing step. For example, Zhang et al. [16] improved the
diagnosis of a convolutional neural network (CNN) under variable operating conditions
by designing a two-dimensional multiscale convolutional cascade network and generat-
ing two-dimensional image data from one-dimensional vibration signals. Hasan et al. [17]
converted the acoustic emission signal to acoustic spectral imaging and then improved
the overall robustness of the model for classification under variable speed by sharing pa-
rameters with a CNN. Zhao et al. [18] used a multiscale convolutional residual network to
convert one-dimensional signals into three-dimensional images using a vector compression
method for network training, which enhanced the signal feature extraction capability for
bearings under variable operating conditions. The second research direction is to use trans-
fer learning to enhance the cross-domain diagnostic capability. For example, He et al. [19]
used a Morlet wavelet to improve the depth self-coding model to enhance the fault classifi-
cation of bearings under new operating conditions. Han et al. [20] used data from known
operating conditions to pretrain the CNN model and adapted this CNN model to fault
diagnosis under unknown operating conditions by fine-tuning the weights. An et al. [21]
adopted a framework of domain adaptation with multicore maximum mean discrepancies
to make the features of different domains approach each other in the reconstructed kernel
Hilbert space, which improved the stability and accuracy of the results. Both of the above
research directions have proposed feasible solutions for bearing fault diagnosis under
variable operating conditions, but there are still the following problems: first, different
signal preprocessing methods cannot fairly compare the performance between models
and cannot achieve end-to-end fault diagnosis; second, there are still limitations in the
effect of cross-domain classification under time-varying speed, which can only achieve
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cross-domain diagnosis within the specified range of operating condition changes and
cannot adaptively enhance the generalization. Therefore, to address the above problems,
from the high-dimensional fusion of bearing vibration signal features and bearing speed
pulse signal features, this paper proposes a vibration–speed data fusion network based on
an SAE and a transformer (VSF-ST), which makes full use of the feature extraction ability
of both networks for nonstationary signals to achieve end-to-end adaptive fault diagnosis
classification under time-varying speed without additional signal processing, and provides
a new idea to solve the problem under variable speed conditions. The main contributions
of this manuscript are as follows:

• A data embedding layer is designed according to the characteristics of bearing vibra-
tion signals under time-varying speed, and the multihead attention mechanism of a
transformer is fully used to extract bearing fault features under time-varying speed,
so as to achieve high-dimensional feature fusion with speed pulse signals. Through
adjusting parameters, the effectiveness of the fusion method proposed in this paper
for bearing fault diagnosis under time-varying speed is proved in comparison with
other deep learning models.

• The degree of influence of the speed fluctuation on the model classification is quanti-
tatively analyzed, and the effectiveness of the model for bearing fault classification
under the actual variable speed is verified by experimental data.

• From the perspective of model interpretability, the mechanism and principle of each
module of the fusion model in extracting bearing time-domain signal features are
analyzed, and the potential application of the deep learning model in multisensor
signal fusion is explored.

2. Vibration–Speed Data Fusion Network

This section introduces the background and basic module of the vibration–speed data
fusion network proposed in this manuscript, including the transformer with multihead
self-attention, the SAE, and its network framework as shown in Figure 2. Bearing vibration
signals under time-varying speed not only have local impact characteristics but also have
mutual dependence among them. Therefore, this section adopts the multihead self-attention
mechanism in the transformer model [22], which is more efficient to deal with time series
problems and extract vibration features. According to the signal characteristics of bearing
vibration in the time domain, this section designs an embedding layer, feature extraction
layer, and classification layer for one-dimensional sequential data adapted to model training
to achieve the end-to-end intelligent diagnosis of bearing faults.
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Figure 2. The framework of VSF-ST.
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2.1. One-Dimensional Sequence Embedding Layer

In order to segment a long sequence of vibration signals under variable speed and
improve the efficiency of network calculations, it is necessary to establish a 1D data-
embedding layer. The segment was divided into X =

[
x1

s , x2
s , x3

s , . . ., xN
s
]
∈ RN×S. Among

them, X is a subsequence of the collected data, N is the number of subsequences being
segmented, and S is the length of the segmented fragment. A different segmentation means
different values of N and S. In order to ensure that the dimensionality of the segmented
data did not change after the embedding layer, a linear layer with weight W was set in this
paper, which was equivalent to projecting X as a D-dimensional vector:

