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Abstract: A Roots pump often exhibits the typical characteristics of high gas pressure in the exhaust
port, low pressure at a basic volume and large airflow pulsation at the outlet as a result of gas reflux.
In light of this, this study employed Pumplinx software for the numerical calculation of the entire
flow field of a two-bladed Roots pump. The effects of the rectangular and curved reflux groove
structures on the internal flow field of a Roots pump, especially on the outlet pressure pulsation
and flow rate, were unveiled separately. The rectangular reflux groove controlled the angle and
thickness, while the curved reflux groove regulated the coordinates of the key points on the Bezier
curve. It is worth recognizing that different reflux groove structures were not noticeable in enhancing
the inlet measurement flow pattern; reduce the exhaust pressure pulsation, flow pulsation and
exhaust section vortex. Interestingly, the rectangular return groove far outweighed the curved groove
when optimizing the pressure and flow pulsation when registering the higher flow loss compared
to the curved return groove. The merits and demerits of the Q criterion and omega criterion in
characterizing the vortex structure of the flow field in the Roots pump were compared by Tecplot
software. The omega criterion looked more robust, clear and continuous in revealing the strong and
weak vortices in the Roots pump. The outcome of this research work could provide a reference for
the study of Roots pump airflow pulsation, vortex analysis and casing structure design optimization.

Keywords: roots pump; reflux groove; pressure pulsation; vortex; Ω criterion

1. Introduction

The Roots pump is a double-rotor volumetric pump with a simple structure, good
power balance, high volumetric efficiency, large vacuum and forced transport. Due to the
fact of its distinct features, it is widely used in electric power, smelting, petroleum, and
chemical and other engineering perspectives that require a large pumping speed.

A roots pump is a positive displacement pump, and it is a related to piston pump, slide
pump, screw pump, etc. The research on other positive displacement pumps shows that it
also has certain reference significance in the research, analysis and optimization of Roots
pumps. Kovacevic et al. [1] studied the interaction system of CFD simulations. Borisova
et al. [2] studied the effect of a screw pump rotor on its pressure inertial force. Radovan [3]
and others scholars performed experimental works combined with the mathematical
modeling in the optimization analysis of the axial piston pump to conduct optimization
analyses. Todić [4] and others carried out mathematical modeling on water hydraulic axial
piston pump fluid dynamic processes using instruction pump parameter optimizations.
Petrovic [5] considered the effect of the size and shape of the opening on the valve plate
on the pressure loss. Roots pumps operate at a faster speed, that exacerbates the reflux
phenomenon due to the high pressure differences at the inlet and exit. Due to the fact of this
phenomenon, the outlet pressure pulsation and flow pulsation increase, which culminates
in vibration and noise, hence affecting the performance of the pump. For this reason, several
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authors have recently expressed interest on research on Roots pump. Notable amongst
them are Kris [6], Yang [7] and Voss [8] et al., who studied theoretical calculations and an
analytical model for Roots pump. Sun and Singh [9,10] ascertained the correctness of a
simulation by comparing the transient analysis particle image velocimetry (PIV) method
with the calculation. Deng and Wu [11,12] explored the influence of multistage roots on
flow characteristics. It was observed that researches on reducing the pressure pulsation
were mainly centered on three aspects specifically: rotor, cooling reflux and widening the
gap. Li et al. [13] analyzed the influence of the profile pressure angle on the flow field
and concluded that the pressure pulsation attained its peak at an angle of 40◦. Hsieh [14]
and Wang [15] introduced the elliptic arc profile as a parametric elliptic axial ratio in their
studies. It was revealed that when the parameter was 0.6, the performance became optimal.
It is worth noticing that the profile that the optimization proffers has a great impact on the
efficiency, thus suggesting that the optimization effect’s influence on the pressure pulsation
is not as ideal. To effectively enhance the pressure pulsation with a straight blade rotor, the
rotor structure could be utilized to convert it from a straight to a torsional blade rotor [16,17]
or perhaps to augment the number of blades [18]. Meanwhile, the torsional blade rotor
possesses the quality of higher stability and reduced pressure pulsation; however, to some
extent, the efficiency might be lost. Similar to this, the three-bladed rotor stabilizes the
pressure more swiftly and has a smaller exhaust flow pulsation amplitude than a two-
bladed rotor. Vizgalov [19] introduced an injector structure that could accurately reduce the
pressure pulsation and temperature. Theoretically, it belongs to a cooling reflux structure,
but due to the fact of its body size and the necessity for more accurate settings, it was
only suitable and recommended for usage on a few specific occasions. Sun et al. [20,21]
carried out simulation calculations on a commonly used Roots pump with a cooling reflux
structure and concluded that the reflux structure had quite obvious optimization effect on
the outlet pressure pulsation. They revealed that this technique could restrain the exhaust
pulsation by approximately 50%, while the efficiency could be reduced to a certain degree
in the pump. Li et al. [22,23] investigated the effect of the widening gap structure on
the pressure pulsation and radial excitation force, with the goal of reducing the pressure
pulsation and simplifying it’s structure. To ascertain the veracity of these structures, they
conducted an in-depth comparison of the simulations between the cooling reflux structure
and the widening gap structure [24].

