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Abstract: Surface defect detection aims to classify and locate a certain defect that exists in the target
surface area. It is an important part of industrial quality inspection. Most of the research on surface
defect detection are currently based on convolutional neural networks (CNNs), which are more
concerned with local information and lack global perception. Thus, CNNs are unable to effectively
extract the defect features. In this paper, a defect detection method based on the Swin transformer
is proposed. The structure of the Swin transformer has been fine-tuned so that it has five scales
of output, making it more suitable for defect detection tasks with large variations in target size. A
bi-directional feature pyramid network is used as the feature fusion part to efficiently fuse to the
extracted features. The focal loss is used as a loss function to weight the hard- and easy-to-distinguish
samples, potentially making the model fit the surface defect data better. To reduce the number of
parameters in the model, a shared detection head was chosen for result prediction. Experiments
were conducted on the flange surface defect dataset and the steel surface defect dataset, respectively.
Compared with the classical CNNs target detection algorithm, our method improves the mean
average precision (mAP) by about 15.4%, while the model volume and detection speed are essentially
the same as those of the CNNs-based method. The experimental results show that our proposed
method is more competitive compared with CNNs-based methods and has some generality for
different types of defects.

Keywords: surface defect detection; Swin transformer; convolutional neural networks; flange

1. Introduction

Quality inspection is an essential and critical part of industrial production. According
to reports, the global quality inspection industry has maintained a rapid growth of more
than 10%, and the global inspection and testing market is expected to reach EUR 252.68 bil-
lion in 2022, showing great potential for development. Surface defect detection refers to
the use of vision-related technology to locate and classify defects that exist on the surface
of a workpiece. It has always been an important part of industrial quality inspection. In
industrial production, defects sometimes occur in industrial parts, which are caused by
dithering of production equipment, abrupt changes in production environment, etc. In
addition, some industrial parts such as flanges, bearings, gears and rails are in contact
with the working scenario of stress for a long time, causing many types of defects on the
contact surface. Flanges are mainly used in the industrial field, and they are a common and
important part of industrial manufacturing. Surface quality has a critical effect on the use
of flanges. When the flange surface appears unpolished, sand holes, scratches or flange
hole bruising defects will affect the sealing performance of the flange in the connection
or even lead to the inability of its use. Timely inspection of products for surface defects
can prevent products with quality problems from entering the market, as well as avoid the
occurrence of greater costs. At the same time, a batch of products for defect detection and
statistics on the type and number of defects can provide some guidance for subsequent
production.
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Before industrial intelligence was promoted, surface defect inspection was mainly
performed manually. It comes at a high cost. Due to individual differences, the subjectivity
of manual inspections and the long working hours make manual inspections prone to errors.
The use of machines for surface defect inspection allows uniform evaluation criteria to be
set. Such use is also far more efficient than manual inspection, and the cost of machines is
far lower than manual labor. Therefore, transforming defect inspection tasks from manual
to automated inspection is urgently needed.

Researchers have solved the above problems by classical machine vision methods.
Machine vision detection methods acquire images of the target by high-precision indus-
trial cameras and obtain the required information through the calculation of some image
processing algorithms. For example, Zhao et al. (2017) [1] proposed an improved frame
difference method for template matching to detect print defects. Liu et al. (2018) [2] used
support vector machines for defect detection of solar cell wafers. Yuan et al. (2016) [3]
used the Otsu (weighted target variance)-based method for rail defect detection. These
methods satisfy the needs of defect detection tasks. However, these methods do not extract
features efficiently. As a consequence, they are not effective in detecting defects in complex
environments [4]. Using a deep learning approach for surface defect detection can alleviate
these problems [5].

