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Abstract: In recent years, convolutional neural networks have made many advances in the field
of computer vision. In smart greenhouses, using robots based on computer vision technology to
pollinate flowers is one of the main methods of pollination. However, due to the complex lighting
environment and the influence of leaf shadow in the greenhouse, it is difficult for the existing
object detection algorithms to have high recall rate and accuracy. Based on this problem, from the
perspective of application, we proposed a Yolov5s-based tomato flowering stage detection method
named FlowerYolov5, which can well identify the bud phase, blooming phase and first fruit phase of
tomato flowers. Firstly, in order to reduce the loss of tomato flower feature information in convolution
and to strengthen the feature extraction of the target, FlowerYolov5 adds a new feature fusion layer.
Then, in order to highlight the information of the object, the Convolutional Block Attention module
(CBAM) is added to the backbone layer of FlowerYolov5. In the constructed tomato flower dataset,
compared with YOLOv5s, the mAP of FlowerYolov5 increased by 7.8% (94.2%), and the F; score of
FlowerYolov5 increased by 6.6% (89.9%). It was found that the overall parameter of FlowerYolov5
was 23.9 Mbyte, thus achieving a good balance between model parameter size and recognition
accuracy. The experimental results show that the FlowerYolov5 has good robustness and more
accurate precision. At the same time, the recall rate has also been greatly improved. The prediction
results of the proposed algorithm can provide more accurate flower positioning for the pollination
robot and improve its economic benefits.

Keywords: robot technology; pollination robot; tomato flowering phase detection; attention mechanism;
deep learning method

1. Introduction

Tomatoes are the fourth largest vegetable crop planted in China, with an annual output
of 55 million tons, accounting for 7% of the total vegetable output. With the continuous
development of agricultural information technology, the methods for growing tomatoes are
gradually shifting from traditional to intelligent and precision agriculture [1,2]. Intelligent
and precision agriculture combine modern science and technology to achieve the automated
and intelligent planting and management of tomatoes, thereby improving their yield and
quality. With the support of IoT technology [3], artificial intelligence technology [4,5], cloud
computing, and big data computing, intelligent greenhouses have become one of the main
ways to grow tomatoes. The use of robots for pollination operations is an essential part of
achieving intelligence in greenhouses, which can save labor costs and improve pollination
efficiency. Therefore, a detection model that can accurately identify the flowering phase
and the area where the flowers are located is needed to improve the yield and quality of
tomatoes in intelligent greenhouses.
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Traditional flower detection methods mainly use algorithms such as image filter-
ing, feature fusion, and edge detection to extract the feature information of flowers.
Indeed, scholars have conducted extensive research on such methods. For example,
Ashraf Ahmad et al. [6] achieved the detection of flower regions from images and identi-
fied flower species by combining the color, texture, and shape features of different flower
images. Aleya et al. [7] used the k-means algorithm to separate flowers from the back-
ground and completed the detection of broken flowers based on the histogram distribution.
Dorj et al. [8] used a Gaussian filter to reduce the effects of noise and illumination in order
to achieve the accurate detection of citrus flowers. Most of these methods for detecting
flowers require a single, simple background, making the flower objects easily detectable
from the background using features such as color and texture. However, the complex
environment in an intelligent greenhouse, often with serious occlusion problems, increases
the difficulty of detecting flowers.

Object detection technology based on deep learning [9,10] has been applied to flower
detection with good results, due to its good generalization ability, high detection accuracy,
and fast speed. The common deep learning object detection research can be divided
into one-stage and two-stage networks. The first-level network of a two-stage object
detector is used for generating some candidate boxes, while the second-level network
classifies each candidate box and corrects its position. Chen et al. [11] chose a faster
region-based convolutional neural network (R-CNN) to achieve detection and counting
of strawberry flowers and ripe and unripe strawberries. An improved convolutional
neural network (CNN)-based method for tomato flower and fruit detection was proposed
by Sun et al. [12]. Compared with the original Faster R-CNN algorithm, the detection
accuracy was significantly improved by using Resnet-50 with residual blocks instead of the
conventional vggl6 feature extraction network. Sun et al. [13] have improved DeepLab-
ResNet, a semantic segmentation-based network, to detect apple, peach, and pear flowers.
Saad et al. [14] have proposed a Faster R-CNN-based model for detecting pepper fruit and
flowers, which optimizes the parameters involved in classifying and detecting peppers
and flowers. Chu et al. [15] have proposed a two-stage detection network to achieve the
real-time detection and capturing of objects.