X′ =
[

x0,
[

x1
s , x2

s , x3
s , . . ., xN

s

]
·W
]
, W ∈ RS×D (1)

where x0 is a D-dimensional vector, also known as a classification token, which plays a
role similar to global pooling and aims to enhance the generalization performance [23].
The position of the data is unchangeable in a physical sense after splitting, otherwise the
sequence would be chaotic, so a one-dimensional position encoding Epos ∈ R(S+1)×D that
can be learned by the network was added in this paper to extract the relative positions
of the vibration signals. Both relative position coding and absolute position coding can
enhance the generalization performance, and the difference between these two effects
is very small [24], so a random initialized weight matrix was adopted as the position
coding in this paper. The output of the linear embedding layer can be presented as the
following formula:

Y =
[

x0;
[

x1
s , x2

s , x3
s , . . . , xN

s

]
·W
]
+ Epos ∈ R(S+1)×D (2)

2.2. Encoder Block Based on Multihead Attention

In deep learning, convolution blocks are mostly used to extract local features, which
are not suitable for all temporal dependence models. At the same time, under the high-
sampling sensor, the convolution operation is easily disturbed by noises and redundant
data in vibration signals. The multihead self-attention mechanism in the transformer can
effectively replace the convolution operation, and at the same time has an efficient filtering
ability in processing the highly redundant information [25]. In Figure 3, the modules of the
multihead self-attention (MSA) mechanism used in this paper are shown.

Linear Linear Linear

Mat Mul

Scale

SoftMax

Mat Mul

Input

KQ V

Linear Linear Linear

Scaled Dot-Product Attention

Concat

H

Linear

V K Q

(a) (b)

Figure 3. (a) Multihead self-attention module. (b) Scaled dot-product attention.

In Figure 3, Q, K, and V, denote the query vector matrix, key vector matrix, and value
vector matrix generated by the linear mapping of the output vector Y of the embedding
layer, respectively. The correlation operation between Q and K was divided by a scaling
factor

√
dk. The value obtained was normalized by the softmax function and finally
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multiplied by V to obtain the output of self-attention. The specific calculation was as
follows:

Attention(Q, K, V) = Softmax
(

QKT
√

dk

)
V (3)

The adopted MSA module contained h self-attention blocks. This method can measure
the effective features in the data from h dimensions, avoiding the coincidence caused by
single-headed self-attention. At the same time, matrix stitching and splitting were used
in the multihead operation to realize the parallel operation of the MSA module, which
reduced the complexity of the model operation. As many stacked fully connected layers
were adopted in the transformer, the Gaussian error linear unit (GeLU) activation function
was used in the feedforward neural network of the encoder block in this manuscript for
rapid convergence, which effectively avoided the problem of gradient disappearance after
using multiple encoder blocks. The GeLU activation function is as follows:

GeLU(x) = 0.5x
(

1 + tanh
[√

2/π
(

x + 0.044715x3
)])

(4)

2.3. Sparse Autoencoder

The SAE with symmetric network structure has a strong high-dimensional feature
extraction capability and unsupervised learning capability, which is more suitable for
extracting the characteristics of speed pulse signal. Its sparsity is mainly based on the
added sparse penalty factors so that the hidden layer of the network is in a state of high
inhibition and low activation. In this way, the features automatically extracted from
samples are high-dimensional and sparse, which consume less memory cost and are more
generalizable than the features extracted by the general nonlinear mapping. The sparsity
is mainly reflected in the fact that when the output of the hidden layer is −1 through the
activation function tanh, the node is in the inhibitory state. This is achieved by adding a
sparse penalty factor:

KL(ρ||_ρ j) = ρ log
ρ
_
ρ j

+ (1− ρ) log
1− ρ

1− _
ρ j

(5)

where KL is the scatter calculation, a measure of the difference in distribution between
two variables with ρ as the mean and one with _

ρ j as the mean. ρ is the sparsity parameter,
where ρ = 0.05, which means that the average activation of neurons in the hidden layer
is 0.05. The practical meaning of KL is that when the value of _

ρ j is close to ρ, the value of
KL is the smallest, and when the value differs greatly, the value of KL tends to infinity. So
adding the KL term to the loss function can well reflect the sparsity.

