
Citation: Ma, Y.; Wang, P.; Li, B.; Li, J.

Research on Energy Consumption

Generation Method of Fuel Cell

Vehicles: Based on Naturalistic

Driving Data Mining. Machines 2022,

10, 1047. https://doi.org/10.3390/

machines10111047

Academic Editor: Antonio J. Marques

Cardoso

Received: 14 October 2022

Accepted: 7 November 2022

Published: 9 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Research on Energy Consumption Generation Method of Fuel
Cell Vehicles: Based on Naturalistic Driving Data Mining
Yangyang Ma 1, Pengyu Wang 1,2, Bin Li 3 and Jianhua Li 1,*

1 College of Automotive Engineering, Jilin University, Changchun 130012, China
2 State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130012, China
3 FAW-Volkswagen Automotive Co., Ltd., Changchun 130011, China
* Correspondence: ljh_lotus@126.com

Abstract: In this paper, an energy consumption generation method is proposed to accurately calculate
the energy consumption of fuel cell vehicles (FCVs). A specific driver drives on a route (from Jilin
University to FAW Volkswagen) for 331 working days (1 April 2020 to 28 July 2021) and collects
more than 40,000 s of naturalistic driving data by means of a GPS receiver (FRII-D). To accurately
calculate the energy consumption data of FCVs under actual driving cycles, naturalistic driving data
mining is first studied. The principal component analysis (PCA) algorithm is used to reduce the
dimension of the extracted driving cycle characteristic parameters, the K-means algorithm is used for
driving cycle clustering, and the LVQ is used for driving cycle identification. Then, the characteristic
parameters correlated to energy consumption are obtained based on the FCV model and regression
analysis method. In addition, an energy consumption generation method is designed and proposed
based on the characteristic parameters and identification results. Furthermore, the proposed energy
consumption generation method can accurately calculate the energy consumption of FCVs, which
also provides a reference for further research on the efficient energy management of FCVs.

Keywords: fuel cell vehicles; energy consumption; typical driving cycles; correlation analysis

1. Introduction

Energy shortage and environmental pollution are urgent problems that all countries in
the world need to face. Energy saving and emission reduction are hot research topics in the
field of automobiles. In recent years, the technological progress of hydrogen energy and fuel
cells has greatly promoted the performance improvement of fuel cell vehicles (FCVs) [1,2].
Compared with traditional internal combustion engine vehicles (ICEVs), FCVs have the
advantages of zero carbon emission, high efficiency, and low noise in driving processes,
which is beneficial for reducing emissions [3]. However, as the energy consumption of FCVs
is measured in the ideal environment, the test environment is quite different from actual
driving conditions [4], and the theoretical driving mileage of FCVs does not meet actual
driving demands [5]. Therefore, an accurate estimation of the energy consumption of FCVs
based on real driving data can be used as t fundamental research of energy management
strategies for FCVs in the future.

1.1. Literature Review

Previous studies have shown that vehicle energy consumption is sensitive to driving
cycles [6,7]. In view of this hot topic, we have studied the characteristic relationship
between energy consumption and the driving cycles of plug-in hybrid electric vehicles
(PHEVs) [8,9]. Chlopek et al., based on the energy consumption test data of battery electric
vehicles (BEVs) and conventional ICEVs, analyzed the average speed and the average
absolute value of the product of speed and acceleration, which were the best characteristics
to describe vehicle energy consumption [10]. Xie et al. obtained the energy consumption
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of BEVs under different typical driving cycles and indicated that the average vehicle
speed, running time, and the frequency distribution of the driving process were the main
factors that affect the energy consumption of vehicles [11]. Mamarikas et al. analyzed the
energy consumption of BEVs and ICEVs during more than 100 cycles, noting that the BEVs’
consumption is the smallest under low-speed urban cycles, while at high-speed urban
cycles, ICEVs have the best energy consumption [12]. More generally, most studies focused
on the energy consumption of traditional ICEVs [13,14], BEVs [15,16], and PHEVs [17,18].
There are almost no studies on the energy consumption and driving cycles of FCVs, and
almost no studies are based on real driving data.