Compared to two-stage networks [16,17], a one-stage network [18,19] has a faster
detection speed, shorter training time, and can reduce the negative samples generated
by complex backgrounds, making them more suitable for use in intelligent greenhouses.
Huang et al. [20] used CSPDarknet53 as the backbone of the original Yolov3, and used
CIOU as the regression mechanism of their model to detect immature apples. Tian et al. [21]
have proposed a flower detection network based on an SSD algorithm using a gradient
descent algorithm with the Adam optimization function, improving the model convergence
rate and increasing the accuracy. Cheng et al. [22] have proposed an end-to-end flower
detection method based on the Yolov4 object detection model. The model’s operations on
invalid features were reduced by using an attention mechanism and optimizing the loss
function. The method was tested using the Oxford University flower data set, and 84% and
94% confidence were reached in sunflower and cherry blossom detection, respectively.

In summary, most of the current object detection models for pollination robots in intel-
ligent greenhouses can only identify flowers, while detection of the flowering phase is still a
less-researched direction. Moreover, application of the above-mentioned detection models
to pollination robots makes them susceptible to occlusion and complex backgrounds, result-
ing in the model detecting the flowering phase with low accuracy and high misdetection
rates. This results in some flowers not being pollinated properly, leading to economic losses.

In recent years, attention mechanisms have been widely used in object detection
models, enabling them to better focus on learning the feature information of particular
objects. With a small increase in the size of the neural network, Hu et al. [23] embedded the
SE module into a convolutional neural network to improve the representational power of
the CNN. Jiang et al. [24] embedded an attention mechanism into a neural network and
achieved similar detection performance with fewer parameters. These results illustrate
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the effectiveness of attention mechanisms. In practical production, detection models for
pollination robots require the smallest model size possible. Adding an attention mechanism
can improve the detection accuracy and recall of the model while only slightly increasing
the number of model parameters.

Combining the above issues and methods, we chose Yolov5s as the base network.
We then tried to enhance the feature learning ability for tomato flowers by adding a new
feature fusion layer and the CBAM [25]. The purpose of adding a new feature fusion layer
is to improve the model’s adaptability to different scales of tomato flowers and to enhance
the fusion of feature information between the upper and lower layers. The convolutional
block attention module is a lightweight attention mechanism which enables the model to
learn tomato images based on channels and spaces. It allows the model to focus on learning
the tomato flowers themselves, while suppressing features other than the learning object.
At the same time, the model proposed in this study can identify the different flowering
phases of tomato flowers, which enhances the practicality of pollination robots performing
pollination missions.

The remainder of this paper is organized as follows: Section 2 describes the data
collection method and proposes a method to improve the tomato flower detection model.
Section 3 describes the experimental results of the improved model. Section 4 discusses the
feasibility of the proposed method, and Section 5 concludes the paper.

2. Materials and Methods
2.1. Data Collection and Augmentation
2.1.1. Data Collection

Our experiment was carried out in the Science and Technology Demonstration and
Promotion Base of China Vegetable Quality Standard Center (Shouguang, Shandong)
(Figure 1). The data sets were collected from the pollination robot independently developed
by the National Intelligent Agricultural Equipment Research Center. The acquisition
camera was a ZED2 HD camera, and the pollination robot core controller was configured
with an i7-4700MQ@2.4 GHz CPU, 8 GB DDR3L memory, and a 500 GB SSD. As shown
in Figure 1, the spacing between tomato plants was 0.2 m, and the width of the robot was
0.8 m. During the pollination robot operation, the robot used magnetic stripe navigation
technology, and the travel speed on the track was set to 0.4 m/s.