2.4. Vibration–Speed Data Fusion Network Training Process

In this manuscript, an adaptive fusion network model based on VSF-ST for bearing
time-varying operating conditions was developed for the purpose of deeply extracting the
nonstationary and nonlinear features from signals under variable speed. From the perspec-
tive of a multisource data network fusion, this paper used a transformer network with a
high parallel efficiency and information fusion efficiency and used an unsupervised SAE
network with a high generalization capability to perform high-dimensional feature fusion
on the collected bearing vibration signals and rotational speed pulse signals, respectively,
so as to realize the adaptive diagnosis of bearing faults under time-varying speed operating
conditions. As shown in Table 1, the corresponding data were used in the model.
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Table 1. Data usage of VSF-ST adaptive network in operating conditions.

Dataset Pretraining Phase Fusion Training Phase Testing Phase

Vibration signal (signal 1) ×
√ √

Speed signal (signal 2)
√ √ √

Label ×
√

×

The flow chart based on the VSF-ST adaptive model is shown in Figure 4, and the
specific steps are as follows:

• Step 1: Install the vibration sensor and speed sensor at the motor drive end; the
collected bearing vibration amplitude signal {Xi}d

i=1 is marked as signal 1 and the
direct tacho signal (typical square wave) {Si}d

i=1 is marked as signal 2, where d is
the number of samples. In dividing the data, both sensors are sampled at the same
frequency, so the samples intercepted by using a fixed-length sliding window for both
signal 1 and signal 2 are the working signals in the same state. Meanwhile, the same
random number seed is set for both signal 1 and signal 2 when disrupting the samples
to ensure that the same operating condition features are extracted during the network
fusion training. To augment the dataset, the samples are intercepted in the sliding
window so that there is partial overlapping between adjacent samples.

• Step 2: After dividing the data set for two channels, the tacho pulse signal samples
from signal 2 are first fed into the SAE network for pretraining. The samples at
this stage do not contain labels because the unsupervised learning capability of the
SAE can automatically extract the deep representations of the tacho pulses. After
completing a set number of iterations, the SAE network has learned the potential
spatial representations of the tacho pulse signals during the compression-recovery of
the data, and finally all the hidden layer parameters that can represent these potential
spatial representations are frozen for subsequent network fusion training.

• Step 3: The vibration samples from signal 1 are fed into the transformer network
constructed in this paper based on 1D sequential signals, while the tacho pulse signal
samples from signal 2 are fed into the SAE network with the hidden layer parameters
frozen. Note that the hidden layer here is only taken as the SAE encoder layer,
because the compressed features obtained after the coding layer are more helpful
for the network fusion training. After signal 1 and signal 2 have completed forward
propagation in their respective channels, the high-dimensional feature outputs (B, Xd)
and (B, Sd) are obtained in the last linear layer of the two networks, respectively,
where B is the number of batches of data and d is the vector dimension. These two
sets of vectors are spliced to output vector (B, cat(Xd, Sd)). Finally, the cross-entropy
calculation is done in the classification layer and the backpropagation of errors is
performed. In the iterative training of the network, only the parameters of the input
layer of the SAE network are updated. At the end of the training, results are finally
obtained by inputting the testing dataset.

As shown in Table 2, the VSF-ST adaptive framework parameters were configured.
Among them, the SAE and transformer contained a large number of fully connected layers,
which increased the volume of the network model to a certain extent. In order to speed
up the network training, GeLU was used as the main activation function. Compared
to ReLU, GeLU is a more mainstream activation function in transformer models. While
ReLU has a strong sparsity and lower complexity, it is more likely to lead to neuron values
in attention-based mechanisms computing the “necrotic” state [26], which causes some
features to be impaired in transmission. Therefore, it is not suitable for network structures
with fully connected layers. The classification layer adopted a simple three-layer fully
connected network structure, so as to avoid overfitting. From the change of data dimension
in the linear embedding layer, we can see that the classification token was equivalent to
adding an extra dimension to the original data dimension. In the final encoding block, the
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output of the classification token was equivalent to the features extracted by the whole
transformer network, so the classification token acted as a global pooling.
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Figure 4. Flowchart of proposed VSF-ST model for time-varying speed bearing fault diagnosis.