In terms of naturalistic driving data, this paper defines it as the actual driving data
collected by a specific driver driving on a specific route for a long time. Although the
driving style is also important in determining energy consumption, the driving style of
this specific driver is fixed. In light of this, the influence of driving style on vehicle energy
consumption is ignored and not considered in this paper. The rapid development of
information and communication technologies (ICTs) provides lots of data and facilitates
the collection and mining of data for naturalistic driving [19,20]. In [21], a two-level
clustering method to identify the driving modes of electric vehicles (EVs) was proposed.
The driving pattern characteristics were extracted from the collected datasets of EVs, and
five types of daily driving patterns and four types of multifaceted driving patterns were
obtained. The driving pattern data were collected using a hybrid method of an on-board
measurement method and chase car method in [22], and the principal component analysis
(PCA), hybrid k-means, and support vector machine (SVM) algorithms were adopted in
the data processing process to classify the driving segments. Characteristic parameters
that characterize vehicle driving cycles, such as average speed, the standard deviation
of vehicle speed, and average acceleration, can be obtained by mining the naturalistic
driving data [23,24]. However, the extracted characteristic parameters are usually high
dimensional [25]. Due to the problems of low computational efficiency and difficult
clustering in the subsequent processing and analysis of high-dimensional data, simplifying
the multi-dimensional characteristic parameters of the driving cycle data is fundamental
and significant work.

Furthermore, some studies have proposed the use of eco-driving to improve vehicle
energy consumption [26,27]. Eco-driving is a multidimensional concept that includes the
driving style, driving route, driving data, and all other factors related to the vehicles’ fuel
consumption [28,29]. Existing studies have evaluated the range of vehicle energy saving
under the eco-driving strategy, such as [30] (He et al., about 26%), [31] (Günther et al.,
about 25%), and [32] (Yang et al., about 13.8%). It is worth noting that the energy saving of
different types of vehicles under the eco-driving strategy cannot be generalized. However,
the level of energy saving achieved in simulated eco-driving is always higher than that
achieved in real-world driving [33]. As mentioned above, this paper mainly focuses on the
vehicle energy consumption of a specific driver on a specific driving route, and other factors
(e.g., driving style, driving route) are not considered. Xu et al. adopted the speed data from
the internet of vehicles to establish a truck energy consumption estimation model [34], and
the past trajectory-fuel relationship was used to train the model. Yao et al. extracted the
driving behavior data and fuel consumption data based on mobile phone terminals and
on-board diagnostic systems installed in taxis and proposed a vehicle fuel consumption
prediction method [35].

1.2. Motivations and Contributions

To the best of our knowledge after reviewing the existing literature, there is little study
focused on fuel cell vehicle energy consumption, especially research based on real-world
driving data and fuel cell vehicle energy consumption. While some eco-driving studies
have focused on energy saving, little attention has been paid to the impact of individual
drivers and vehicle types on energy saving. This paper mainly focuses on the energy
consumption of a specific driver driving on a specific route, and the influence of driving
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style and driving route on vehicle energy consumption is ignored and not considered.
Despite its limitations, this paper develops an energy consumption generation method for
fuel cell vehicles based on the real-world driving data of a specific driver.

In order to obtain more accurate energy consumption results of FCVs, the real natu-
ralistic driving data was mined to obtain the characteristic parameters correlated to FCV
energy consumption, and the generation method of FCV energy consumption was pro-
posed with the help of a regression analysis model. The main contributions of this paper
include: (i) a relatively detailed and comprehensive naturalistic driving data mining work
has been completed, including the dimension reduction of driving cycle characteristic
parameters, driving cycle clustering, typical driving condition acquisition, and driving
cycle identification; and (ii) the characteristic parameters correlated to FCV energy con-
sumption are obtained, and a FCV energy consumption generation method based on the
characteristic parameters and identification results is proposed.

This paper is organized as follows. The research method of naturalistic driving data
mining and the acquisition of four typical driving cycles of a specific driver is presented in
Section 2. In Section 3, an energy consumption generation method based on the vehicle
model and energy consumption correlation analysis is proposed, and the results and
corresponding analysis of the energy consumption generation method are also presented.
Discussions are presented in Section 4. Concluding remarks are given in Section 5.

2. Research Methods
2.1. Methods Description

The main goal of naturalistic driving data mining is to obtain the typical driving cycle
information representing driving characteristics. In order to achieve the above goal, it is
necessary to collect a large amount of driver’s driving data, process and classify the data,
and obtain typical driving cycle information from the classification results. As shown in
Figure 1, typical driving cycle information obtained from naturalistic driving data mining
is mainly divided into three steps, and the tools used in the three steps are also shown in
Figure 1.
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Figure 1. Naturalistic driving data mining steps.

