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Abstract: An unmanned aerial manipulator (UAM) is a novel flying robot consisting of an unmanned
aerial vehicle (UAV) and a multi-degree-of-freedom (DoF) robotic arm. It can actively interact with
the environment to conduct dangerous or inaccessible tasks for humans. Owing to the underactuated
characteristics of UAVs and the coupling generated by the rigid connection with the manipulator,
robustness and a high-precision controller are critical for UAMs. In this paper, we propose a nonsingu-
lar global fast terminal sliding mode (NGFTSM) controller for UAMs to track the expected trajectory
under the influence of disturbances based on a reasonably simplified UAM system dynamics model.
To achieve active anti-disturbance and high tracking accuracy in a UAM system, we incorporate an
RBF neural network into the controller to estimate lumped disturbances, including internal coupling
and external disturbances. The controller and neural network are derived according to Lyapunov
theory to ensure the system’s stability. In addition, we propose a set of illustrative metrics to evaluate
the performance of the designed controller and compare it with other controllers by simulations. The
results show that the proposed controller can effectively enhance the robustness and accuracy of a
UAM system with satisfactory convergence. The experimental results also verify the effectiveness of
the proposed controller.

Keywords: aerial manipulator; trajectory tracking; sliding mode; RBF neural network

1. Introduction

Unmanned aerial vehicles (UAVs) equipped with various types of equipment play an
increasingly important role in aerial photography, search, surveillance, etc. [1–4]. In partic-
ular, unmanned aerial manipulators (UAMs) consisting of a UAV and robotic manipulators
have potential operational applications, providing improved maneuverability relative to
mobile manipulators. UAMs can substitute humans to actively perform aerial missions,
reducing cost and personal injury [5] associated with tasks such as disaster rescue [6,7],
social security [7,8] and object delivery [9,10]. Quadrotor-based UAMs have the advantages
of uncomplicated composition and easy maintenance, with numerous structural solutions.
However, the underactuated characteristics of quadrotors, the coupling generated by the
rigid connection with the manipulator and the reaction force of the manipulator motion
on the quadrotor reduce the stability of UAMs, making it difficult to achieve precise con-
trol. Therefore, it is crucial to design a robust, high-precision UAM controller with rapid
response capability [11].

A variety of control methods have been proposed to control aerial manipulator systems,
such as proportional-integral-derivative (PID) control [12,13], model-predictive control [14–16],
impedance control [17,18], adaptive control [19–21], etc. PID control is the most widely
used method, with the advantages of seldomly considering model information, simple
calculation and easy implementation. A controller based on the PID method was designed
for a UAM to conduct a hammering test on a bridge pier for defect inspection [12]. However,

Machines 2022, 10, 1021. https://doi.org/10.3390/machines10111021 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10111021
https://doi.org/10.3390/machines10111021
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-8307-7884
https://orcid.org/0000-0003-0852-1268
https://doi.org/10.3390/machines10111021
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10111021?type=check_update&version=1


Machines 2022, 10, 1021 2 of 24

the robustness of the PID controller was limited under the influence of disturbances. A
model-predictive controller was designed for visual servo control of an aerial manipulator,
as well as aerial grasping of cylindrical objects [14]. An impedance controller was developed
for an aerial manipulator to suppress disturbances caused by manipulator movements
when the system performed aerial tasks [18]. An adaptive controller capable of estimating
online load parameters was designed for a UAM to transport an unknown object and
track the desired trajectory [20]. However, these operations were performed with the
system slowly changing or with uncomplicated external disturbances. Under real-world
conditions, the quadrotor is very sensitive to interference, owing to its underactuated and
strong coupling characteristics. Therefore, the robust control of aerial manipulators is a
critical problem to be solved.