Table 2. Network structure parameters of the proposed VSF-ST model.

SAE Architecture Network Structure Parameters Input Size Output Size

Encoder–decoder Linear

2048− 1024− 512
128

512− 1024− 2048

(GeLU) (1, 2048) (1, 128)

Transformer architecture
Linear embedding Class token (1, 64) (1, 2048) (33, 64)layer Position code (33, 64)

Encoder block × 8

 MSA Linear (64, 192)

MLP− Block Linear (64− 256
−64) (GeLU, LN)

× 6
(33, 64) (33, 64)

Linear Linear (64, 128) (1, 64) (1, 128)

Classification layer Linear (256− 128− n) (So f tmax) (1, 256) (1, n)

3. Dataset Introduction

In this paper, two open-source datasets were used to verify the effectiveness of the
VSF-ST model for bearing fault diagnosis under variable speed. Two datasets were obtained
from the laboratories of Xi’an Jiaotong University and the University of Ottawa, Canada,
which simulate two operating conditions, “start-run-brake” and time-varying speed of
the bearing, respectively, to verify the effectiveness of the model more adequately in the
experiments. These two datasets are mainly affected by the change of speed, while the
influence of load is relatively small. The details of the division method and the setup in the
experiments for these two datasets in this paper are described below.

3.1. SQV Bearing Dataset from Xi’an Jiaotong University

As shown in Figure 5a, the bearing NSK6203 was artificially damaged by a fault
simulation test bench for the outer and inner rings, and the bearing vibration acceleration
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signal and bearing speed pulse signal were collected by the data acquisition instrument
during the whole “start-run-brake” cycle, which was adopted from the SQ (Spectra Quest)
fault simulation test bench, hereinafter referred to as the SQV dataset [27,28]. As shown in
Figure 5b, according to the degree of damage, a total of three fault levels were identified,
with numbers 1, 2, and 3 indicating mild, moderate, and severe damage, respectively, and
their fault details are shown in Table 3.

Data acquisition instrument

Motor

Rotor
Load IF-1 IF-2 IF-3

OF-1 OF-2 OF-3

(a) (b)

Motor bearing

Figure 5. (a) SQV dataset acquisition test bench. (b) Fault simulation bearings.

Table 3. Division of SQV dataset.

Data Label Fault Location Damage Level
Label

Damage
Area (mm2)

Damage
Depth (mm)

IF-1 Inner race 1 4 0.5
IF-2 Inner race 2 8 2
IF-3 Inner race 3 12 4
OF-1 Outer race 1 4 0.5
OF-2 Outer race 2 8 2
OF-3 Outer race 3 12 4
NC-1 Health None None None

For all health and fault bearings, the sampling time was 15 s and the sampling fre-
quency was 25,600 Hz. Throughout the sampling period, the data set recorded the signals
generated throughout the process of starting the bearing at 0 rpm, accelerating to a smooth
speed of 3000 rpm, and finally decelerating to a speed of 0. As shown in Figure 6, the speed
variation trend of the bearing was fitted by the speed pulse signal. Since the knob was
operated artificially to control the rotational speed, the instantaneous values of rotational
speed change were not guaranteed to be identical between the data sets, but the overall
trend of rotational speed change was the same.
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Figure 6. Graph of bearing speed variation.

3.2. Bearing Dataset from the University of Ottawa

The dataset from the University of Ottawa Laboratory [29] contains different fault
conditions at four types of time-varying speeds. As shown in Table 4, the operating speed
in this dataset changed all the time during the sampling time, and the variation was divided
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into four cases: acceleration (A), deceleration (D), acceleration and then deceleration (A-D),
and deceleration and then acceleration (D-A). In Figure 7, the variation of the operating
speed under the four operating conditions are shown, and the speed is indicated by
the bearing working frequency. The bearing health status was divided into three cases:
normal clear, inner race fault, and outer race fault, which are indicated by the labels NC,
IF, and OF. Each sample was collected for a total of 10 s with a sampling frequency of
200 kHz, and three repetitions of the experiment were conducted to collect data under each
operating condition.