How to reduce the exhaust pressure pulsation and flow pulsation was analyzed and
studied, primarily in the direction of the countercurrent cooling and the widening gap.
Countercurrent cooling does not, however, only reduce the exhaust pulsation, it increases
the vortex volume and curtails the noise reduction effect. The widening gap structure is
a kind of internal reflux groove structure and, hitherto, researchers have verified that it
can vastly reduce the flow pulsation and the noise of the exhaust flow measurement. In
addition, it is restricted to a two-dimensional simulation analysis, which is considered only
for the influence of the widening gap angle on the internal flow field. Unfortunately, there
has been relatively little research works available on the length, thickness, shape, etc. of
the internal reflux groove in general. The existing research on Roots pump vortexes lack a
thorough investigation. In this paper, Pumplinx V4.6.0 software was employed to simulate
and analyze a two-leaf Roots pump model. The influence of the thickness, angle and shape
factors of the inner reflux groove structure on the exhaust pressure pulsation and exhaust
flow pulsation of a Roots pump was compared. Furthermore, the effects of the Bézier curve
control point parameters on the performance of the Roots pump were investigated. In order
to provide theoretical basis for stable operation of Roots pump, different vortex analysis
methods are used to extract and analyze the vortex structure of flow field using Tecplot
2021 R1 software. Finally, the merits and demerits of Q criterion and omega criterion in
characterizing vortex structures and the selection of proper parameters are compared.
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2. Governing Equations of Gas Flow

The gas in a Roots pump can be regarded as a compressible ideal gas, and the Reynolds-
averaged Navier–Stokes equations of compressible air can be written in the form of a
Cartesian tensor using a summation convention. The governing equations are [25]:

Continuity equation:
∂ρ

∂t
+

(
∇ · ρ

→
V
)
= 0 (1)

Momentum equation:

ρ

∂
→
V

∂t
+

(
∇ ·

→
V
)→

V
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In the equation, ρ—the static pressure;
→
τ —the stress tensor; ρ

→
g —gravity;

→
f —Surface

force.
The RNG K-ε turbulence model with high accuracy was selected for the unsteady

flow calculation. This is similar to the standard K-εmodel; however, it was optimized and
improved to augment the exactness of the high-speed flow and vortex flow, rendering the
calculation results more accurate and reliable. Its tensor form is [26]:
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In the equation, C1ε and C2ε are empirical constants; k is turbulent pulsating kinetic
energy; ε is the turbulent dissipation rate; αk and αε are the reciprocals of the effective tur-
bulent Prandtl number of the turbulent kinetic energy k and dissipation rate ε, respectively.

3. Flow Field Calculation of the Roots Pump
3.1. Fluid Domain Modeling and Meshing

The model employed in this paper is a two-blade Roots pump. The three-dimensional
model of the Roots pump is shown in Figure 1. The outer diameter of the rotor is 344.44 mm,
the length is 919 mm, the center distance of the rotor is 230 mm, and the speed is 2400 r/min.
The length of the outlet channel is 710 mm and the width of the outlet channel is 161 mm.
Because of the symmetrical distribution at the inlet and outlet of the model, the size of the
inlet channel is the same as that of the outlet channel. The Roots pump rotor calculation
and analysis software, which employs the use of MATLAB APP R2019a, generates the rotor
profile and allows for the use of the profile selection module, parameter input module,
data calculation module, drawing module, drawing calculation button, and output button.
Meanwhile, Figure 2 depicts the running interface of the software. Based on the parameteric
equations of the different rotor profiles and filling in the main parameter information, the
software could draw the rotor profile, meshing clearance, and meshing point distribution
during operation. This could serve as a reference for the optimization of the Roots rotor
and allow for the analysis of the existing profile to carry out reverse engineering. The rotor
point file could be output by the output button, which is convenient for fast modeling in 3D
software. The profile types included cycloid, arc, involute and common combined profile.
The number of the profile blades included two blades and three blades. Due to the fact
that the performance of a cycloid rotor under a large flow is better than an arc type [26],
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a two-blade cycloid rotor was therefore applied in this paper. The profile equation of the
rotor is: {