Sliding mode (SM) control is a variable structure control that forces the system to
move along the trajectory of the predetermined sliding surface by varying purposefully
based on the system state. With the advantage of fast convergence and anti-disturbance
characteristics, SM control has become one of the most widely used robust nonlinear control
methods. Many studies have been conducted on the use of SM for aerial manipulators
conducting aerial tasks. An adaptive SM controller was developed for precise control
of the quadrotor position and manipulator motion to accurately pick up and transfer
objects [21]. A passive adaptive SM controller was developed to control the position and
velocity of a UAM using an image-based servo [22]. A PID- and SM-based controller
was proposed to perform precisely desired trajectory tracking for an aerial manipulator
system [23]. A composite controller combined proportional derivative (PD), SM-based
aerial manipulator system decoupled into two subsystems was designed for a UAM to
accurately track the desired trajectory [24]. The above experimental results show that an
SM controller can effectively improve the robustness, accuracy and decoupling ability of a
UAM without guaranteeing the error convergence time. Hence, to ensure zero convergence
of system errors in finite time, researchers have improved the SM function to enhance
control performance and ensure sufficient response speed to meet the requirements of rapid
system change.

The position or velocity errors of a UAM during missions are related to the under-
actuation and instability of the quadrotor. Therefore, the response and convergence time
of the quadrotor are crucial to the operation stability of a UAM. A novel robust terminal
sliding mode control method was proposed to guarantee system converged to a stability
point in a limited time [25]. An adaptive integral-type terminal sliding mode controller
was proposed for the quadrotor to track the attitude and position under the conditions
of model uncertainties and external disturbances [26]. A time delay, estimation-based,
nonsingular terminal sliding mode controller was proposed for a UAM to enhance the joint
desired angle tracking accuracy of the manipulator [27]. A controller based on SM and
an extended-state observer was designed for a quadrotor to precisely track a spiral curve
under the influence of disturbances [28]. The above findings demonstrate that the system
can reliably perform aerial missions with little regard for external disturbances. However,
various unavoidable environmental disturbances, such as gusts of wind, seriously affect
the system’s stability in practical applications. Therefore, the ability to actively suppress
interference is critical for UAMs.

The aim of the present study is to improve general SM function design a nonsingular
global fast terminal sliding mode (NGFTSM) function. Combined with a radial basis func-
tion (RBF) neural network, a composed controller is proposed for an aerial manipulator to
ensure reliable tracking of desired trajectories under the influence of external disturbances.
The UAM system dynamics model is simplified under given conditions and decoupled into
two subsystems to design an NGFTSM controller. To achieve active anti-disturbance and
high-accuracy control of a UAM, we incorporate an RBF neural network into the controller
to estimate lumped disturbances, including internal coupling and external disturbances.
In the previous studies [29,30], neural networks have been used to approximate unknown
models. The proposed controller and neural network are derived according to Lyapunov
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theory to ensure the system’s stability. A final simulation and actual flight verify the
reliability of the proposed control method.

The remainder of this paper is organized as follows. In Section 2, we present the
UAM dynamics model with reasonable simplification. In Section 3, we propose a control
scheme for a UAM and conduct a Lyapunov analysis of the system’s stability. Then, in
Sections 4 and 5, several simulations are performed for comparison with other control
methods, and an actual flight test is carried out to verify the performance of the proposed
controller. Finally, in Section 6 we present our concluding remarks.

2. Materials and Methods
2.1. Kinematic Model

Figure 1 shows the structure of the reference frames. The inertial coordinate frame is
denoted as OI , Ob and Oi represent the body coordinate frames fixed to the quadrotor and
links, respectively. All body-fixed coordinate frames are located at the center of mass of their
respective rigid bodies. The position of the center of mass (COM) of the quadrotor in the
inertial frame is p = [x y z]T , the Euler angles of the quadrotor are expressed Φ = [φ θ ψ]T

and the joint angles of the two-DoF manipulator are expressed ϕ = [ϕ1 ϕ2]
T . The vector

containing all the generalized coordinate variables is defined as q = [pT ΦT ϕT ]
T .
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.
p and

.
pb represent the translational velocity of the center of mass of the quadrotor

in the inertial coordinate and body-fixed frame, respectively; ω and ωb represent the
angle velocity of the quadrotor in the inertial and body-fixed frame, respectively; Rb is the
transformation matrix from the body coordinate to the inertial coordinate; and T is the
transformation matrix from

.
Φ to ω.