Table 4. Division of the University of Ottawa dataset.

Operating Condition
Label

Variation of Bearing
Speed

Fault Label

A Acceleration NC & IF & OF
D Deceleration NC & IF & OF

A-D Acceleration and then deceleration NC & IF & OF
D-A Deceleration and then acceleration NC & IF & OF
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Figure 7. Rotational frequency variation in the University of Ottawa dataset for the time-varying
state of the bearing speed.

3.3. Data Processing

These two datasets used in this paper were sampled at different times, 10 s and 15 s,
respectively. If each divided sample was guaranteed to contain information about the data
within at least one rotation cycle of the bearing, only 100 to 500 samples subsets could be
obtained for each type of health condition, so the two open-source datasets in this paper
used data augmentation as shown in Figure 8 to increase the training sample set and testing
sample set.

Divide the 
training dataset

Divide the 
testing dataset

Signal 2

Signal 1Signal 1

Data overlap Data augmentation

(flipping)

flipping

Divide the 
training dataset

Divide the 
testing dataset

Signal 2

Signal 1

Data overlap Data augmentation

(flipping)

flipping

Figure 8. Method of bearing data augmentation for variable speed condition.

The bearing vibration signal (signal 1) and the bearing speed pulse signal (signal 2)
were acquired from the data acquisition, respectively. Since signal 1 and signal 2 were
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acquired synchronously at the same sampling frequency, a sliding window with the same
length was used for subsample interception. The interception time for each subsample was
1 s. Then, the first 80% of the data of the subsample were enhanced by data overlapping
acquisition and data flipping, and they were divided into a training set, and the next 20% of
the data were divided into a testing set in the same way. Among them, 50% of the sample
length was overlapped. This ensured that there was no overlap of data between the training
and testing sets, and also allowed the training data to be collected for the bearings at each
speed stage. The bearing vibration signal amplitude increased during acceleration and
decreased during acceleration. Similar to the image translation invariance in image data
augmentation, the data characteristics of acceleration and deceleration mapped to each
other could be simulated to some extent by flipping the bearing sample data. As shown in
Figure 9, the image of part of the sample data after data augmentation is shown.

(a)

(b)

(a)

(b)

Figure 9. Part of the dataset via augmentation: (a) SQV dataset; (b) University of Ottawa dataset.

4. Experimental Results and Discussion

In this section, the optimal structural parameters of the VSF-ST network model for
fault diagnosis under variable speed, as well as the performance comparison between the
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proposed model and other network models are experimentally investigated, including a
visual interpretation of the VSF-ST model in the process of classification. According to the
sampling differences between the SQV dataset and the University of Ottawa dataset, the
data batches were set to 32 and 64, respectively, and the length of each data sample was
2048 and 8096. The data were directly fed into the network model for training without
any preprocessing. The gradient descent method was a stochastic gradient descent with a
learning rate of 0.001, a momentum factor of 0.9, and a weight decay factor of 5× 10−5. The
deep learning environment used consisted of Pytorch 1.8.1, CUDA 10.1, and Python 3.8.