Figure 1. Experimental site and tomato pollination robot.

To ensure that the object detection model proposed in this paper can meet the actual
production needs, the tomato flowering phase data set constructed for this paper contained
a total of 1120 images. The data set was divided into a training set (896 images), a validation
set (112 images), and a training set (112 images), according to the ratio of 8:1:1. Moreover, it
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Overcast
day

included the tomato flowering phases of bud, full bloom, and first fruiting. The tomatoes
photographed in the data set have the Latin name Solanum Iycopersicum L., and their flowers
are yellow at full bloom, with five radially spreading calyces and 1-1.5 cm long pedicels.
Meanwhile, to reduce the influence of light on the object detection model, the data
set also contained images collected under different lighting conditions and at different
times, as shown in Figure 2. The data samples were collected at three times—at 7:00 a.m.,
12:00 p.m., and 4:00 p.m.—under two different weather conditions: sunny and overcast.

07:00 12:00 16:00

Figure 2. Examples of tomato flowers collected at different times and under different weather conditions.

In addition, we can clearly see from the figure: compared to photos taken on sunny
days, photos taken on overcast days are darker, which increases the diversity of the dataset.

2.1.2. Data Augmentation

Before the data set was used for training, we performed data augmentation on it. As
can be seen from Figure 3a—d, the original data set was first enhanced by color gamut
adjustment, random scaling, horizontal mirroring, and panning. Then, as we can see
from Figure 3e, every four images in the enhanced data set were randomly cropped and
stitched into one image to form training data by using the mosaic method. According to
the baseline, the four images were placed in the top-left, top-right, bottom-left, and bottom-
right positions of the new large image. The advantage is that this greatly enriched the
image background and increased the data diversity, and the four images stitched together
served to increase the batch size. The number of objects was increased by calculating four
images simultaneously, thus speeding up the convergence of the object detection model.

2.2. FlowerYolov5

Due to the variety of flower objects and the complexity of the greenhouse background,
we aimed to develop a robust network model to extract enough of the fine-grained features
of flowers. The Yolov5 model adopts CSPDarknet53 as the backbone network and adds
adaptive anchor frames to make the model training more applicable to training data sets.
We used the Yolov5 object detection model as the basis, and fine-tuned the backbone and
neck parts of the network to make it more suitable for detecting flower objects, with the
aim of obtaining a higher recall and recognition accuracy.
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Figure 3. Data augmentation methods: (a) gamut adjustment; (b) random scaling; (c) horizontal
mirroring; (d) panning; and (e) mosaic.

2.2.1. Backbone of Yolov5

Yolov5 adopts CSP Darknet [26] as its backbone, as shown in Figure 4, which consists
of five CSP modules, one convolution module, and one spatial pyramid pooling module.
The input image size is 640 x 640 x 3, which passes through a 7 x 7 convolution kernel
with a stride of two and padding of one. Then, the feature map passes through five CSP
blocks, each containing a 3 x 3 convolution kernel with a stride of two and padding
of one, as well as a C3 block. The feature maps are divided into two parallel paths for
propagation in the C3 block. Path 2 first passes through a convolutional layer with a
1 x 1 convolutional kernel and then passes through 7 residual blocks containing two tiny
paths. Path A passes through two convolutional layers, with kernels of size 1 x 1 and
3 x 3, respectively. The input of path B is directly summed with the output of path A, in
order to obtain the output of each residual block. The # residual blocks are used to calculate
the output of path 2. Meanwhile, path 1 passes through a 1 x 1 convolutional kernel with a
stride of one, which is then spliced with the output of path 2 and passed through another
1 x 1 convolutional kernel. After passing through five CSP blocks, the feature map in the
backbone finally passes through the SPPF block, which contains three max-pooling layers
and a1 x 1 convolution kernel with a stride of one.