xn = Rm
2(Z+1){(2Z− 1) cos θ − cos[(2Z− 1)θ]} − δ

2 cos[(Z− 1)θ]

yn = Rm
2(Z+1){(2Z− 1) sin θ − sin[(2Z− 1)θ]}+ δ

2 sin[(Z− 1)θ]
(5)

In the equation, 0 ≤ θ ≤ π/4;{
xn = Rm

2(Z+1){(2Z + 1) cos θ + cos[(2Z + 1)θ]}+ δ
2 cos[(Z + 1)θ]

yn = Rm
2(Z+1){(2Z + 1) sin θ + sin[(2Z + 1)θ]}+ δ

2 sin[(Z + 1)θ]
(6)

In the equation, π/4 ≤ θ ≤ π/2.
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Figure 1. Three-dimensional model of the Roots pump: (a) overall model; (b) model of the housing. Figure 1. Three-dimensional model of the Roots pump: (a) overall model; (b) model of the housing.

Figure 3 shows a simplified model of the original fluid domain and the fluid domain
structure of the added reflux groove structure (the reflux groove structure was located in the
exhaust gas measurement). Figure 4 reveals the structure of the reflux groove, comprising
of arc-shaped reflux groove and the rectangular reflux groove, where L is the length of the
rectangular reflux groove, b is the thickness of the rectangular reflux groove and ϕ is the
angle of the rectangular reflux groove. The shape of the curved reflux groove is controlled
by Bezier curve containing 5 control points, and thickness of 5 mm. The control points 1, 3
and 5 are denoted as fixed points. Meanwhile, the coordinates of the points are as follows:
point 1 (−a, 0), point 3 (0, b), point 5 (a, 0), point 2 (−c1 × a, c2 × b), point 4 (c1 × a, c2 × b),
and lastly points 2 and 4 are selected as moving points, where a is set at 276 and b is set
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at 240. In this study, the inner reflux groove was 0.6 times the length of the rotor, and by
varying the thickness B, the angle of the rectangular reflux groove and the control point
coefficients c1 and c2 of the curved reflux groove, the various reflux grooves’ effects on the
internal flow characteristics of the Roots pumps were investigated. Meanwhile, Table 1
displays the optimization parameters of the rectangular reflux groove, while Table 2 shows
the optimization parameters of the curved reflux groove.
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Figure 4. Reflux groove construction.

Table 1. The parameters of the rectangular reflux groove model.

Model Angle (◦) Thickness (mm)

Model 1 30 5
Model 2 30 7.5
Model 3 30 10
Model 4 45 5
Model 5 45 7.5
Model 6 45 10
Model 7 60 5
Model 8 60 7.5
Model 9 60 10

Table 2. The parameters of the arc-shaped reflux groove model.

Model Coefficient c1 Coefficient c2

Model 10 0.3 1/6
Model 11 0.3 1/3
Model 12 0.3 1/2
Model 13 0.45 1/6
Model 14 0.45 1/3
Model 15 0.45 1/2
Model 16 0.6 1/6
Model 17 0.6 1/3
Model 18 0.6 1/2

Common analysis software for the internal flow of a Roots pump encompasses
CFX [10,27], Fluent [28–30] and Pumplinx [11,15]. However, owing to the marginal gap
between the Roots pump rotors, the gap between the rotor and the casing is small, making
the internal turbulent flow complex. Numerical simulation necessitates the use of dynamic
grid technology. Traditional dynamic grid analysis requires a large number of grids, which
makes it prone to error. The Pumplinx software includes an automated Cartesian grid
generator that facilitates the generation of high-quality grids that CFD solvers can efficiently
solve. The software includes a variety of pump and valve simulation templates for rapid
simulation. Therefore, in this paper, the external gear pump template of the Pumplinx
software was applied to effectively generate dynamic mesh for the rotor area, and the
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model mesh was as depicted in Figure 5. Through the simulation analysis of the models
with different numbers of outer grids, when the number of grids increased from 780,000 to
1.02 million, the import flow changed by 0.2%. Hence, the analysis was carried out with
780,000 grids. During this time, the number of cells in the rotational direction was 360, the
number of cells in the radial direction was 15, and the number of cells in the axial direction
was 40.
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3.2. The Setting of the CFD