.
p = Rb

.
pb (1)

ωb = RT
b T

.
Φ = Q

.
Φ (2)

pi(i = 1, 2) and pb
i represent the position of the mass of link i = 1, 2 in the inertial

coordinate and body-fixed frame, respectively. The translational and angular velocity of
each manipulator link are related to

.
ϕ and the Jacobian matrix, Jvi ∈ R2×2 and Jωi ∈ R2×2.

The translational and angular velocity of each link in the inertial frame are expressed
as follows.

.
pi =

.
p + ω̂bRb pb

i + Rb Jvi
.
ϕ (3)

ωi = ω + Rb Jωi
.
ϕ (4)
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2.2. Dynamics Model

The dynamical model of the system is established according to eh Euler–Lagrange
method based on the kinematic model of the system.

d
dt

∂L
∂

.
q
− ∂L

∂q
= τ + τext (5)

∆ = K−U (6)

where K and U are the total kinetic and potential energy of the aerial manipulator system,
respectively; he generalized force is τ = [τ1 τ2 · · · τ8]

T ; the generalized force in the x, y
and z directions is [τ1 τ2 τ3]

T . The generalized torque corresponding to the Euler angle is
[τ4 τ5 τ6]

T ; the generalized torque corresponding to link i is [τ7 τ8]
T ; and τext indicates the

external disturbance applied to the system.

K = Kb +
2

∑
i=1

Ki (7)

Kb =
1
2

.
pTmb

.
p +

1
2

.
Φ

T
TT Rb IbRT

b T
.

Φ (8)

Ki =
1
2

.
pT

i mi
.
pi +

1
2

ωT
i (RbRi)Ii(RbRi)

Tωi (9)

where mb and mi are the masses of the quadrotor and link i, respectively;I is the inertial
matrix; and the total potential energy is defined as:

U = mbgeT
3 p +

2

∑
i=1

migeT
3 (p + Rb pb

i ) (10)

where e3 = [0 0 1]T . The dynamic equation of the system can be expressed as:

M(q)
..
q + C(q,

.
q)

.
q + G(q) = τ + τext (11)

where M(q) is the mass matrix, C(q,
.
q) is the Coriolis matrix and G(q) is the gravity matrix.

2.3. Model Simplification

Equation (11) can be rewritten in block matrix form as:M11 M12 M13
M21 M22 M23
M31 M32 M33

 ..
p
..
Φ
..
ϕ

+

C11 C12 C13
C21 C22 C23
C31 C32 C33

 .
p
.

Φ
.
ϕ

+

G1
G2
G3

 =

τp
τΦ
τϕ

+

τp−ext
τΦ−ext
τϕ−ext

 (12)

Because the manipulator joint rotation speed is much slower than the quadrotor
movement, the first and above derivatives of the manipulator joint angle (ϕ = [ϕ1 ϕ2]

T)
can be assumed to be zero, yielding the dynamic model of the quadrotor subsystem. The
aerial manipulator control framework is shown in Figure 2.[

M11 M12
M21 M22

][ .
p
..
Φ

]
+

[
Cχ

11 Cχ
12

Cχ
21 Cχ

22

][ .
p
.

Φ

]
+

[
G1
G2

]
=

[
τp
τΦ

]
+

[
τp−ext
τΦ−ext

]
(13)

where
[

Cχ
11 Cχ

12
Cχ

21 Cχ
22

]
=

[
C11 C12
C21 C22

]
.
ϕi=0

; τp =
[
τ1 τ2 τ3

]T ; τΦ =
[
τ4 τ5 τ6

]T ;

τϕ =
[
τ7 τ8

]T .
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3. Materials and Methods

In this section, we propose a controller based on the nonsingular global fast terminal
sliding mode (NGFTSM) and an RBF neural network. The generalized state vector is
computed by the dynamic model of the UAM and subtracted from the desired value to
obtain the tracking error. Subsequently, the tracking error and its derivative are substituted
into the nonlinear sliding mode surface function to calculate the sliding mode variable and
imported into the proposed controller with this variable. To avoid uncertainties caused by
disturbances and system imperfections and improve the trajectory tracking performance of
the UAM, an RBF neural network estimates lumped disturbances containing the internal
coupling, modelling errors and external disturbances and compensates for the controller.