Raw Images Feature Maps

i backbone N
il ;‘ (cnnv 7x .,) CSP“_=B1Iock o CSP'.I_:;ock o CSP"_::,Iock \ CSPE;Iock - CSPE:‘IOCK (\_ipvpj ) ; > D @ @%

Figure 4. Local structure of the CSPNet backbone network.
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2.2.2. Improvements to the Model

(1) Design the novel feature fusion layer

In this paper, we propose a method that adds a new feature fusion layer to the neck
of Yolov5, in order to extract more fine-grained flower features and to reduce the feature
information lost during the convolution from shallow to deep in the backbone.

There are three feature fusion layers in the original Yolov5 network model, with output
feature vector dimensions of 80 x 80 x 128, 40 x 40 x 256, and 20 x 20 x 512, respectively.
When the network is trained, the input images lose or blur feature information during
multiple convolution and pooling operations in the network model, so it is necessary to
strengthen the model’s shallow and deep feature fusion ability. Therefore, we added a new
feature fusion layer to the original Yolov5 model, as shown by the red dashed rectangular
box in Figure 5. The new fusion feature layer is located at the bottom of the Neck section.
It includes an Upsample block, two convolution blocks, a Concat block, and a C3 block.
In the new feature fusion layer, it is not only necessary to pass the deep features through
the Upsample block to the upper layer of the feature pyramid, but also to receive the
shallow features passed from the upper end of the pyramid for feature fusion through the
Concat block. The output feature vector dimensions of the new feature fusion layer are
10 x 10 x 512. Throughout the FlowerYolov5 structure, the new feature fusion layer has
deep features as input. The deep-level features correspond to a larger receptive field, and
the CNN is able to perform feature extraction from a more global perspective on the image,
thus the network is able to acquire higher-level semantic information.

i A 4 E"‘ x80x
i /CSP_Block: ¥ . 80x80x128
i n=2 : (Concat
| ;
Upsample Conv+BN+Silu
i v ! 40x40x256
| /CSP_Block:;
| n=3 o
v
Upsample Conv+BN+Silu
i v 5 20%20x384
i~CSP_Block~|
: n=1
i Sl N S s S
: : New Feature Fusion Layer
S Tl 4 10x10x512

SPPF ) —'—>Conv+BN+Silu »(Concat

Figure 5. The architecture of FlowerYolov5.

(2) Insert the Attention Mechanism Module

In order to further enhance the recognition of flower objects in complex greenhouse
environments, we introduced a convolutional block attention module (CBAM) [25] into
the Yolov5 model, aiming to improve the expression of flower features (i.e., the model
is expected to focus on learning flower features and suppress complex greenhouse back-
ground features during the training process). The CBAM module contains two independent
sub-modules—namely, a channel attention module and a spatial attention module—which
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focus the training on flower images in terms of the channel and space, respectively, which
not only reduces the required computation but also increases the accuracy of the model.

During training, the Channel Attention Module (CAM) focuses on learning the con-
nections between the feature graph channels (i.e., those channels that play a role in the final
output results of the network) in the CNN network. The input element graphs are first
passed through the maximum pooling layer and the average pooling layer based on width
and height, respectively, and then the results are fed into the MLP. The output features from
the MLP are then subjected to summation operations and sigmoid activation to output
the CAM feature map, which is multiplied by the input feature map to generate the input
features required by the SAM module.

The spatial attention module (SAM) is focused on learning the features of the regions
of interest of the feature map flower objects in the CNN network (i.e., it focuses on the
location information that plays a role in the final output result of the network). The input
feature map is concated after channel-based maximum and average pooling layers, then
is downscaled to a channel by the convolution layer and subjected to sigmoid activation.
The SAM feature map is the output, and this feature map and the input feature map are
multiplied to output the final generated feature map.

The CAM and SAM are combined in serial order to form the CBAM; the structure
is shown in Figure 6. After the above two modules, the network focuses on learning the
feature information of the feature map on the channel and spatial objects, and can better
extract the fine-grained feature information.