The external gear pump template in Pumplinx was used.The added modules were
Gear, Flow, Heat and Streamline, in which the Flow module was added with Turbulence
module. The pressure inlet and outlet conditions were used in the calculation, and the inlet
and outlet pressures remained constant. The outlet pressure was the standard atmospheric
pressure, which remained unchanged. Different working conditions were simulated by
changing the inlet pressure, while the simulated speed was set to 2400 rad/min. The
active rotor rotated counterclockwise, and the driven rotor rotated clockwise to realize
the upward and downward discharge of the gas. The wall condition of the two rotors
was maintained as the “rotating wall”, and the other wall condition was the “wall”. In
the turbulence model, all wall conditions were defined as standard smooth walls. The
fluid medium employed in this study was air, and the ideal gas equation of the state was
used. The dynamic viscosity was 1.853× 10−5 Pa·s, the thermal conductivity was 0.7 and
the heat capacity was 1005 J/(kg·k). Based on Pumplinx dynamic grid technology and
the RNG k-ε model, the SIMPLEC algorithm was applied to solve the Reynolds-averaged
Navier–Stokes equations. Meanwhile, the second-order upwind scheme was selected as
the discrete scheme. A three-dimensional unsteady simulation analysis of the Roots pump
was carried out.

The total duration of the numerical calculation was the time required for f rotations
of the rotor, while the number of steps for each tooth of the rotor was 60. (That is, the
rotation of each step was 3◦, and the iteration of each step was 200 steps.) To verify
the accuracy of the number of steps, 1◦, 3◦ and 5◦ were compared. Noticeably, when
the time step was 1◦, the waveform became more delicate; nevertheless, it changed the
shape marginally compared to 3◦. Meanwhile, all of the models were analyzed with a
step of 3◦, and afterwards, these models were compared with regard to their advantages
and disadvantages. When each time step was 5◦, there existed only 18 points in a cycle,
which was an excessively large range, making it challenging to analyze the flow field from
different angles. In order to conserve time and computer memory, the findings were saved
every 120 steps for the first three weeks. The results were then steadily used for analysis
in the fourth week, with just one step being saved. The monitoring points at the inlet and
outlet positions, prior to the calculation, are shown in Figure 6.
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3.3. Comparison between the Experimental and Simulation Results

This work reduced the complexity of the original model to some extent to enable
the simulation and analysis. It mainly simplified the structure of the inlet, outlet and the
junction part of the inlet and outlet with the rotor and, finally, compared the calculation
results before and after the simplification. Figure 7 shows a comparative analysis of the
instantaneous exhaust flow between the simplified model and the original model at the
outlet. It is noticeable from Figure 7 that the instantaneous flow at the outlet was basically
equal, and the unevenness error approached 0. Therefore, the simplified model was used
as the original model for the analysis. In order to ensure the stability of the analysis data,
the data of the fourth week were chosen as the analysis data. The rotor rotation had four
complete pulsation cycles, and the two-blade rotor sucked and exhausted four times per
rotation. It was observed that the simulation results were comparable with the actual
law. Meanwhile, when the gas was discharged outward, the instantaneous flow at the
exhaust side became positive. In addition, when the gas was returned inward as a result of
the pressure difference, the instantaneous flow at the exhaust side became negative. The
negative value was related to the speed, pressure difference and other factors [31]. The
average value was positive. Two measures, flow unevenness (δ) and pressure pulsation
coefficient (σ), are defined to reflect the degree of the flow and pressure pulsation more
directly. The specific formulas are as follows [32]:

δ =
2∆Q
Qm

(7)

σ =
Pmax + Pmin

Poutlet
(8)

where ∆Q—flow pulsation amplitude; Qm—is the theoretical average flow.
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Figure 7. The original model simplified the outlet flow before and after.