4.1. Effect of Network Model Parameters on Diagnostic Results

The VSF-ST model proposed in this paper had a large number of network parameters,
and the network parameters such as the number of encoder blocks, the number of head and
the length of the data segmentation in the transformer network, which extracted the key
vibration characteristics under variable speed conditions, had an impact on the network
performance. A box plot of the fault diagnosis effect of the VSF-ST model on the SQV
dataset is shown in Figure 10, where each set of experiments was repeated 20 times. In
Table 5, the extent to which changes in the network hyperparameters affected the results
is listed using multiple metrics. L represents the length of a single sample, and L/N
represents the subsamples of vibration signals that were further divided into N blocks
for processing in the process of MSA calculation. A reference group was set up for the
experiment, and the remaining comparison experimental groups were used to change
the network hyperparameter values by means of control variables. It can be seen from
Table 5 that the larger the number N of values for the segmentation of the sample signal, the
higher the accuracy, but at the same time the computational complexity increased sharply
with the increase of N. From N = 1, L/N = 2048 to N = 256, L/N = 8, the accuracy
increased from 91.45% to 95.18%, but the computational complexity increased from 4.21 M
(FLOPs) to 406.93M (FLOPs), the complexity increased by nearly 97 times, and the number
of parameters only decreased by 18%. One of the reasons for the decrease in the parameter
amount was that the dimensionality of the segmented data and the dimensionality of the
position encoding were reduced. For the transformer, it was the number of heads and
the number of encoder blocks that caused the change in the number of parameters. The
multihead self-attention mechanism was the key of the transformer model, where the
accuracy reached the best value when the number of multiheads was h = 4. It can be seen
from Equation (3) that the increase in the number of heads also caused a sharp increase
in computational complexity, as well as a significant increase in the number of network
parameters. The accuracy basically reached a peak of 95.18% when the number of encoder
blocks was increased to depth = 6 , after which a further increase in network depth did not
cause overfitting and the accuracy was always maintained at the peak. As mentioned in
Section 2, the transformer network contains a large number of residual connections and
dropout methods, which, together with the setting of the weight decay coefficients during
gradient descent, can prevent overfitting phenomena. Therefore, under the comprehensive
consideration of accuracy and operation cost, the network parameters were: N = 128,
L/N = 16, h = 4, and depth = 6.
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Figure 10. Box plot with different network structure parameters.

Table 5. Influence of the VSF-ST structure hyperparameters.

Label
Hyperparameters

Accuracy FLOPs Parameters
NumberN L/N h Depth

Baseline 256 8 4 6 95.18% 406.93 M 1.59 M
c 128 16 95.18% 205.27 M 1.59 M

64 32 94.85% 104.85 M 1.59 M
32 64 94.47% 53.72 M 1.61 M
16 128 94.21% 28.12 M 1.62 M
8 256 93.78% 15.69 M 1.64 M
4 512 92.81% 9.56 M 1.73 M
2 1024 92.30% 5.56 M 1.86 M
1 2048 91.45% 4.21 M 1.94 M

b 1 92.74% 152.61 M 0.71 M
2 93.52% 207.41 M 0.81 M
3 94.67% 268.16 M 1.48 M
8 95.14% 812.36 M 1.78 M

a 1 91.53% 69.37 M 0.31 M
2 92.24% 139.61 M 0.54 M
3 93.41% 275.83 M 0.72 M
8 95.19% 561.27 M 2.38 M

4.2. Comparisons with Other Network Models

To demonstrate the advancement of the VSF-ST model for fault diagnosis in variable
speed conditions of bearings, three models were added for comparison, which were a deep
convolutional neural network (DCNN), a long short-term memory (LSTM) network, and
a fully connected deep neural network (DNN). As shown in Table 6, the hyperparameter
settings of the three networks are shown. To ensure the fairness of the comparison experi-
ments, all three networks used the same gradient descent algorithm and the same relevant
parameter settings as the VSF-ST network. The first comparison was the classification
accuracy and loss value based on the SQV dataset. From Figure 11, it can be seen that all
four models basically stabilized by the 50th iteration, and the proposed model in this paper
had a higher classification accuracy and classification stability than the other three network
models. The maximum accuracy of the other models only reached about 85%, and the
accuracy was still fluctuating after 50 iterations, especially the DNN, which had the largest
fluctuation range. In the loss-value descent curve, the VSF-ST could quickly extract the
local and global features of bearing signals and complete the update of network parameters
by relying on its attention mechanism. For the DNN, which also contained a large number
of fully connected layers, it took nearly 30 iterations for the loss value to start decreasing in
the absence of an attention mechanism.
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Table 6. Hyperparameters of the networks in the comparison experimental group.

Model Model Hyperparameters

DCNN
Conv1d; kernel numbers: 16, 32, 64, 128; kernel size: 1 × 15, 1 × 3, 1 × 3, 1 × 3
2nd layer maxpooling (2, 2), 4th layer maxpooling (4); linear: 128 × 4, 256, 128

LSTM [LSTM (64, 64, tanh), dropout (0.1)] × 5; linear: 128, 128

DNN Linear: 1024, 256, 256, 256, 128, 128; dropout (0.1)
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Figure 11. Comparison experiments based on SQV dataset: (a) accuracy curve; (b) loss curve.