With the improvement in computing power of devices, researchers can use huge
amounts of data to train deep learning models, allowing deep learning to reach its full
potential in computer vision. A growing number of studies have shown that convolutional
neural networks (CNNs) and their extensions show very powerful performance in defect
detection and can solve most of the problems that cannot be solved by classical machine
vision methods. Tabernik et al. (2020) [6] proposed a segmentation-based deep learning
architecture which achieves steel defect detection by first outputting pixel-level defect
regions from a segmentation network and then a classification network for binary image
classification. Liu et al. (2021) [7] improved the data enhancement method and lightened
YOLOv5 for detecting surface defects on metal bases. Wang et al. (2021) [8] used an
improved RetinaNet for surface defect detection of vehicle navigation guides and achieved
a high accuracy rate. Chen et al. (2022) [9] embedded Gabor kernels in Faster R-CNN
to overcome the problem of texture interference in fabric defect detection achieved good
results. Wen et al. (2021) [10] used an encoder encoder-decoder mask extraction network
to generate an insulator mask image which eliminated the complex background. Then,
they used the improved RCNN to detect the insulator defects. These studies have shown
good performance in their engineering scenarios and have greatly advanced the applica-
tion of deep learning techniques in surface defect detection. However, some unresolved
issues remain in the field of surface defect detection. For example, the feature extraction
performance is generally improved by increasing the depth of the CNNs, posing the risk
of gradient disappearance. Convolution-based CNNs are considered locally sensitive and
have a lack global dependency. The receptive field can be improved by increasing the con-
volutional kernel, but the computational cost increases with the increase of convolutional
kernels, and further improvement is difficult to obtain [11].

In the domain of deep learning, the self-attention-based transformer (Vaswani et al.,
2017) [12] is a mainstream architecture; self-attention modules can correlate long-term
dependencies in data, driving the popularity of transformers. Recently, many researchers
have found that the transformer has also shown good performance in computer vision.
Dosovitskiy et al. (2020) [13] demonstrated that the vision transformer performs better
than CNNs after pre-training with a sufficient amount of data. Liu et al. (2021) [14]
proposed the shifted window transformer architecture, which reduces the computational
complexity of the transformer and makes it easier to deploy in detection and segmentation
tasks. At present, researchers have used transformers for surface defect-related vision
tasks. Li et al. (2022) [15] combined CNNs with transformers to achieve good results
on a steel surface defect classification task. Although transformers can correlate global
data, their computational complexity is quadratic in image size, precluding their use in
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high-resolution images. The features extracted using transformers do not have hierarchical
distinctions and cannot effectively fuse features, introducing difficulties in achieving the
desired results for tasks with large variations in target scale [14]. Most of the loss functions
defined by past defect detection models are only used to discriminate sample similarity,
and no differentiated treatment exists for easy and hard to classify samples, resulting in
models that do not converge well [16].

Based on the above problems, a novel defect detection method is proposed in this
paper. We use the Swin transformer architecture for feature extraction of surface defects and
attempt to design a one-stage surface defect detection algorithm with superior performance
to meet the real-time requirements of industrial defect detection while ensuring accuracy.
We used the Swin transformer tiny as the backbone feature extraction network, fine-
tuned its structure and improved its ability to extract multi-scale features. It exhibits
powerful feature extraction and can output hierarchical features for detecting defect targets
at different scales. Meanwhile, the computational cost of the Swin transformer is similar to
that of CNNs [14]. A weighted bi-directional feature pyramid network (BiFPN) is used as
the feature fusion module of the network. We use it to fuse the four scale features output in
the Swin transformer with a very high efficiency. We fuse features at different scales in this
way in a weighted manner so that local features at different scales can be fused together
more effectively, thus greatly enhancing the robustness of image features [17]. The head
of the network is based on the anchor frame for detection, with a total of five scales of
detection output, which is designed for surface defects with large-scale variations. They
share a detection head, potentially reducing the parameters and alleviating the problem
of uneven learnable samples on different scales. We choose focal loss as the loss function,
potentially improving the model’s focus on hard-to-discriminate samples. This allows the
model to focus more on those defects that are difficult to detect, which is helpful for the
surface defect detection task [18]. The proposed model outperforms mainstream target
detection algorithms on our private dataset of flange surface defects task and outperforms
most existing models on public datasets of steel surface defects. The diagram of the process
for detecting defects in flanges using our method is shown in Figure 1.