Figure 8 presents a comparison of the simulation and test results under different
pressure ratios. The outlet pressure was controlled at 101,325 Pa. By varying the outlet
pressure, the working conditions under which the pressure ratio was 1.2, 1.4, 1.6, 1.8 and 2.0
and the vacuum degree was 30% (pressure ratio: 1.4475) were simulated. Because the end
surface leakage was not taken into consideration in the simulation, the volumetric efficiency
was relatively large. The maximum deviation of the volumetric efficiency attained was
1.73%, while the minimum deviation was 0.32%. Therefore, this provides justification that
the simulation results had reference significance. The theoretical flow calculation formula
was as follows [32]:

Qth =
π

120
λ · D2 · L · n = 3.424 m3/s (9)

where n—Speed, r/min; λ—Impeller area utilization coefficient; L—the length of the rotor,
m; D—rotor outer diameter, m.
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4. Analysis of the External Characteristics

Hitherto studies on Roots pump usually operates under the condition of a 30% vacuum
degree (pressure ratio: 1.4475). In light of this, the subsequent optimization analysis was
carried out under this working condition. Table 3 shows the simplified import and export
data of the original model under this working condition. The volume-efficiency of the
optimized model 5 and the original model under different pressure ratios are analyzed.
The findings are shown in Figure 9, with the maximum reduction of 1.17%. Therefore, the
influence of the reflux groove flow could be ignored.

Table 3. Data of the original model.

Parameter Value

Unevenness of inlet flow −0.33396
Unevenness of outlet flow 3.390946

Inlet pressure pulsation coefficient 0.027563
Outlet pressure pulsation coefficient 0.184533

Average outlet flow (kg/s) 2.561141
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Figure 9. The volumetric efficiency of the optimization and the original with different pressure ratios.

4.1. Influence of the Reflux Groove Structure on the Inlet Flow Measurement

Figure 10 shows the change curves of the inlet flow inhomogeneity and inlet pressure
pulsation coefficient before and after optimization. Glaringly, the flow inhomogeneity and
pressure pulsation coefficient rose to a certain extent due to the reflux groove structure, as
revealed in Figure 10. The maximum increase of the flow pulsation at the inlet and pressure
pulsation at the inlet of the rectangular reflux groove were 4.47% and 4.37%, respectively.
The maximum increase proportions of the flow pulsation and pressure pulsation at the inlet
of the arc-type reflux groove were 4.70% and 3.33%, respectively. It is worth observing that
the proportions increase were all within 5%, justifying that the influence was not obvious.
Therefore, the effect of the inner reflux groove structure on the exhaust side was considered.
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Figure 10. Influence of the reflux groove structure on the inlet side: (a) change in the inhomogeneity
of the inlet flow; (b) change in the inlet pressure pulsation coefficient.

4.2. Influence of the Reflux Groove Structure on the Exhaust Flow Measurement

Table 4 displays the data of the different models, including the maximum outlet flow
Qoutlet−max, the minimum outlet flow Qoutlet−min and the unevenness of the outlet flow
δoutlet. Figure 11 depicts the exhaust flow pulsation in one cycle. In order to show the
change in the exhaust volume before and after the optimization more clearly, only the
instantaneous exhaust volume of the original model and the three optimization models
were compared and displayed. It is apparent from Table 4 and Figure 11 that the internal
reflux groove structure could effectively reduce the exhaust flow pulsation and make the
pump operate more efficiently.
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Table 4. Date of the outlet exhaust.

Model Qoutlet−max
(m3/s)

Qoutlet−min
(m3/s) δoutlet Model Qoutlet−max

(m3/s)
Qoutlet−min

(m3/s) δoutlet

Model 1 6.04 −1.55 2.97 Model 10 5.65 −1.13 3.00
Model 2 5.60 −1.10 2.98 Model 11 5.60 −1.07 2.95
Model 3 5.66 −0.62 2.49 Model 12 5.58 −1.05 2.93
Model 4 5.28 −0.74 2.65 Model 13 5.45 −0.89 2.78
Model 5 5.09 −0.33 2.28 Model 14 5.46 −0.89 2.78
Model 6 5.26 −0.11 2.09 Model 15 5.44 −0.87 2.76
Model 7 5.18 −0.72 2.65 Model 16 5.30 −0.80 2.71
Model 8 4.65 0.45 1.96 Model 17 5.30 −0.79 2.70
Model 9 4.60 0.40 1.68 Model 18 5.23 −0.67 2.60
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Figure 11. Outlet flow fluctuation.