(GAM
R @g@

Spatial Attention Module Channel Attention Module

CAM Feature [MaxPool,AvgPool]

=

Sigmoid Feature map Input Maxpool MLP Sigmoid  Output

Avgpool

Figure 6. CBAM structure.

We embedded CBAM into the backbone after the last CSP block (see the orange dashed
rectangle in Figure 5 for its position).

2.3. Bounding Box Regression and Loss Function

The IoU (intersection over union) is a criterion to judge the accuracy of object detection
tasks. It is the ratio of the intersection and concatenation of the output-predicted bounding
boxes of an object detection model and manually labeled real bounding boxes, which
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reflects the similarity between the predicted and real bounding boxes. The value of the loU
is in the range of [0, 1], and its calculation formula is as follows:

_areaPred N Truth

IoU = )
ou areaPred U Truth

)

The IoU loss is used to constrain the size and position of the predicted bounding boxes,
in order to gradually regress them to the manually labeled true bounding boxes, as follows:

LIOU = —InloU. (2)

However, when the predicted and real bounding boxes do not intersect, the IoU is 0
and the prediction bounding box cannot converge properly, resulting in deviation in the
position and size of the prediction box. Therefore, some studies [27,28] have proposed three
new methods to calculate the predicted bounding box loss: GloU, DIoU, and CloU [29].
The CloU considers three geometric parameters: the overlap between two prediction boxes,
the centroid distance, and the aspect ratio. Compared to the GloU and DIoU, the CloU has
a faster convergence speed and a higher regression accuracy. Therefore, in this paper, the
CloU was used as the evaluation index for the predicted bounding boxes, and its calculation
formula is as follows:

P2 (bTruth, bPred)
CloU = ToU — | ————=+av |, 3)
4 wTruth w .,
V=5 (arctanm - arctanﬁ) , 4)
v
T M —IoU) +o ©)

where p is the Euclidean distance between the center points of the real and predicted
bounding boxes, b is the center point of the bounding box, c is the length of the diagonal of
the minimum outer rectangle of the real and predicted bounding boxes, and w and / are
the length and width of the bounding box, respectively.

FlowerYolov5 contains three kinds of loss functions: box_loss, cls_loss, and obj_loss.
box_loss is the Lcyou, expressed as:

Leou =1— CloU (6)

Obj_loss is the confidence loss, which can be expressed as:

s b i ‘ » ‘
Lopj = Aobj o 2}8:0 Izj][Cflog (CH)+ (1—=C)log(1-C))]+

2 bjr Af j Af i
)‘noobj Zz‘S:O Z?:O IZ]‘DO J[Cflog (C{) + (l - Cf )log<1 - C? )]/

@)

where I;l;)Obj indicates that the jth bounding box in the ith grid takes a value of 0 if there is
a detection object, and takes a value of 1 if there is not; lf?i means that the jth bounding
box in the ith grid takes a value of 1 if there is a detection object, and otherwise takes a
value of 0; S denotes the grid size; Cf denotes the confidence score of the true bounding box;

C{ denotes the confidence score of the predicted bounding box; and B denotes the number
of a priori boxes in each grid.
cls_loss is the category loss, which can be expressed as:

Lats = 00 BV Y Pi()10g (pi(e)) + (1 = pi(e)log(1 = pi(@))],  (®)
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where c denotes the class of the detected object, p;(c) denotes the probability that the actual
detected object is ¢, and p;(c) denotes the probability that the predicted object is c.

The above three loss functions together constitute the total loss function of the Flow-
erYolov5 objective detection model, which can be expressed as:

LOSS = Lciou + Lobj + Legs- 9)

3. Results
3.1. Evaluation Indicators

In order to be able to evaluate the performance of the models objectively, four eval-
uation metrics—including Precision, Recall, mAP, and Fi—were used in this experiment
to comprehensively evaluate the classification performance of each model, which can be
expressed as follows:

. TP o
Precision = TPrEN " 100%, (10)
TP o
1 N
mAP = = kZ::l Precision(k)Recall(k), (12)

2 X Precision x Recall
Precision + Recall

F = (13)
where TP denotes the number of positive samples correctly classified as positive samples,
FN denotes the number of negative samples incorrectly classified as positive samples, FP
denotes the number of positive samples incorrectly classified as negative samples, and C
denotes the number of detected object classes.