Figure 1. Flowchart for flange surface defect detection using Swin transformer and convolution
neural network in an industrial environment.
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2. Method

The overall architecture of the proposed method is shown in the Figure 2, containing
the backbone, feature fusion module and prediction module. The images are input into the
patch partition in a Swin transformer to be split into non-overlapping patches. The feature
of each patch is set to the concatenation of the original pixel RGB values. The size of each
patch is 4 × 4, resulting in a feature dimension of each patch of 48 (4 × 4 × 3). The original
features are adjusted to 96 after passing through the linear embedding layer. Then, the Swin
transformer blocks are used for self-attentive computation and the first scale features are
output. The patch merging layers are responsible for reducing the number of tokens, which
can produce feature representations at different scales. A patch merging layer and several
Swin transformer blocks are used as a combination to perform feature extraction. Three
such combinations are present, and they can produce three layers of features at different
scales. The deepest feature of the Swin transformer goes through a downsample block and
outputs the fifth scale feature. The features of these five scales are input into the neck of the
network for weighted feature fusion, after which the outputs of the five scales are fed into
the detection head of the network for category and location prediction to obtain the final
detection results.

Figure 2. Overview of the network.

2.1. Backbone

As shown in Figure 2, after an image of size H ×W × 3 is input into the backbone,
it is first processed by patch partition to transform the image into 4 × 4 × 3 patches.
The dimensions are converted from 48 to 96 by linear embedding. Unlike the original
Swin transformer tiny, we input the data into four Swin transformer blocks for the first
self-attentive computation. Many fine-grained features are present in the shallow layer
with higher resolution, and we expect the network to learn these features in the shallow
layer, benefiting the detection of surface defects on small targets. The obtained output
P1 is input into the neck and input into patch merging for scale transformation. The
transformed features are input to the Swin transformer block for self-attentive calculation.
Patch merging with several Swin transformer blocks is configured as a combination of
three groups, where the number of Swin transformer blocks are 2, 6 and 2. These blocks
output P2, P3 and P4, respectively, to the neck of the network. P4 is downsampled by a
simple structure consisting of convolution, batch normalization and Maxpool to obtain the
output P5, helping enhance the perceptual field of the original Swin transformer.
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2.1.1. Patch Merging

Given that the self-attentive computation does not change the size and dimension of
the features, and we want to get hierarchical features in the Swin transformer as in CNNs,
we need to add a patch merging layer. The schematic diagram of patch merging is shown in
Figure 3, where the first operation is to sample the incoming data at one point intervals and
patch the sampled results in a dimension so that the dimension of the feature is expanded
by four times and the size is reduced to one half of the original size. The second operation
converts a feature of dimension 4C to 2C using a convolutional operation with a kernel
size of 1 × 1. The patch merging operation consisting of the first operation and the second
operation can achieve a hierarchy of features, which is important for target detection.

Figure 3. Patch merging.

2.1.2. Swin Transformer Block

The flow chart of a Swin transformer block is shown in Figure 4, where f i−1 is the
input and f i+1 is the output. LN stands for layer normalization, MLP stands for multilayer
perceptron, W-MSA stands for windows multi-head self-attention and SW-MSA stands for
shifted windows multi-head self-attention. These modules are used alternately in the Swin
transformer block, and the mathematical expression can be expressed as

f̂ i = W −MSA
(

LN
(

f i−1
))

+ f i−1

f i = MLP
(

LN
(

f̂ i
))

+ f̂ i

f̂ i+1 = SW −MSA
(

LN
(

f i
))

+ f i

f i+1 = MLP
(

LN
(

f̂ i+1
))

+ f̂ i+1 (1)

Figure 4. Swin transformer block.
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W-MSA is more efficient than global multi-head self-attention, and it enables dense
prediction of high-resolution images. Given that its self-attention computation is performed
within a local window, assuming here that N × N patches are within each window and
the size of each patch is H ×W, the computational complexity of global multi-head self-
attention is

Ω(MSA) = 4HWC2 + 2(HW)2 (2)

The computational complexity of shifted windows multi-head self-attention is

Ω(W−MSA) = 4HWC2 + 2N2HWC (3)

where C is the channel of the feature. The computational complexity is quadratic to HW
when using MSA for self-attentive computation, while it is linear to HW when using
W-MSA, making W-MSA capable of affordable computation for large HW.

Given that the windows separated by W-MSA are fixed, no information exchange
occurs between different windows, which will bring adverse effects to the modelling ability
of the model. Therefore, SW-MSA is introduced, which enables information communication
between different windows by a simple window shift. As shown in Figure 3, W-MSA and
SW-MSA are used alternately in the Swin transformer block so that the model can perform
self-attentive calculations and perform best on large-scale images. The schematic diagrams
of MSA, W-MSA and SW-MSA are shown in Figure 5.