Based on the above analysis steps and tools, the following points need to be highlighted.
(1) No specific driving training was given to the driver prior to the collection, where

the driver drove naturally.
(2) The driving data was collected by a specific driver driving on a specific route,

and the influence of driving style and driving route on vehicle energy consumption was
not considered.

(3) The driving data was mainly collected on working days to fully obtain the driving
cycles of the specific driver.

2.2. Collecting and Preprocessing of the Naturalistic Driving Data

As mentioned above, naturalistic driving data was collected by a GPS receiver (product
model: FRII-D). Concretely, the specific driver drove on the route shown in Figure 2 for
331 working days (1 April 2020 to 28 July 2021) and collected a large amount of naturalistic
driving data (more than 40,000 s). However, the collected data often contained bad data,



Machines 2022, 10, 1047 4 of 20

which needed to be preprocessed to obtain driving data consistent with the actual driving
cycles of the driver.
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Figure 2. The route for specific driver to collect naturalistic driving data.

The reasons for the occurrence of bad data in the collected naturalistic driving data
are mainly as follows: (i) the loss of GPS signal leads to the occurrence of discontinuous
bad data; (ii) the GPS receiver continues to collect data when the vehicle is parked for a
long time, leading to the occurrence of bad data of long-term parking; (iii) the insufficient
accuracy of the GPS receiver leads to abnormal acceleration and deceleration of bad data.
For the above bad data, the method proposed in references [36–38] can be used to preprocess
the bad data, which lays the foundation for the subsequent data mining.

2.3. Analysis and Dimension Reduction of Characteristic Parameters

By dividing the preprocessed naturalistic driving data, a total of 1682 driving cy-
cle segments were obtained. Different driving cycle segments can be characterized by
characteristic parameters, such as speed, acceleration, parking time ratio, etc. The 14 char-
acteristic parameters in Table 1 indicated different characterization capabilities for these
driving cycles.

Table 1. Characteristic parameters of driving cycle segments.

Categories No. Characteristic Parameters Symbol Unit

Speed-type parameters

1 Average speed vave km/h
2 Average driving speed uave km/h
3 Maximum speed vmax km/h
4 Standard deviation of vehicle speed vstd km/h

Acceleration-type
parameters

5 Average acceleration aave m/s2

6 Average deceleration adave m/s2

7 Maximum acceleration amax m/s2

8 Maximum deceleration admax m/s2

9 Standard deviation of acceleration astd m/s2

10 Standard deviation of deceleration adstd m/s2

Statistics-type
parameters

11 Parking time ratio rpt %
12 Acceleration time ratio rat %
13 Deceleration time ratio rdt %
14 Constant speed time ratio rct %

The calculation formulas of the characteristic parameters in Table 1 are as follows:
(1) Speed-type parameters

vave = ∑n
i=1 vi/n (1)

uave = ∑n
i ui/n (2)
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vmax = max{v1, v2, . . . , vn} (3)

vstd =

√
1

n− 1∑n
i=1 (vi − vave)

2 (4)

where vi is the speed at the ith time in the driving cycle segment, n is the total time of the
segment, and ui is the driving speed at the ith time in the non-parking state.

(2) Acceleration-type parameters

aave = ∑h
i=1 aai/h, aai ≥ 0.1 m/s2 (5)

adave = ∑k
i=1 adi/k, adi ≤ −0.1 m/s2 (6)

amax = max{aa1, aa2, . . . , aah} (7)

admax = max
{

ad1, ad2, . . . , adj

}
(8)

astd =

√
1

h− 1∑h
i=1 (aai − aave)

2 (9)

adstd =

√
1

k− 1∑k
i=1 (adi − adave)

2 (10)

where aai is the acceleration at the ith time, h is the total time of the acceleration state in the
segment, adi is the deceleration at the ith time, and k is the total time of deceleration state in
the segment.

(3) Statistics-type parameters

rpt =
Tp

Ttotal
× 100% (11)

rat =
Ta

Ttotal
× 100% (12)

rdt =
Td

Ttotal
× 100% (13)

rct = 1− rpt − rat − rdt (14)

where TP is the total time of parking status in the segment, Ta the total time of the accelera-
tion state in the segment, Td is the total time of the deceleration state in the segment, and
Ttotal is the total time of the segment.