The mAP index is the average value of AP over each category recognized by the model,
which can provide a more comprehensive measure of a model’s ability to recognize each
category of objects: the higher the mAP value, the higher the recognition accuracy of the
model and the lower the misdetection rate. The F; score balances both the precision and
recall of the classification model. Additionally, it can be considered as a harmonic mean of
accuracy and recall, whose maximum value is 1 and minimum value is 0.

In addition, we also discuss the robustness of the model. The robustness of neural
networks can be understood as the stability of the model to changes in the data. When the
input data or information undergoes limited change, the model can still maintain stable
output. The more robust the model is, the more stable its output performance will be in
case of input data disturbance.

3.2. Test Training Platform

The hardware configuration used for network training in this paper consisted of an
Intel® Core™) i9-11900K@3.50 GHz CPU, 64 GB running memory, a 2 TB HDD, and a
24 GB NVIDIA GeForce RTX 3090 GPU, while the experimental environment was Ubuntu,
under which the Pytorch deep learning framework was used. The program was written on
the PyCharm platform using the Python 3.8 language.

The proposed FlowerYolov5 model receives 640 x 640 pixel images as input, uses
stochastic gradient descent (SGD) as the optimizer to optimize the network parameters,
with an initial learning rate (Ir0) of 0.01, initial learning rate momentum of 0.937, weight
decay of 0.0005, a batch size of eight, and each model is set to train for 500 epochs.

3.3. Experimental Comparison

Table 1 lists the model performance comparisons of FlowerYolov5, Yolov3 [27], Yolov4 [28],
Yolov5s, Yolovbm, and Yolov5x. It can be seen, from Table 1, that all of the metrics of Yolov5s
were substantially improved after introducing the CBAM attention mechanism and adding
a feature fusion layer. Compared to the original Yolov5s model, the precision of Flow-
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erYolov5 was improved by 9.7%, the recall was improved by 3.3%, and the F; score was
improved by 6.6%.

Table 1. Comparison results of the different models for tomato flowers.

Backbone Precision Recall Fq mAP Mbyte
Yolov3 Darknet-53 0.894 0.798 0.843 0.874 63.5
Yolov4 CSPDarknet-53 0.895 0.838 0.866 0.89 65.5
Yolov5s CSPDarknet-53 0.802 0.867 0.833 0.864 13.7
Yolovbm CSPDarknet-53 0.880 0.847 0.863 0.891 40.2
Yolov5l CSPDarknet-53 0.833 0.910 0.869 0.911 88.5
FlowerYolov5 CSPDarknet-53 0.899 0.900 0.899 0.942 239

To judge the recognition accuracy of the model proposed in this paper, we compared
the mAP index of the model to those of the other classical object detection models. Yolov5x
had a larger model, meaning that it cannot satisfy the lightweight requirements of polli-
nation robot detection; therefore, it was reasonably abandoned. Figure 7 shows the mAP
curves of the proposed FlowerYolov5 model, as well as those of the four other classical
object detection models. It can be seen that the total mAP value for each model increased
with the number of epochs, stabilizing when they reached approximately 300 epochs. The
convergence speed of FlowerYolov5 was the fastest, and its mAP value was the highest
(94.2%). The mAP was improved by 6.8%, 5.2%, 7.8%, and 5.1%, respectively, compared to
the four other classical object detection networks.

0.8
0.6
a
<
£
0.4 1
0.2
yolov3
—— yolov4
— yolov5s
—— yolov5m
0.0 A —— FlowerYolov5
0 100 200 300 400 500
epoch

Figure 7. mAP curves of the five object detection models.