Figure 5. Schematic diagrams of (a) MSA, (b) W-MSA and (c) SW-MSA.

Each non-overlap window W of W-MSA can be expressed as

Q = WPQ, K = XPK, V = XPV (4)

The shared projection matrix on all windows is PQ, PK, PV. Q, K and V denote query,
key and value, respectively, B ∈ RN2×N2

indicating relative position bias. d is the dimension
of query/key. They are used to calculate the self-attentive mechanism in one window,
which can be formulated as

Attention(Q, K, V) = SoftMax
(

QKT/
√

d + B
)

V (5)
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2.2. Feature Fusion Module

After the input data passes through several layers of patch merging and Swin trans-
former block, the feature extraction module will extract richer semantic information and
obtain more channels, but the size of the data will also be reduced and some fine-grained
information will disappear, resulting in the inability to extract these features. By fusing the
features of different layers, the shallow features can be made to acquire the deep semantic
information and the deep network to acquire the shallow fine-grained information to
improve the detection capability of the model [19]. We use BiFPN as the feature fusion
part, which is structured as shown in the neck part in Figure 2. The blue arrows represent
the paths from the deep features to the shallow layers, which are responsible for transmit-
ting semantic information. The red arrows represent the transfer of texture information
from shallow to deep layers. The purple arrow transfers the raw features extracted by the
backbone to the final output, which allows the model to fuse more features with minimal
computational cost.

A total of five different scales of features are output from the backbone, where P1, P2, P3
and P4 are the features extracted by the Swin transformer block. P5 is obtained from down-
sampling on the basis of P4. Adding P5 consumes only a small amount of computational
resources, but it can improve the detection performance of the model for large-scale targets.
For the one-way path input nodes (P1, P5), their contribution to feature fusion is small,
thereby simplifying its fusion process. Let the nodes with bi-directional paths (bottom-up
and top-down) be a feature network layer (e.g., P2, P3, P4). For the feature network layer,
a variety of weighted feature fusion processes is taken.

For example, its feature fusion process is shown in Equation (6), whereωi represent
the weights, Ii represent the features and ε is a constant to ensure a stable value.

The Pin
4 features from the backbone input are weighted, Pin

5 is upsampled to have the
same size as Pin

4 and then weighted, and the two are summed and convolved to obtain
Ptd

4 . We weight Pin
4 , weight Ptd

4 and weight Pout
3 after downsampling it to the same size as

Ptd
4 , and compute Pout

4 by convolution after summing the total of the three. Pout
4 performs

multiple feature fusions and these are not simply summed, but a weighted summation is
performed to enhance the effect of important features on the fusion results. The features
are weighted using fast normalised fusion, which is calculated in Equations (7) and (8).
Using the Relu activation function ensures that eachωi ≥ 0 and ε = 0.0001 ensures stable
values. BiFPN integrates fast normalized fusion with bi-directional cross-scale connectivity
to efficiently fuse features from different scales.

O = ∑
i

ωi

ε+ ∑jωj
·Ii (6)

Ptd
4 = Conv

(
ω1·Pin

4 +ω2·UpSample
(

Pin
5
)

ω1 +ω2 + ε

)
(7)

Pout
4 = Conv

(
ω′1·Pin

4 +ω′2·Ptd
4 +ω′3·DownSample

(
Pout

3
)

ω′1 +ω
′
2 +ω

′
3 + ε

)
(8)

2.3. Prediction Module

The prediction module is shared by five scale outputs, which is based on the anchor
box for detection. The five scales of features output by the feature fusion side will first
adjust the dimensionality to 256 uniformly and then will be sent to the class predict block
and location predict block to predict the fused features. From Figure 2, which shows their
structure, Weight × Height × Number of classes × Anchor is output from the class predict
block. Weight × Height × 4 × Anchor is output from the location predict block, where 4
indicates the prediction of the target’s location. Among them, three sizes of anchor box
{20, 21/3, 22/3} are used, configured with three aspect ratios {1:2,1:1,2:1}. Each size of the
feature output is assigned nine anchor boxes. We share the head module for the prediction
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of the results because it can reduce the number of parameters and can effectively alleviate
the overfitting and improve the accuracy of the detection.