With the help of Formulas (1)–(14), the characteristic parameter values aij of each driv-
ing cycle segment can be calculated, and the sample observation matrix A can be constructed.

A =
(
aij
)

m×n =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 (15)

where i is the index number of the driving cycle segment, m is the total number of 1682
driving cycle segments (i = 1, 2, 3, · · · , 1682), and j is the index number of the characteristic
parameter, n is the total number of 14 characteristic parameters (j = 1, 2, 3, · · · , 14).

Due to the large order of the matrix, the direct clustering analysis requires too much
calculation, which will affect the classification effect of the clustering algorithm. The
principal component analysis (PCA) algorithm is the mainstream technique to reduce
the dimension of variables in multivariate statistical analysis. The PCA algorithm is
used to analyze multi-dimensional data and determine parameters that can express data
characteristics (namely principal components). PCA can comprehensively characterize
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data with fewer dimensions, which can greatly reduce computational complexity. In this
paper, the PCA algorithm was used to reduce the dimension of driving cycle characteristic
parameters. In order to eliminate the influence of each characteristic parameter unit on
dimension reduction, A is normalized and transformed to obtain matrix X.

X =
(

xij
)

m×n =


x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

 (16)



xij =
aij − aj

sj

aj =
1
n

m
∑

i=1
aij

sj
2 =

1
n− 1

m
∑

i=1
(aij − aj)

2

(17)

The correlation coefficient matrix R = (rij)n×n can be constructed, where rij is the
correlation coefficient between the ith characteristic parameter and the jth characteristic
parameter. Then, the eigenvalues of the correlation coefficient matrix R can be obtained by
|λI − R|= 0 , λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. The eigenvectors corresponding to the eigenvalues
can also be obtained, u1, u2, · · · , un, and the principal components of each characteristic
parameter Y = [y1, y2, · · · , yn]

T can be expressed as Formula (18).
y1 = u11x1 + u12x2 + · · · u1mxm

y2 = u21x1 + u22x2 + · · · u2mxm

· · · · · ·
yn = un1x1 + un2x2 + · · · unmxm

(18)

The variance contribution rate of principal component yj is bj, and the cumulative
variance contribution rate of principal components y1, y2, · · · , yp is bp.

bj =
λj

∑n
k=1 λk

bp =
∑

p
k=1 λk

∑n
k=1 λk

(19)

In this paper, the above steps of the PCA algorithm were carried out on the character-
istic parameters matrix of those 1682 driving cycle segments, and the variance contribution
rates of the first few principal components are shown in Figure 3. As the cumulative
variance contribution rate of the first four principal components is 91.886% (exceeding
85% [7,22,39]), it can be considered that principal components 1 to 4 contain most of the
information elements of the naturalistic driving data after PCA processing. The principal
component load is the coefficient used to characterize the correlation between the original
driving cycle characteristics and the principal components in PCA, which is also obtained
as shown in Figure 4.
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2.4. Acquisition and Identification of Typical Driving Cycles

Due to the K-means clustering algorithm’s strong adaptability, the K-means cluster-
ing method was used to classify the driving cycle segments based on the results of the
PCA algorithm, and the corresponding typical driving cycle clusters were obtained. All
1682 driving cycle segments were divided into 4 types. To display the clustering results
more intuitively, Figure 5a,b represent the two-dimensional and three-dimensional graphs
composed of principal component 1, principal component 2, and principal component 3,
respectively. The black mark in Figure 6 is the cluster center of each type, indicating that
the spacing of each center is basically the same and the classification is relatively uniform.
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According to the clustering results, representative driving cycles were selected from
each type in this paper (see Figure 6), which respectively represented the congested roads
in urban areas, relatively unobstructed roads in urban areas, unobstructed roads, and
expressways in urban areas.