ζ =
[
pT ΦT]T is the state variable of the quadrotor, and U =

[
τT

p τT
Φ

]T
is the

system input. Equation (13) can be rewritten as:

Mχ
..
ζ + Cχ

.
ζ + Gχ = U + Uext (14)

where Mχ =

[
M11 M12
M21 M22

]
; Cχ =

[
Cχ

11 Cχ
12

Cχ
21 Cχ

22

]
; Gχ =

[
G1
G2

]
; Uext =

[
τp−ext
τΦ−ext

]
.

The general quadrotor system is divided into outer and inner rings, and the desired
Euler angles are generated from the outer ring. In Equation (14), calculation of the outer-
loop control input (τp) requires

..
Φ of the inner loop, which is unknown. Therefore, to

eliminate the coupling between the inner and outer rings and possible algebraic-loop
problems in simulation, we set M12 = 0, yielding the new control input [31]:

Mχ
..
ζ + Cχ

.
ζ + Gχ = U + Uext (15)

3.1. Position Controller Design

The system position error (e) and nonsingular global fast terminal sliding mode
function (s) are defined as:

e = pd − p (16)

s =
.
e + ΓΘ(e) + ΛH(e) (17)

where e = [e1 e2 e3]
T ; s = [s1 s2 s3]

T ; Γ = diag(α1, α2, α3); Θ(e) = [ek
1 ek

2 ek
3]

T
;

Λ = diag( 1
β1

, 1
β2

, 1
β3
); H(e) = [|e1|

µ
v sgn(e1) |e2|

µ
v sgn(e2)|e3|

µ
v sgn(e3)]

T
; αi, βi > 0; µ > v;
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k, µ, v are all positive odd numbers; and sgn(e) is the error switching function. The control
law is expressed as follows.

..
p =

..
pd + Γ

.
Θ(e) + Λ

.
H(e) + λs + ηsgn(s) (18)

τp = M11
..
p + Cχ

11
.
p + Cχ

12

.
Φ + G1 − τ̂p−ext (19)

where λ = diag(λ1, λ2 · · · λ8), λi > 0; ηsgn(s) is the robust term to overcome the neural
network approximation error; and τ̂p−ext is the estimation of the lumped disturbances of
the position system from the RBF neural network. Therefore, the expected Euler angle of
the inner ring can be calculated according to Equations (20)–(22) [23].{

z∗ = τp
‖τp‖

x∗ = [cos ψd sin ψd 0]
(20)


zb = z∗

yb = z∗×x∗
‖z∗×x∗‖

xb = zb × yb
R = [xb yb zb]

(21)

θd = arc tan 2(−R(3, 1),
√

R(1, 1)2 + R(2, 1)2)

φd = arc tan 2( R(2,1)
cos θd

, R(1,1)
cos θd

)
(22)

where z∗ is the unit vector of the z axis in the body coordinate system, x∗ is the unit vector
of the x axis in the body coordinate system, ψd is the desired yaw angle, R is the rotation
matrix of the expected pose and arctan2 is a tangent function that is calculated as:

arctan2(y, x) =



arctan( y
x ) x > 0

arctan( y
x ) + π y ≥ 0, x < 0

arctan( y
x )− π y < 0, x < 0

π
2 y > 0, x = 0

−π
2 y < 0, x = 0

unde f ined y = 0, x = 0

(23)

3.2. Attitude Controller Design

The tracking error and nonsingular global fast terminal sliding mode function of the
attitude loop are defined as Equations (16) and (17), and the control input of the inner loop
is obtained as follows.

..
Φ =

..
Φd + Γ

.
Θ(e) + Λ

.
H(e) + λs + ηsgn(s) (24)

τΦ = M21
..
p + M22

..
p + Cχ

21
.
p + Cχ

22

.
Φ + G2 − τ̂Φ−ext (25)

where τ̂Φ−ext is the lumped disturbances estimation of the attitude system from the RBF
neural network. To avoid dynamic changes in the attitude system affecting the stability of
the position system, attitude controller gains need to be adjusted to ensure that the attitude
errors converge faster than the position errors [31].
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3.3. RBF Neural Network Design and Stability Judgement