As shown in Figure 12, the same four models were used for comparison on the
University of Ottawa dataset. From the figure, it can be seen that the VSF-ST model could
achieve almost 100% classification on the University of Ottawa dataset, and the standard
deviation was also the lowest among the 20 repetitions. Although the CNN and LSTM
networks could occasionally reach the upper accuracy limit of nearly 98%, their models had
poor robustness and generalization when facing the classification problem under variable
speed conditions. This was because the random initialization of the network and the
random arrangement of the training samples had a certain impact on the feature extraction
effect, resulting in a large fluctuation of the accuracy in multiple experiments.

A D A-D D-A
60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

 DNN     DCNN     LSTM     VSF-ST

Operating condition label

Figure 12. Comparison experiments based on the University of Ottawa dataset.

4.3. Analysis of the Influence of Rotational Speed Fluctuation

Rotational speed fluctuation was the main factor affecting the classification accuracy of
the model. In order to further explore the influence of rotational speed on the generalization
of the model, the cross-domain diagnostic classification experiments of four models on
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different variable speed operating conditions were set up, and the results are shown
in Figure 13, where A → D indicates that the working condition in the training set is
acceleration and the working condition in the testing set is deceleration. In the cross-
domain classification, VSF-ST performed the worst generalization in group A→ D with
only 95% classification accuracy, but in group D→ A , the result was close to 100%. This
was probably because the deceleration frequency range in the University of Ottawa data
set was from 37.5 Hz to 13.5 Hz and the acceleration frequency range was from 14.7 Hz to
24.2 Hz, so the testing set in group A→ D had a higher frequency range than the training
set. This phenomenon was also reflected in the other three models. In the cross-domain
diagnostic classification task, the generalization performance of VSF-ST outperformed the
other models in each task, due to the efficient fusion of vibration signals and rotational
speed pulse signals in VSF-ST, which made the fault feature extraction under variable
speed conditions more stable.

In contrast, the DCNN, LSTM, and DNN all showed performance degradation in the
cross-domain diagnostic classification task and could not perform the best performance
of the network in the face of signals at unknown rotational speeds. From the comparison
experiments between the SQV and the University of Ottawa datasets, it can be seen that
VSF-ST showed the superiority of the model compared with traditional deep learning
algorithms DCNN, LSTM and DNN in the whole process of “start-run-brake” and the
time-varying speed of the bearing, and also showed the generalization performance of the
model in the cross-domain diagnostic classification task.

Figure 13. Comparison experiment of variable-speed cross-domain diagnosis classification based on
the University of Ottawa dataset.

From Figure 14a, it can be seen that the amplitude of the bearing vibration signal was
proportional to the speed, so the SQV data were further divided into five stages according
to the size of the speed interval: start-up, accelerating, stable running, decelerating, and
braking. The results of using VSF-ST to do fault classification for each of these five phases
are shown in Figure 14b. In the stable operation stage, the accuracy basically reached 100%;
in the acceleration and deceleration stages, the accuracy dropped to about 95%; and in the
start-up and braking stages, the accuracy could only reach about 80%. This indicated that it
was most challenging to accurately complete the health status assessment at the early stage
of bearing start-up, but when the signal monitoring time was appropriately extended, a
good level of diagnostic classification could be achieved using the model in this paper.
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Figure 14. Fault diagnosis based on SQV dataset by speed interval: (a) division of speed period;
(b) the diagnosis results of each time period.

4.4. Visual Interpretation of the Model

To further investigate the process of effective feature mining in VSF-ST for fault
classification under variable speed, a visual analysis of the operation mechanism of the
attention mechanism in the VSF-ST network is presented. The bearing vibration signal is
the main basis for the VSF-ST model to do fault classification of bearings at variable speed,
and the speed signal plays the role of high-dimensional fusion with the vibration signal in
the model. As shown in Figure 15, a set of data from the testing set was forward-propagated
once through the trained VSF-ST model to obtain the product feature maps of the Q and
K matrices of the six-layer encoder block, where the horizontal represents the individual
multihead self-attention feature matrix maps and the vertical represents the multihead
self-attention feature matrix maps of each layer. From Figure 15, it can be seen that the first
layer encoder block was still mainly in a kind of initialization state, and each segment of
the bearing vibration signal was given a certain range of initial values. From Equation (3),
it can be found that the product of the Q and K matrices was a measure of correlation, and
this value was multiplied with the V matrix and then the scaling dot product completed the
key calculation of the attention mechanism. This process has begun to reflect in the figure
of the second layer’s head 3 and head 4 feature matrix. Under the action of the multihead
self-attention mechanism, the bearing vibration signals were gradually assigned weights to
some key segments through a layer-by-layer feature mining of the six-layer encoder blocks,
while each head also extracted some important features from different dimensions.