2.4. Loss Function

The two-stage target detection algorithm first calculates the region proposal and then
performs target detection in the area where the target may exist. Given that the one-stage
target detection algorithm does not have the process of region proposal, this will lead to a
situation in which the foreground and background are extremely unbalanced. In addition,
a large number of small target defects are found in the surface defects of industrial parts,
which are prone to many negative samples during detection. When the number of negative
samples is high to a certain extent, it will weaken the effect of those important samples on
training. Therefore, we choose focal loss [20] as the loss function to overcome this problem.

The standard cross-entropy (CE) loss can be expressed as

CE(p, y) =
{

− log(p) if y = 1
− log(1− p) otherwise

(9)

ground-truth class is represented by y ∈ {±1} and p ∈ [0, 1] is the probability value of the
model predicting y = 1.

pt is defined as the following equation

pt =

{
p if y = 1

1− p otherwise
(10)

Then, the CE loss can be expressed as

CE(p, y) = CE(pt) = − log(pt) (11)

Generally, adding weighting factors is a solution to the class imbalance problem. We
treat balance CE loss as the baseline of focal loss, which can be expressed as

CE(pt) = −αt log(pt) (12)

α-balance CE loss weights the importance of positive and negative samples. The
focal loss adds a moderator to the CE loss, which differentiates the difficulty of the sam-
ple classification so that the model focuses on the difficult samples. Focal loss can be
expressed as

FL(pt) = −αt(1− pt)
γ log(pt) (13)

manner where (1− pt)
γ is the modulation factor, γ is the focusing parameter that adjusts

the rate at which easily classified samples are down-weighted. In our experiments, γ is set
to 2, which is the same as in [20].

3. Experiment
3.1. Dataset

The original flange surface defect data was collected by Daheng MER-500 industrial
camera, and 200 pictures with a resolution of 2592 × 1944 were collected under three
different lighting conditions. If the large size of the original map is directly downsampled
and then fed into the model, it will lead to the disappearance of small target features, which
is unfavorable for the feature extraction of the model and will directly lead to the missing
detection of small target defects. Therefore, before labelling the data, some pre-processing
of the original data is needed.

As shown in Figure 6a, we first crop the redundant background in the image to keep
the grey area and then crop a pair of images into four copies according to the overlap rate of
15%, and the size of each image is 1040 × 1040. On this basis, downsampling is performed
to adjust the size to 640 × 640 for input to the model.
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Figure 6. Data processing and labelling. (a) Image preprocessing, (b) four different classes of surface
defects: scratched, bruises, sand hole, unpolished.

There are two reasons for processing the data as described above: (1) If the 2592× 1944
pixel image is directly adjusted to a 640 × 640 pixel image, it will lead to the disappearance
of fine-grained features, which is negative for the model to fit the flange surface defects.
(2) Cropping the image according to a 15% overlap rate will ensure the integrity of the
medium-sized defect bruises and enable the model to learn its features better. If the pictures
are not cropped according to the certain overlap rate, it will lead to the learning targets
being separated, which is disadvantageous for the model to fit the data [21].

After pre-processing the original image data, we annotated the processed images
according to the criteria of the VOC dataset, and the annotation of four different defects is
shown in Figure 6b.

We use a mixture of rotation, translation, flip and contrast to augment the data, expand-
ing the amount of data to 10 times the original size. Notably, we have used some advanced
data enhancement methods such as mosaic, cutmix and cutout for our experiments and
found that these methods are not suitable for surface defect data enhancement. Given that
many small targets are already present in the original data, further stitching operations
will make extracting the features of the small targets difficult for the model. By contrast,
using these methods generates a certain amount of redundant gradient information, which
is detrimental to the training of the model. After suitable data enhancement, 80% of the
data is used for model training, 10% for validation and 10% for testing.