Because the controllers have the same design form, the x channel is used as an example
to design the RBF neural network.

hj = exp(
‖ξ − cj‖2

b2
j

) (26)

f = W∗Th(ξ) + ε (27)

where ξ is the network input; W∗ is the ideal network weight; ε is the network approxima-
tion error, where |ε| ≤ εN ; cj and bj are the Gaussian function parameters; h = [hj]

T is the
output of the Gaussian function; and f is the actual network output. The network input is
defined as ξ = [e1

.
e1]

T , and the estimation output is defined as:

f̂ (ξ) = ŴTh(ξ) (28)

Because RBF neural networks have excellent generalization ability and approximation
performance, we introduce a virtual variable (F). The virtual variable of the position system

is defined as F̂p = [ f̂1 f̂2 f̂3]
T

, and the position dynamics model can be rewritten as:

..
p = M−1

11 τp + Fp −M−1
11 (Cχ

11
.
p + Cχ

12

.
Φ + G1) (29)

Fp = M(q)−1τp−ext (30)

Therefore, the time derivative of the sliding mode function and the estimation of the
neural network can be obtained from Equations (18) and (19).

.
s =

..
pd −

..
p + Γ

.
Θ(e) + Λ

.
H(e)

=
..
pd − λs− ηsgn(s)−M(q)−1(τp−ext − τ̂p−ext)

= −λs− ηsgn(s)− F̃p

(31)

F̃p = [ f̃1 f̃2 f̃3]
T
= M(q)−1(τp−ext − τ̂p−ext) = Fp − F̂p (32)

f̃ = f − f̂ = W∗Th(ξ) + ε− ŴTh(ξ) = W̃Th(ξ) + ε (33)

where f̃ is the neural network estimation for each position system channel. To obtain the
network weight (Ŵ) and prove the stability of the controller, the x channel is taken as an
example to design the Lyapunov function.

V = Va + Vr + Vs

= 1
2 s2

1 +
1
2 δW̃TW̃ + 1

2 e2
1

(34)

Then,s1 = 0 is set as the sliding surface of the system, and Equation (17) can be
rewritten as:

.
e1 = −α1ek

1 −
1
β1
|e1|

µ
v sgn(e1) (35)

where Va represents the process of the system approaching the sliding surface, δ > 0, Vr
represents the process of neural network approximation for lumped disturbances and
Vs represents the convergence process after the system reaches the sliding mode surface.
Therefore, the time derivative of the Lyapunov function can be written as:

.
V = s1

.
s1 + δW̃T

.
W̃ + e1

.
e1

= s1(−λ1s1 − η1sgn(s1)− f̃1)− δW̃T
.

Ŵ − e1(α1ek
1 +

1
β1
|e1|

µ
ν sgn(e1))

= −W̃T(s1h(ξ) + δ
.

Ŵ)− λ1s2
1 − (εs1 + η1|s1|)− (α1ek+1

1 + 1
β1
|e1|

µ+ν
ν )

(36)
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Accordingly, η1 > εN , and the weight-adaptive law is defined as
.

Ŵ = − 1
δ s1h(ξ).

Because δ, λ1, α1, β1, η1 are all positive numbers and k + 1 is an even number, we V ≥ 0,
.

V ≤ 0 and V ·
.

V ≤ 0. The system is asymptotically stable according to the Lyapunov
stability criterion, and the error can gradually converge to zero from any initial value.
In addition, the neural network output ( f̂1) of channel x can be obtained according to
Equation (28). Similarly, the neural network output ( f̂i) of other channels can be determined.
Hence, the lumped interference estimation of the position and attitude system can be
expressed as:

τ̂p−ext = M11 F̂p (37)

τ̂Φ−ext = M21 F̂Φ (38)

4. Evaluation Criteria for UAM

In this section, we describe three sets of simulations to verify the feasibility and practi-
cality of the proposed controller (composite nonsingular global fast terminal sliding mode
controller, CNGFTSM), and the simulation results are assessed and analyzed in comparison
with a nonsingular global fast terminal sliding mode controller (NGFTSM), sliding mode
controller (SM) [21] and sliding mode PID controller (SMPID) [23]. A set of illustrative
metrics are established to evaluate the performance of the proposed UAM controller.