As the VSF-ST input was a one-dimensional vibration signal, the vibration sequence
could be restored by one-dimensional splicing after each sample was segmented with
position encoding and local features were extracted. The output signal of the first layer and
the output signal of the sixth layer were compared and analyzed as follows: first, the testing
set data were propagated forward and the output matrix of the sixth layer and the first layer
was reduced to a one-dimensional sequence, and then 0.5 times the maximum value of the
amplitude change was set as the change threshold, and finally the red dots marked the
points that exceeded the change threshold. Results are shown in Figure 16. From the figure,
it can be seen that there were many points labeled with normal bearing vibration data,
and fewer points labeled with various types of fault bearing, indicating that the features
extracted in the VSF-ST network were different for normal and fault bearings. Each layer
of the network did not extract some characteristic points or characteristic fragments on
normal bearings, while the network focused on fault bearings to extract some characteristic
vibration shock fragments formed due to the fault points. This phenomenon is difficult
to be reflected in other deep learning algorithms, so model interpretability is also a major
advantage of VSF-ST.
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Figure 15. Visualization of Q and K feature matrix in the multihead self-attention mechanism.
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Figure 16. Visualization of the amplitude changes of the bearing vibration signal.

5. Conclusions

In order to solve the problem of insufficient generalization under time-varying speed
by the intelligent fault diagnosis method, a VSF-ST adaptive network for variable speed con-
ditions based on the dual-channel signal processing of bearing vibration signal and bearing
speed signal was proposed in this paper, and the effectiveness of the model was verified on
the SQV dataset and the University of Ottawa dataset. By exploring the appropriate hyper-
parameters, the visualization and interpretability of the model feature extraction process,
and the comparison experiments with other network models, the following conclusions
are drawn:

• Under the effects of the VSF-ST model’s position coding and multihead attention
mechanism, a small and suitable segmentation length could maximize the performance
of the model for bearing vibration signals under variable speed conditions. Increasing
the number of heads and the number of layers of coding blocks could also increase
the performance of the model, but under the comprehensive consideration of the
computational complexity and the number of parameters, four heads and six layers
of coding blocks could achieve the requirement of an accurate classification under
variable speed conditions, with an average classification accuracy of 95.18% in the
SQV dataset and 99.85% in the University of Ottawa dataset.
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• The advantages and effectiveness of the proposed model in fault diagnosis were
verified by experiments under the bearing “start-run-brake” and bearing time-varying
speed conditions.

• Without signal processing, the VSF-ST network could directly learn useful vibration
shock fragments in the fault signal by a layer-by-layer feature extraction, so as to
classify the fault bearings from the health bearings and the fault bearings from each
other. The fusion of high-dimensional features of bearing speed signals while extract-
ing features of bearing vibration signals could further enhance the adaptivity of the
network under variable speed conditions.

In future research, the fusion method and fusion mechanism of bearing signal features
under variable speed conditions will be further investigated to enhance the interpretability
of the model. In addition, the generalizability of the model will be further improved by
fusing the bearing signal feature extraction method with a deep learning algorithm in the
case of a limited sample set of variable speed conditions.
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The following abbreviations are used in this manuscript:

SAE Sparse autoencoder
FFT Fast Fourier transform
CNN Convolutional neural network
VSF-ST Vibration–speed data fusion network based on SAE and transformer
MSA Multihead self-attention
GeLU Gaussian error linear unit
KL Scatter calculation
ReLU Rectified linear unit
MLP Multilayer perceptron
SQV Spectra Quest varying speed dataset
A Acceleration
D Deceleration
A-D Acceleration and then deceleration
D-A Deceleration and then acceleration
DCNN Deep convolutional neural network
LSTM Long short-term memory
DNN Deep neural network
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