Learning Vector Quantization (LVQ) is a neural network identification method, which
has strong learning and adaptive capabilities. The LVQ algorithm was adopted to identify
the driving cycle in this paper, and the LVQ algorithm could be divided into two parts:
offline training and online identification (see Figure 7). The parameters of the cycle identifi-
cation period ∆T and period update time ∆t in the LVQ algorithm have a great influence on
the process and results of cycle identification. Considering the identification accuracy and
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calculation load comprehensively, the cycle identification period was selected as 120 s, and
the period update time was 3 s in this paper. To verify the accuracy of the LVQ algorithm, a
long-term (more than 6000 s) random cycle was selected from the preprocessed naturalistic
driving database (see Figure 8a), and the trained LVQ algorithm was used to identify the
cycle (see Figure 8b).
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3. Energy Consumption Generation Method
3.1. Vehicle and Powertrain Model

In this paper, a fuel cell vehicle model was used for simulation. The topology of the
FCV is shown in Figure 9, and the main parameters of the FCV are also given in Table 2.
According to the topic of this paper, this section focuses on the powertrain components, such
as the fuel cell, the power battery, and the motor, and the power losses of other components
(such as the DC/DC converter, the motor controller, etc.) are not considered [40,41].
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Table 2. Main parameters of FCV.

Description Parameters Value

Basic parameters of the vehicle

Vehicle mass/kg 1500
Frontal area/m2 2.27

Air resistance coefficient 0.28
Rolling radius/m 0.327

Power battery Capacity/A·h 40
Rated voltage/V 320

Fuel cell Peak output power/kW 15

3.1.1. Vehicle Dynamics Model

According to the force condition of the vehicle, the vehicle dynamics model is estab-
lished as shown in Formula (20):

Ft = G f cos α +
CD A
21.15

u2 + G sin α + δm
du
dt

(20)

where Ft is the driving force of the vehicle, G, f , CD, A and m denote the gravity, rolling
resistance coefficient, air resistance coefficient, windward area, and mass of the vehicle,
respectively, α is the slope of the road, u is the vehicle speed in km/h, and δ is the mass
conversion factor. The dynamic model can realize the longitudinal motion control of
the FCV.

3.1.2. Motor Model

Based on the test data, a MAP representing the relationship between motor torque,
speed and efficiency can be obtained, as shown in Figure 10a. The motor corresponds to
the maximum torque Tmax at different speeds. The current torque Tmot of the motor is the
minimum of the demand torque Tded and the maximum torque Tmax. The efficiency ηmot of
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the motor can also be obtained by look-up table according to the current torque Tmot and
the current speed nmot: {

Tmot = min(Tded, Tmax)

ηmot = f (Tmot, nmot)
(21)
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The motor power can be calculated in driving mode and generating mode as:

Pmot =


Tmotnmot

9549ηmot
, Tmot ≥ 0

Tmotnmotηmot

9549
, Tmot < 0

(22)

where Pmot is the power of the motor/generator. Particularly, the motor/generator operates
as a motor if Tmot is positive, and it operates as a generator if Tmot is negative.

3.1.3. Fuel Cell System Model

The proton exchange membrane fuel cell (PEMFC) is one of the fuel cells widely used
in automobiles. The PEMFC system consists of the fuel cell stack and auxiliary subsystems
including the air supply subsystem, hydrogen supply subsystem, and cooling subsystem [2].
The fuel cell system net power Pf cs can be obtained in Formula (23):

Pf cs = N ×Vcell × I f c − Paux (23)

where N is the number of fuel cells, Vcell is the voltage of the single fuel cell, I f c is the
output current of the fuel cell, and Paux is the power loss of the auxiliary subsystems.

The instantaneous hydrogen consumption rate
·

m f c and the efficiency η f cs of the fuel
cell system can be defined in Formula (24) [42,43], as shown in Figure 10b.

·
m f c =

Pf cs

η f cs × LHV

η f cs =
Pf cs

p f cp

(24)

where LHV is the hydrogen lower heating value (120 kJ/g), and Pf cp is the peak power of
the fuel cell system.
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3.1.4. Battery Model

The battery model is simplified as the equivalent circuit model of power source and
internal resistance in series in this paper, which can be expressed as:{

Vbat = Voc − IbatRint

Pbat = Vbat Ibat
(25)

where Vbat, Voc, Ibat, Rint, Pbat are the voltage, open circuit voltage, current, internal resis-
tance, and out power of the battery, respectively. The current of the battery Ibat is hence
given by:

Ibat =
Voc −

√
Voc2 − 4RintPbat

2Rint
(26)

The state of charge (SOC) is calculated using the ampere-hour integral method:

SOC = SOCinit −
1

Qbat

∫ t f

t0

Ibat(t)dt (27)

where SOCinit is the state of charge at the initial moment of the battery, and Qbat is the
capacity of the battery.