3.2. Evaluation

We mainly use mAP, frames per second (FPS), parameters, and FLOPs as the main
evaluation metrics of the model [22]. mAP is the metric used to evaluate multi-category
detection, which is the mean value of AP (average precision). AP is the area under the
precision-recall curve for a particular class. Precision refers to the proportion of correctly
predicted ‘TRUE’ samples out of all predicted ‘TRUE’ samples, and it is calculated as

P =
TP

TP + FP
∈ [0, 1] (14)

Recall refers to the proportion of correctly predicted ‘TRUE’ samples out of all pre-
dicted ‘TRUE’ samples, and it is calculated as

R =
TP

TP + FN
∈ [0, 1] (15)
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The AP is calculated as

APi =
∫ 1

0
Pi(Ri)dRi (16)

AP is the average value of AP under different IoU (IoU from 0.50 to 0.95 where the
step is 0.05), and the IoU is calculated as in (16), where X represents the detection area
and Y represents the real area of the target. The larger the IoU, the more accurate the
detection result.

IoU =
X∩ Y
X∪ Y

(17)

The equation for mAP is calculated as

mAP =
∑n

1 APi

n
(18)

The closer the mAP is to 1, the better the detection of the model.
FPS represents how many images the model can process per second, and it is the most

intuitive indicator of the detection speed. The higher the FPS, the faster the detection speed
of the model.

The FPS is calculated as
FPS =

1
t

(19)

where t represents the time in units of seconds to detect an image.
Floating point operations (FLOPs) represents the computational volume of the model.

Parameters represent the complexity of the model. Smaller values of these two indicators
indicate a more streamlined model.

3.3. Training Strategy and Experimental Environment

Before training the surface defect data, we load the weights of the backbone feature net-
work after pre-training on the image Net1k [23] dataset, allowing the network to converge
faster and preventing overfitting [24]. The pre-training strategy is as follows: optimizer
is SGD, learning rate is 0.02, momentum is 0.9, weight decay is 0.0001 and epoch is set to
300 [25].

For the flange surface defect data, our training strategy is as follows: optimizer is
SGD [26] (learning rate is 0.002, momentum is 0.9 and weight decay is 0.0001). Batch size is
set to 24 and epoch is set to 100.

Our experimental environment is as follows: Ubuntu 20.04.4, Intel Xeon Silver 4210
CPU, NVIDIA A10*2 GPU, 64 GB RAM, Python version 3.7, Torch version 1.9.0 and CUDA
version 11.1.

3.4. Comparison Method

We choose the most advanced one-stage detection algorithms YOLOX [27] and Reti-
naNet and the most classical two-stage detection algorithm, Faster-RCNN [28], as the
methods for comparison experiments. We use CSPdarknet-L as the backbone of YOLOX
and resnet50 [29] as the backbone of RetinaNet and Faster-RCNN, which have similar
FLOPs and parameters as the Swin transformer tiny.

4. Experimental Results and Discussion
4.1. Detection Results

Table 1 shows the performance of different models on the flange surface defect dataset
we constructed. mAP of YOLOX-L, RetinaNet-Resnet50 and Faster-RCNN-Resnet50 are
0.714, 0.765 and 0.744, respectively. Similar to the description of [20], RetinaNet, as a one-
stage detection algorithm, outperforms the two-stage detection algorithm Faster-RCNN.
Our method achieves the optimal result among all methods with a mAP of 0.866. In
Figure 7, the detection results for the flange surface defect data are shown, where a to d are
scratched, sand holes, bruises and unpolished, respectively.
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Table 1. Performance of different models on the flange surface defect dataset.

Method Sand_Hole Unpolished Scratch Bruises mAP

YOLOX-L 0.518 0.834 0.803 0.701 0.714
Retinanet 0.582 0.891 0.837 0.75 0.765

Faster-RCNN 0.567 0.878 0.812 0.719 0.744
Our Method 0.67 0.968 0.934 0.892 0.866

Figure 7. Results of flange surface defect detection. (a) Scratch, (b) sandhole, (c) bruises, (d) unpol-
ished.

4.2. Efficiency Analysis

We compared the parameters, FLOPs and FPS of different methods separately to
analyze their efficiency. The experimental results are shown in Table 2. The parameter
number of our method is slightly higher than that of RetinaNet, which is 37.1 M, and the
FLOPs are 84.9, which is lower than that of Faster-RCNN. Its FPS on our GPU is 23.5, and
only 0.042 s are needed to detect each pair of images, which can achieve the requirement of
real-time detection.

Table 2. Efficiency analysis.