The variation curves for the total loss function values of FlowerYolov5 and the other
object detection networks are given in Figure 8, further validating the detection advantages
of the FlowerYolov5 model. The total loss function of the model can be used to measure the
model’s performance by determining the agreement between the real and predicted object
frames. The lower the loss value, the better the detection performance of the model and the
more consistent the true and predicted objects obtained. From Figure 8, we can see that
the overall trend of the loss function for all models decreased until the number of epochs
reached 400, and the loss function tended to stabilize and converge after this point. The
total loss value of the FlowerYolov5 model was the smallest, reaching approximately 0.031.
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Figure 8. Total loss curves of the five object detection models.

Combined with the parameter calculation and detection accuracy values, the overall
performance of FlowerYolov5 indicates that it is more suitable for embedding into pollina-
tion robots to perform intelligent pollination tasks in complex greenhouse environments.

4. Discussion

In the remainder of this paper, we investigate the impact of introducing the CBAM at
different locations in the Yolov5s model on its accuracy. Meanwhile, we discuss the impact
of adding the feature fusion layer on the performance of the original network.

We embedded the CBAM after all of the CSP blocks in the backbone, all the CSP
blocks in the neck, all of the CSP blocks in the Yolov5s model, and the last CSP block in the
backbone, respectively. After this, we compared the four models. As shown in Figure 9,
from the F, recall, and precision histograms of the four different models in the experiment,
we can observe that, regardless of the position in which the CBAM was introduced, the
precision, recall, and F; values were significantly improved, compared to the original network.
After embedding CBAM into all C3 modules in the neck, the F; score improved by 2.9%;
after embedding CBAM into all C3 modules in the backbone, the F; score improved by 1.1%;
after embedding CBAM into all C3 modules in the neck and the backbone, the F; score
improved by 2.9%; finally, the most apparent improvement was achieved after embedding
the CBAM after the last CSP block in the backbone, with a 4.5% improvement in precision, a
2.9% improvement in recall, and a 3.7% improvement in the F; score.

Combining the above experimental results, we can draw the following conclusions:
The introduction of the CBAM can greatly enhance the performance of the model, reduce
the misdetection rate, and increase the accuracy of the model. Among them, the highest
accuracy and the best detection performance were achieved by embedding it after the last
CSP block module of the backbone.

In order to verify whether the performance of the network was improved after adding
the feature fusion layer, we conducted the following fusion experiments, as detailed
in Table 2, which provides a comparison of the different flowering phase APs of the
Yolov5s model after adding the feature fusion layer, the original Yolov5s, and Yolov5s after
introducing the CBAM module to the FlowerYolov5 model proposed in this paper. As can
be seen from Table 2, compared to the original Yolov5s network, adding a feature fusion
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layer improved the AP of the network model substantially in the bud and early fruit phases
by 2% and 11.7%, respectively. This indicates that adding a feature fusion layer allows the
model to better obtain the fine-grained features of flowers, resulting in a higher accuracy
for the detection of multiple flower phases.

92

=l

E=1 Recall
=1 Precision
91 |

89.70

(%)

87 30
87,10

86.70

Yolov5s+layer in backbone last C3 in neck both in backbone

Model

Figure 9. Impact of adding the CBAM in different locations on the model performance indices.

Table 2. Comparison results of model performance using different improvement methods.

Bud Phase (AP) Bloom Phase (AP) Early Fruit Phase (AP)

Yolov5s 79.5% 96.6% 83.1%
Yolovbs + fusion layer 81.5% 94.8% 94.8%
Yolovbs + CBAM 84.9% 97.7% 85.3%
FlowerYolov5 90.5% 97.7% 94.9%

We further visualized the results to illustrate the improvement in the model’s recog-
nition accuracy and recall after adding a feature fusion layer and the CBAM. Figure 10
compares the prediction results obtained by the four models: Yolov5s, Yolov5s with the ad-
dition of a feature fusion layer, Yolov5s with the addition of the CBAM, and FlowerYolov5.
As can be seen from Figure 10, after adding a feature fusion layer or the CBAM into the
model, both the confidence level and the recall were higher than that of the original Yolov5s
model. Among the models, FlowerYolov5 had an overall higher confidence level and was
able to detect the flowers missed by the other three models. As can be seen from Figure 10e,
FlowerYolov5 was able to detect one or two more flowers compared to the original Yolov5.
This illustrates the effectiveness of adding feature fusion layers and the CBAM.