• Robustness

The underactuated deficiency of the quadrotor makes the UAM system extremely
sensitive to the impact of internal uncertainty and external disturbances during operation.
Hence, the robustness of the controller is a crucial indicator to ensure the resistance of
the system to these disturbances and reliable operation. The metric used to validate the
system’s robustness involves comparison with two experimental dataset with and without
disturbances; an error of less than 0.001 indicated the robustness of the system controller.

• Convergence

The convergence rate of the state vector is very high in the UAM system. The trajectory
deviation caused by slow convergence of the system can lead to severe accidents. Therefore,
to evaluate the system’s real-time performance, the convergence time is set as the time
taken to complete trajectory tracking.

• Accuracy

Accurate tracking of the desired trajectory is one of the most critical performance
metrics for evaluation of UAM control systems. For the subsequent simulations, if the
tracking error is stable at less than 0.001, the system is considered to meet the trajectory
tracking target.

To simulate the external disturbances during flight, the disturbances are set as follows
(parameters are listed Tables 1 and 2).

τp−ext =


[5− 5 5]T

[5 sin(t)− 5 cos(t) 5 cos(t)]T

[−5 cos(t) 5 sin(t)− 5 sin(t)]T

t ∈ [0, 10]
t ∈ (10, 20]
t ∈ (20, 30]

(39)

τΦ−ext =


[0.5 sin(t) 0.5 cos(t)− 0.5 sin(t)]T

[−0.5 cos(t) 0.5 sin(t) 0.5 cos(t)]T

[0.5 sin(t)− 0.5 cos(t) 0.5 sin(t)]T

t ∈ [0, 10]
t ∈ (10, 20]
t ∈ (20, 30]

(40)
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Table 1. Parameters of the aerial manipulator simulation.

Parameter Value Parameter Value Parameter Value

m 1.8 kg m1 0.5 kg m2 0.5 kg
Ixx/(kg ·m2) 1.24 Ix1/(kg ·m2) 10−3 Ix2/(kg ·m2) 10−3

Iyy/(kg ·m2) 1.24 Iy1/(kg ·m2) 10−3 Iy2/(kg ·m2) 10−3

Izz/(kg ·m2) 2.48 Iz1/(kg ·m2) 0 Iz2/(kg ·m2) 0
l1 0.15 m l2 0.15 m

Table 2. Parameters for NGFTSM function and the RBF neural network.

NGFTSM Function RBF Neural Network

Parameter Value Parameter Value

Γ diag(50, 50, 50) cj
0.1 ∗

[
−1 −0.5 0 0.5 1
−1 −0.5 0 0.5 1]

Λ diag( 1
400 , 1

400 , 1
400 ) bj 5

λ diag(20, · · · , 20) δp 0.01
η diag(0.01, · · · , 0.01) δΦ 15

5. Simulations Results

In this section, we present three simulations to verify the tracking performance of
the proposed controller: aerial hovering, square trajectory and spiral trajectory tracking.
External interference is shown in Equations (39) and (40). The desired yaw angle and the
initial position of the aerial manipulator system are set to zero and (0, 0, 0), respectively.
The manipulator swings continuously in states ϕ1 = sin(0.5t), (−π

3 ≤ ϕ1 ≤ π
3 ) and

ϕ2 = cos(0.5t), (−π
6 ≤ ϕ2 ≤ π

6 ).

5.1. Aerial Hovering

The system continues hovering at the initial position (0, 0, 0). As shown in Figure 3,
because the static disturbances occur within 0–10 s, the steady-state errors of NGFTSM,
SM and SMPID controllers are more than 0.002 m, 0.02 m and 0.01 m in the x, y and z
directions, respectively. Similarly, the errors of NGFTSM, SM and SMPID controllers change
continuously within 10–30 s due to the dynamic disturbances. In contrast, the errors of
the proposed CNGFTSM controller are nearly zero throughout the process. In addition,
the average convergence times for CNGFTSM, NGFTSM, SM and SMPID to reach the
steady-state error in the x, y and z directions are about 0.45 s, 0.35 s, 0.95 s and 0.91 s,
respectively. Figure 4 shows the error curves between the desired system and the actual
attitude under the four control methods. The attitude tracking errors of the four controllers
are minor with unchanged disturbances, whereas the roll and pitch angle curves of SMPID
appear to oscillate when the disturbances change. However, the UAV motor is a mechanical
device, and excessive changes in the amplitude of speed will produce considerable heat
and violent vibration, eventually leading to mechanical failure. Therefore, vibration of the
SMPID controller is not conducive to the mechanical characteristics of UAVs.
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5.2. Square Trajectory Tracking