Method Parameters FLOPs FPS

YOLOX-L 54.15 77.67 27.1
Retinanet 36.21 82.57 35.8

Faster-RCNN 41.15 91.03 37.4
Our Method 37.1 84.9 23.5



Machines 2022, 10, 1083 12 of 15

4.3. Ablation Experiments

We performed some ablation experiments on our model to demonstrate the effective-
ness of the network we designed. We replaced the backbone with resnet50, the feature
fusion part with PANET [30] and the loss function with cross-entropy loss, respectively, and
compared their performance on the flange surface defect dataset. The results are shown in
Table 3. Our method achieves the highest mAP. The parameter and FLOPs are only slightly
higher than the method using resnet50 as a backbone. The FPS is 10 lower compared with
the method using resnet50 as a backbone but gains a 10.7% improvement in mAP, which
we think is a worthwhile compromise.

Table 3. Ablation experiments.

Method mAP Parameter FLOPs FPS

Ourmethod 0.866 37.1 84.9 23.5
Resnet50+bifpn+focalloss 0.759 36.9 83.1 35.3

SwinT+bifpn+crossentropyloss 0.731 37.1 84.9 23.5
SwinT+pafpn+focalloss 0.837 38.2 86.3 22.7

4.4. Extensibility Analysis

We conducted experiments on a common dataset, Steel Surface Defects [31] (NEU-
DET), to demonstrate that our proposed defect detection method works well not only for
flange surface defect detection but also in other defect detection areas. This dataset consists
of a total of 1800 images with a pixel size of 192 × 192 for six common steel surface defects.
We divide 80% data for training, 10% data for validation and 10% data for testing. For
NEU-DET, we adjust the batch size to 64 because it has a data size of 192 × 192 pixels,
giving our GPU the ability to train more samples at once and also to fit these data better.

In the comparison experiments, we added other researchers’ methods for comparison.
Lv et al. [32] used a method based on Single Shot MultiBox Detector for defect detection.
Kou et al. [33]. improved YOLOV3 for defect detection.

The experimental results are shown in Table 4. Although our model is constructed
for flange surface defects, our method outperforms not only the classical target detection
algorithms but also the defect detection algorithms designed by other researchers on NEU-
DET. This shows that the Swin transformer can effectively extract defect features and
confirms the competitiveness of our method. The detection results based on NEU-DET are
shown in Figure 8, where a to f are crazing, inclusion, patches, pitted surface, rolled in scale
and scratches, respectively.

Table 4. Performance of different models on the steel surface defect dataset.

Method Crazing Inclusion Patches Pitted_Surface Rolled_in_Scale Scratches mAP

YOLOX 0.322 0.428 0.695 0.749 0.408 0.658 0.543
Retinanet 0.331 0.574 0.708 0.765 0.41 0.693 0.592

Faster-RCNN 0.377 0.494 0.714 0.814 0.556 0.478 0.572
Lv et al. 0.417 0.763 0.863 0.851 0.581 0.856 0.724

Kou et al. 0.389 0.737 0.935 0.748 0.607 0.914 0.722
Our Method 0.465 0.842 0.972 0.843 0.641 0.926 0.781
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Figure 8. Results of steel surface defect detection. (a) Crazing, (b) inclusion, (c) patches, (d) pitted
surface, (e) rolled in scale, (f) scratches.

5. Conclusions

This paper applies a Swin transformer combined with CNNs approach to surface
defect detection tasks in industry. We demonstrate experimentally that the Swin transformer
has a stronger feature extraction capability compared with CNNs in surface defect detection.
We simply improve the Swin transformer’s structure and apply it to a single-stage target
detection algorithm that we design to fully exploit its advantages. We have improved the
commonly used feature pyramid network by using a weighted feature pyramid network
that fuses five scaled features output from the Swin transformer. Focal loss can focus
the model more on difficult-to-detect defects objects. Shared prediction module prevents
overfitting while effectively reducing the model parameters. Combining the above methods,
we have designed a novel and high performance one stage defect detection algorithm.

In our constructed dataset, our method shows a great advantage over the CNN-based
method on mAP, while it possesses a satisfactory detection speed. In addition, we analyzed
the performance of our method on NEU-DET dataset. The experimental results show that
our method is not only applicable to specific problems, but also has good scalability on
other problems. In the future, we look forward to applying Swin transformers to other
industrial applications.
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