3.2. Energy Consumption Correlation Analysis

As mentioned above, fuel cell vehicle energy consumption is greatly affected by
driving cycles, and the driving cycles can be characterized by characteristic parameters.
According to the above PCA analysis results and reference [44], the average speed vave,
the standard deviation of vehicle speed vstd, average acceleration aave, average deceler-
ation adave, maximum acceleration amax, and parking time ratio rpt are selected as the
characteristic parameters to be analyzed in this paper. In order to obtain the FCV energy
consumption, some segments are selected from the four typical driving cycle libraries
as the target driving conditions for simulation. Then, the characteristic parameters and
corresponding energy consumption of each segment are drawn into a scatter diagram
for correlation study. The simulation results of the relationship between characteristic
parameters and energy consumption under typical driving cycle 1 are shown in Figure 11.

As shown in Figure 11a–d the average speed vave, the standard deviation of vehicle
speed vstd, average acceleration aave, and average deceleration adave have an obvious linear
relationship with the energy consumption under typical driving cycle 1. In Figure 11e,f,
the distribution of scattered points overall presents a divergent state and fluctuates in a
wide range. Based on the above results, the maximum acceleration amax and parking time
ratio rpt have no correlation with the energy consumption under typical driving cycle 1.
The simulation results of the relationship between characteristic parameters and energy
consumption under typical driving cycles 2, 3, and 4 are also shown in Figure 12, Figure 13
and Figure 14, respectively.

According to the above results, the characteristic parameters correlated to FCV energy
consumption under four typical driving cycles can be obtained, as shown in Table 3.

Table 3. Characteristic parameters correlated to FCV energy consumption.

Typical Driving Cycles Characteristic Parameters

1 vave, vstd, aave, adave

2 vstd, aave, adave, rpt

3 vave, aave, adave, rpt

4 vave, vstd, aave, adave, rpt



Machines 2022, 10, 1047 13 of 20
Machines 2022, 10, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 11. Characteristic parameters and energy consumption under typical driving cycle 1: (a) Av-
erage speed and Energy consumption; (b) Standard deviation of vehicle speed and Energy con-
sumption; (c) Average acceleration and Energy consumption; (d) Average deceleration and Energy 
consumption; (e) Maximum acceleration and Energy consumption; (f) Parking time ratio and En-
ergy consumption. 

As shown in Figure 11a–d the average speed avev , the standard deviation of vehicle 

speed stdv , average acceleration avea , and average deceleration davea  have an obvious 
linear relationship with the energy consumption under typical driving cycle 1. In Figure 
11e,f, the distribution of scattered points overall presents a divergent state and fluctuates 
in a wide range. Based on the above results, the maximum acceleration maxa  and parking 
time ratio ptr  have no correlation with the energy consumption under typical driving cy-
cle 1. The simulation results of the relationship between characteristic parameters and en-
ergy consumption under typical driving cycles 2, 3, and 4 are also shown in Figure 12, 
Figure 13, and Figure 14, respectively. 

 

10 15 20
Average speed (km/h)

9

10

11

12

13

En
er

gy
 c

on
su

m
pt

io
n 

(k
w

h/
10

0k
m

)

(a)

8 10 12 14
Speed standard deviation (km/h)

11

11.5

12

12.5

13

En
er

gy
 c

on
su

m
pt

io
n 

(k
w

h/
10

0k
m

)

(b)

0.2 0.3 0.4 0.5 0.6
Average acceleration (m/s2)

10

10.5

11

11.5

12

En
er

gy
 c

on
su

m
pt

io
n 

(k
w

h/
10

0k
m

)

(c)

−0.7 −0.6 −0.5 −0.4 −0.3
Average deceleration (m/s 2)

9

10

11

12

En
er

gy
 c

on
su

m
pt

io
n 

(k
w

h/
10

0k
m

)

(d)

0.4 0.6 0.8 1
Maximum acceleration (m/s2)

9

10

11

12

13

En
er

gy
 c

on
su

m
pt

io
n 

(k
w

h/
10

0k
m

)

(e)

20 30 40 50 60
Parking time ratio (%)

11

11.5

12

12.5

13

En
er

gy
 c

on
su

m
pt

io
n 

(k
w

h/
10

0k
m

)

(f)