The expected square trajectory is as follows:

(xd, yd, zd) =



(0, 0, 0)
(0, 0, 5)
(0, 5, 5)
(5, 5, 5)
(5, 0, 5)
(0, 0, 5)

t ≤ 5
5 < t ≤ 10
10 < t ≤ 15
15 < t ≤ 20
20 < t ≤ 25
20 < t ≤ 30

(41)

The overshoot part not shown in Figure 5 is 5 or −5. The systems using NGFTSM,
SM and SMPID controllers have obvious steady-state errors compared with the using a
CNGFTSM controller. The average convergence times for the four controllers to reach
the steady-state error in the x, y and z directions are about 0.45 s, 0.36 s, 1.03 s and 0.94 s,
respectively. As shown in Figure 5d, the actual flight trajectory of the system using the
proposed controller almost coincides with the desired trajectory. Figure 6 shows the error
curves between the desired system and actual the attitude under the four control methods.
Similar to the results presented in Figure 4, the attitude tracking errors of the four controllers
are minor in the 0–10 s range, whereas the controller SMPID oscillates in the 10–30 s range,
possibly damaging the system’s mechanical characteristics. To evaluate the robustness
of the four controllers, we subtract the result with disturbance from the result without
disturbance, as shown in Figure 7. With the excepting the robust error of CNGFTSM, which
is almost zero, the other controllers have obvious robust errors in the x, y and z directions,
with average values of 0.002 m, 0.023 m and 0.014 m, respectively.

5.3. Spiral Trajectory Tracking

The expected spiral trajectory of the UAM system is xd = 0.5 sin(t), yd = 0.5 cos(t)
and zd = 0.5t.

As shown in Figure 8, in the x and y directions, the maximum errors of the CNGFTSM
both are both 0.010 m; the NGFTSM errors in the x and y directions are 0.032 m and 0.038 m,
respectively; those of SM are both 0.122 m; and those of SMPID are both are 0.113 m. In
the z direction, the time required to reach the steady-state error are 0.46 s, 0.36 s, 0.76 s
and 0.79 s, and the maximum errors are 0.01 m, 0.037 m, 0.123 m and 0.113 m, for the
CNGFTSM, NGFTSM, SM and SMPID controllers, respectively. Figure 8d shows the actual
and desired trajectory of the system. Owing to the estimation and compensation of the RBF
neural network, the position control accuracy of CNGFTSM is improved by more than 300%
compared with NGFTSM. Figures 9 and 10 show the attitude and robustness error curves
of the four controllers. Similar to the previous experimental results, the attitude tracking
errors are minor, with the exception of those of the SMPID controller, and controllers have
obvious and continuously varying robust errors in the three directions, with the exception
of the proposed controller. The simulation results are shown in Tables 3–5.

Table 3. The average convergence time in the x, y and z directions.

Convergence/s CNGFTSM NGFTSM SM SMPID

Simulation 1 0.452 0.354 0.952 0.911
Simulation 2 0.455 0.365 1.031 0.942
Simulation 3 0.461 0.363 0.763 0.794

Table 4. The average steady-state error in the x, y and z directions.

Accuracy/m CNGFTSM NGFTSM SM SMPID

Simulation 1 10−6 0.002 0.023 0.014
Simulation 2 10−6 0.002 0.024 0.015
Simulation 3 0.001 0.0032 0.112 0.106
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Table 5. The average robustness errors in the x, y and z directions.