In addition, we can see from Figure 10 that the greenhouse background is quite
complex and there is occlusion between flowers. In Figure 10b—d, the models missed
the detection of several flowers, while FlowerYolov5 exhibits a more robust recognition
performance in Figure 10e.
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Figure 10. Recognition results of the comparison between models for different phases: (a) original
images; (b) Yolov5s; (c) Yolov5s + fusion layer; (d) Yolovbs + CBAM; and (e) FlowerYolov5.
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To demonstrate that the CBAM and extra feature fusion layer can effectively enhance
the feature extraction ability, we further compared the convolutional outputs of the original
Yolov5, Yolov5 with the addition of CBAM, and FlowerYolov5. Then, we visualized the
output feature vector before the final convolutional layers from models in order to discern
the tomato flower feature extraction ability of the models. Figure 11a shows the original
image, while Figure 11b—-d demonstrate the results of feature visualization for the original
Yolov5, Yolov5 with the CBAM added, and FlowerYolov5, respectively. In this figure, we
can see two different flowering classes; namely, the full bloom and bud phases. Each
point in the feature map is a representation of the activation value, with red or yellow
highlighting relatively large activation values and blue indicating lower activation values,
representing the background. The energy distribution visualization for the feature maps
demonstrates that Yolov5 with the addition of the CBAM can effectively focus on activating
discriminative regions while ignoring the complicated and messy backgrounds. From
Figure 11b—d, we can see that most of the activation points were transferred from the
surroundings to the areas of the flowers, highlighting these areas instead of cluttering the
background. This shows that the model can focus more on extracting flower color and
texture features. We can observe that FlowerYolov5 successfully extracted features that
were easily lost in the deep convolutional layer. The effectiveness of the FlowerYolov5
network in fine-grained flowering phase identification was thus demonstrated.

Figure 11. Energy distribution visualization of feature maps before and after adding a feature fusion
layer and the CBAM: (a) original image; (b) original Yolov5; (c) Yolov5 with the CBAM added; and
(d) FlowerYolov5.

5. Conclusions

The detection of the tomato flowering phase and flower identification in intelligent
greenhouses are of great significance for improving the yield and quality of tomatoes. In
this paper, we proposed an object detection method based on the improved Yolov5, which
improves the recognition accuracy for flowers and can achieve the accurate identification
of different flowering phases. As for the modification method, a feature fusion layer was
added and embedded into the output end of Yolov5 in order to reduce the amount of
semantic information lost in the image during the convolution process. Furthermore, the
CBAM was added to the backbone network in order to improve the detection accuracy
of floral objects. According to the experimental results, the following conclusions can
be drawn:

(1) The model performance verification experiment showed that FlowerYolov5 achieved
a better performance, with 90.5% AP for the bud phase, 97.7% AP for the bloom phase,
and 94.9% AP for the early fruit phase. In general, the mean average precision reached
94.2%, which is 7.6% better than that of the original Yolov5 network. Therefore,
FlowerYolov5 can more accurately identify and classify different flowering phases,
and provides a technical reference for precise identification by pollination robots.
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(2) A comparison of the detection results showed that the performance of FlowerYolov5
was generally better than that of Yolo series networks. The previous problem related
to undetected flowers was improved.

Validation experiments and analyses demonstrated the better efficiency and robustness
of the proposed method, which can meet the practical demands of production management
in different intelligent greenhouse applications. In the future, the approach proposed in this
paper can be combined with other advanced information technologies, such as fractional-
order bidirectional associative memory neural network [30-34], artificial intelligence and
big data mining algorithms [35-37], to the study of pattern recognition problems for linear
and non-linear systems, and can be applied to other fields such as time-series forecasting
and engineering application systems [38—40].
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