Figure 11. Characteristic parameters and energy consumption under typical driving cycle 1:
(a) Average speed and Energy consumption; (b) Standard deviation of vehicle speed and Energy
consumption; (c) Average acceleration and Energy consumption; (d) Average deceleration and En-
ergy consumption; (e) Maximum acceleration and Energy consumption; (f) Parking time ratio and
Energy consumption.
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Figure 12. Characteristic parameters and energy consumption under typical driving cycle 2:
(a) Average speed and Energy consumption; (b) Standard deviation of vehicle speed and Energy
consumption; (c) Average acceleration and Energy consumption; (d) Average deceleration and En-
ergy consumption; (e) Maximum acceleration and Energy consumption; (f) Parking time ratio and
Energy consumption.
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Figure 13. Characteristic parameters and energy consumption under typical driving cycle 3:
(a) Average speed and Energy consumption; (b) Standard deviation of vehicle speed and Energy
consumption; (c) Average acceleration and Energy consumption; (d) Average deceleration and En-
ergy consumption; (e) Maximum acceleration and Energy consumption; (f) Parking time ratio and
Energy consumption.
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Figure 14. Characteristic parameters and energy consumption under typical driving cycle 4:
(a) Average speed and Energy consumption; (b) Standard deviation of vehicle speed and Energy
consumption; (c) Average acceleration and Energy consumption; (d) Average deceleration and En-
ergy consumption; (e) Maximum acceleration and Energy consumption; (f) Parking time ratio and
Energy consumption.
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3.3. Energy Consumption Generation Method

In order to obtain more accurate energy consumption data of FCVs under different
typical driving cycles, a regression analysis model is adopted to obtain the quantitative
relationship between characteristic parameters and energy consumption under four typical
driving cycles. According to the analysis results of the correlation between the characteristic
parameters and energy consumption, the multiple linear regression analysis model is
adopted to establish the energy consumption generation equation.

Ei = β0_i + β1_ixi1 + β2_ixi2 + · · ·+ βn_ixin (28)

where i is the type of typical driving cycles (i = 1, 2, 3, 4), Ei is the average energy con-
sumption per hundred kilometers under a typical driving cycle i, β0_i, β1_i, · · · , βn_i are
the coefficients and xi1, xi2, · · · , xin are the characteristic parameters correlated to energy
consumption under the typical driving cycle i.

(1) Typical driving cycle 1

E1 = β0_1 + β1_1vave + β2_1vstd + β3_1aave + β4_1adave (29)

(2) Typical driving cycle 2

E2 = β0_2 + β1_2vstd + β2_2aave + β3_2adave + β4_2rpt (30)

(3) Typical driving cycle 3

E3 = β0_3 + β1_3vave + β2_3aave + β3_3adave + β4_3rpt (31)

(4) Typical driving cycle 4

E4 = β0_4 + β1_4vave + β2_4vstd + β3_4aave + β4_4adave + β5_4rpt (32)

The Ei in Formula (20) is the average energy consumption per hundred kilometers
under a typical driving cycle, and the corresponding mileage under the typical driving
cycle should also be considered when energy consumption is calculated. The FCV energy
consumption generation algorithm under a real driving cycle is shown in Table 4.

Table 4. FCV energy consumption generation algorithm under real driving cycle.

FCV Energy Consumption Generation Method under Real Driving Cycle

1 Identifying the driving segments belonging to typical driving cycle 1;
Calculating the characteristic parameters vave, vstd, aave, adave and the corresponding mileage S1.

2 The actual energy consumption of typical driving cycle 1 Er_1 can be calculated by:
Er_1 = E1 × S1 = (β0_1 + β1_1vave + β2_1vstd + β3_1aave + β4_1adave)× S1.

3 Identifying the driving segments belonging to typical driving cycle 2;
Calculating the characteristic parameters vstd, aave, adave, rpt and the corresponding mileage S2.

4 The actual energy consumption of typical driving cycle 2 Er_2 can be calculated by:
Er_2 = E2 × S2 = (β0_2 + β1_2vstd + β2_2aave + β3_2adave + β4_2rpt)× S2.

5 Identifying the driving segments belonging to typical driving cycle 3;
Calculating the characteristic parameters vave, aave, adave, rpt and the corresponding mileage S3.