Robustness/m CNGFTSM NGFTSM SM SMPID

Simulation 2 10−6 0.002 0.023 0.014
Simulation 3 10−6 0.002 0.023 0.025Machines 2022, 10, x FOR PEER REVIEW 14 of 26 
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According to the results presented in Tables 3–5, the robustness and precision errors of
the CNGFTSM controller are considerably less than 0.001 m, meeting the requirements of
robustness and accuracy. On the contrary, NGFTSM only meets the robustness requirement,
and SM and SMPID meet neither the robustness nor the accuracy requirements. The
average errors of each term based on the simulation results are shown in Figure 11 for
a comprehensive comparison of the controllers; the outer position line indicates a better
ability. With the addition of a neural network module, the CNGFTSM convergence is
slightly slower than that of the NGFTSM controller. Therefore, the CNGFTSM controller is
suitable for applications with anti-disturbance and high-precision requirements. On the
contrary, the NGFTSM controller is appropriate for applications requiring rapid response.
In the next stage, we attempt to improve the convergence performance using neural
networks to replace part of the model information to reduce computation requirements.
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In summary, the CNGFTSM controller achieved the best performance, followed by the
NGFTSM, SM and SMPID controllers. Moreover, a comparison of the NGFTSM controller
with SM and SMPID controllers, reveals that the proposed nonsingular global fast terminal
sliding mode has anti-disturbance ability, meeting the requirements of a fast variable
system. Although we do not propose evaluation criteria for the RBF neural network, it
has excellent compensation ability is robust according to a comparison the CNGFTSM and
NGFTSM simulation results.
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6. Experimental Results

In this section, an experimental flight test of the aerial manipulator is carried out using
the proposed control strategy. The quadrotor used in the experiment is shown in Figure 12,
and the aerial manipulator used in the experiment is shown in Figure 13, consisting of a
quadrotor and a manipulator. The quadrotor is equipped with 12-inch propellers, with a
total diameter of 500 mm. It uses a Pixhawk autopilot board for low-level control of the
quadrotor and a Raspberry Pi computer to run the control algorithm. The robotic arm is
installed at the bottom of the quadrotor, consisting of a three-degrees-of-freedom robotic
arm and a manipulator gripper; the battery is located opposite to the robotic arm to avoid
the center of gravity leaning too far forward.
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Figure 12. The quadrotor used in the experiment.

In the experiment, we place a fan to generate two levels of external disturbances
corresponding to two levels of wind. After the quadrotor is armed under the manual control,
autopilot is enabled. The expected height is 1.8 m. When the aerial manipulator reaches the
desired height, a polygon trajectory is used as the expected trajectory for tracking. Figure 13
shows the position of the aerial manipulator in the trajectory tracking experiment. The
average errors in the x, y and z directions are less 0.02 m, and the convergence times are
about 0.55 s. The actual trajectory can closely track the desired trajectory, and the tracking
errors are almost unchanged under the influence of external disturbances, changing from
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zero to the first-gear wind to the second-gear wind. Therefore, the system using the
proposed controller achieves staisfactory response with minor trajectory tracking errors,
fulfilling our requirements. The flight test results are shown in Figure 14.
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7. Conclusions

In this paper, we propose a robust composite controller based on the nonsingular
global fast terminal sliding mode and an RBF neural network for UAM trajectory tracking
under the influence of disturbances. Several trajectory tracking simulations were carried
out to evaluate the capabilities of the proposed controller. A comparison of the results of
the NGFTSM controller with those of the SM and SMPID controller demonstrates that the
proposed sliding mode function can effectively improve the convergence and precision of a
UAM. A comparison of the results of the CNGFTSM controller with those of the NGFTSM
controller proves that the designed RBF neural network has excellent estimation and com-
pensation capabilities, significantly strengthening the system’s robustness. Furthermore,
the UAM system using the CNGFTSM controller performs the trajectory tracking task
with less oscillation than the other controller systems. The trajectory tracking experiment
confirms the effectiveness of the proposed controller for application in aerial manipulator
systems. However, with the addition of a neural network module, the CNGFTSM conver-
gence is slightly slower than that of the NGFTSM controller, which can be improved by
using neural networks instead of part of the model information to reduce computation
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in the future. Furthermore, we will further investigate anti-disturbance control of aerial
manipulators for addition aerial tasks in future research.
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