6 The actual energy consumption of typical driving cycle 3 Er_3 can be calculated by:
Er_3 = E3 × S3 = (β0_3 + β1_3vave + β2_3aave + β3_3adave + β4_3rpt)× S3.

7 Identifying the driving segments belonging to typical driving cycle 4;
Calculating the characteristic parameters vave, vstd, aave, adave, rpt and the corresponding mileage S4.

8 The actual energy consumption of typical driving cycle 4 Er_4 can be calculated by:
Er_4 = E4 × S4 = (β0_4 + β1_4vave + β2_4vstd + β3_4aave + β4_4adave + β5_4rpt)× S4.
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3.4. Simulation and Results

In order to verify the effectiveness of the proposed FCV energy generation method,
another long-term driving cycle (more than 6000 s) was extracted from the preprocessed
naturalistic driving database, as shown in Figure 15. The results of the LVQ identification
algorithm and energy consumption generation method are shown in Figures 16 and 17.
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In Figure 16, the driving cycle in Figure 15 is identified and 11 typical driving cycle
segments are obtained. In Figure 17, the energy consumption results under different typical
driving cycle segments are also obtained by using the energy consumption generation
method. Combined with the driving cycle identification results, the trend of the energy
consumption curve is consistent with driving characteristics. For example, under the
typical driving cycle 1, the slope of the energy consumption curve obtained is generally
relatively small for the driving cycles with low average speeds and long parking times,
while under the typical driving cycle 4, the slope of the energy consumption curve obtained
is relatively large for the driving cycles with high average speeds and short parking times.
Based on the above discussion, it can be concluded that the energy consumption generation
method proposed in this paper can accurately calculate the energy consumption data of
fuel cell vehicles.

4. Discussion

Due to vehicle energy consumption being sensitive to the driving cycles, this paper
mainly focuses on the relationship between driving cycles and energy consumption, and
proposes an energy consumption generation method for FCVs. The main findings of the
paper are the following:

1. We have analyzed the three steps of naturalistic driving data mining (i.e., collecting
and preprocessing of the naturalistic driving data, analysis and dimension reduction
of characteristic parameters, and acquisition and identification of typical driving
cycles), and four typical driving cycles representing driver driving are obtained,
which, respectively, represented the congested roads in urban areas, relatively unob-
structed roads in urban areas, unobstructed roads in urban areas, and expressways in
urban areas.

2. Characteristic parameters of various typical driving cycles are found to be related to
the energy consumption of FCVs by means of a regression analysis. The parameter of
maximum acceleration is not related to the energy consumption under any typical
driving cycles, which is similar in nature to the eco-driving rules stipulated in previous
studies [45,46]. Based on the related driving cycle characteristic parameters, an energy
consumption generation method is designed and proposed to estimate the energy
consumption of FCVs, which can provide a reference for the subsequent design of
eco-driving rules.
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Besides, this study mainly focuses on the driving behavior of a specific driver, mainly
in the collection of naturalistic driving data. However, the designed and proposed natural
driving data mining method and energy consumption generation method are universal.

5. Conclusions

In this paper, the specific driver driving method and GPS receiver are used to collect
naturalistic driving data, and the bad data are preprocessed to meet the actual driving
cycles of the specific driver. In order to reduce the complexity of data mining, PCA is used
to reduce the dimension of driving cycle characteristic parameters, and K-means and LVQ
algorithms are used to obtain and identify typical driving cycles. An energy consumption
generation method is further proposed to calculate the energy consumption data of fuel
cell vehicles under actual driving cycles. The energy generation method is developed
based on the analysis of energy consumption correlation characteristic parameters and the
identification results of typical driving cycles.

One of the main limitations of the current work is limited real-world driving data.
Longer driving time spans are still needed to collect more driving data. In addition, other
subtle factors that affect vehicle energy consumption, such as road slope and traffic light
position, are not considered. Despite these limitations, the proposed energy consumption
generation method based on naturalistic driving data mining can accurately calculate the
FCV energy consumption data, which can lay a foundation for further energy management
research. Concretely, with the help of ITS and GPS, the driving cycles of drivers in the
future can be obtained and corrected in real-time, and then the type of future driving cycle
can be identified online. The FCV energy management methods can be designed based
on the energy consumption level under four typical driving cycles. Furthermore, in future
studies, the road slope and traffic light position should be considered to design eco-driving
strategies to minimize energy consumption.
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