Figure 12a presents the flow inhomogeneity and average flow variation at the outlet
of the nine groups of the arc-shaped reflux groove optimization model. Also, Figure 12b
shows the flow inhomogeneity and average flow variation at the outlet of the nine groups
of the rectangular reflux groove optimization model. The solid line denotes the decreasing
proportion of the unevenness of the outlet flow, while the dashed line represents the
decreasing proportion of the average outlet flow.
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Figure 12. Variation of the outlet flow unevenness and average flow: (a) curved reflux groove; (b)
rectangular reflux groove.

It can be noticed from Figure 12a that with regards to the reflux groove’s curve
constructed by the Bezier curve, when the starting point, middle point and end point
were determined with the increase in coefficient c1 and coefficient c2, the decrease in the
proportion of the flow inhomogeneity was higher. However, with the increase in c2, when
c1 was less than 0.45, the change in c1 had little influence on the inhomogeneity, and the
increase in the optimization effect was weak with the increase in c2. In addition, when c1
was higher than 0.45 and c2 was higher than one-third, the change in coefficient c2 had a
dominant influence on the pressure pulsation of the Roots pump.
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It can be seen from Figure 12b that for the rectangular reflux groove, the decreased
ratio of the outlet flow’s unevenness gradually increased with the increase in the reflux
groove’s thickness and angle. It is noted, however, from Figure 12b that for the rectangular
reflux groove, the decreased ratio of the outlet flow’s unevenness gradually increased with
the increase in the reflux groove’s thickness and angle. Nevertheless, with the increase
in the clearance, the leakage also increased, and the average of the outlet flow gradually
decreased. Especially, when the angle increased from 45◦ to 60◦, the flow rate decreased
significantly. Taking a thickness of 10 mm as an example, compared with 45◦, the flow rate
of 60◦ decreased by 17.7% and 346.7%.

Because the thickness of the curved reflux groove was 5 mm, compared with the
optimization results of the 5 mm curved reflux groove, the unevenness of the flow at the
outlet of the rectangular reflux groove was reduced by approximately 25% at 5 mm. This
was slightly higher than that of the curved reflux groove, but the flow loss was higher than
that of the curved reflux groove.

5. Analysis of the Internal Characteristics
5.1. Vortex Distribution in the Roots Pump

The vortex is a typical flow state that occurs during the operation of rotating machinery.
The evolution and development of the vortex will degrade the mechanical energy utilization
and increase the machinery’s energy consumption. In a Roots pump, the vortex caused by
the reflux at the outlet will also generate vortex noise. In this paper, the Q criterion and
omega criterion were used to extensively analyze the flow field data of the Roots pump.
The Q criterion is premised on the decomposition of the velocity gradient tensor, including
the symmetric tensor A of the velocity gradient and the antisymmetric tensor B of the
velocity gradient. Meanwhile, the calculation equation is as follows [33]:

A = 1
2
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Q =
1
2

(
‖B‖2

F − ‖A‖2
F

)
(12)

where ‖B‖2
F and ‖A‖2

F denote the squared norms of the matrices B and A, respectively. The
positive value of Q represents the region dominated by the vorticity in the flow field, while
the negative value represents the region dominated by strain rate or viscous stress. The
larger the value of Q, the higher the fluid rotation rate, and the more likely the vortex exists.

The choice of threshold affects whether the entire vortex structure can be captured
when the Q criterion is employed to identify vortices. A weak vortex structure can be seen
when the threshold decreases [34]. Figure 13 shows the variation of the identified vortex
area with the threshold. It can be seen from Figure 13 that when the threshold was 0.0001,
the vortex structure was the most complete, and when the threshold was approximately
300 and 5000, the captured vortex would be greatly reduced. Figure 14 shows the vortex
structure of the Roots pump at 0◦ under different thresholds. It can be seen from Figure 14
that the larger the corresponding threshold, the less the vortex structure can be captured. To
obtain a clearer perspective of vortex structure in the qualitative analysis, a higher threshold
is used. For analysis and comparison in this research, 2000 was used as the threshold.
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Figure 15 presents the vortex structure inside the Roots pump at an angle and threshold
of 60◦ and 2000, respectively. It is glaring from Figure 15 that after the optimization of
the model, the number of large vortices at the outlet side shrunk, but the number of small
vortices at the inner reflux groove increased. Overall, the vortex situation significantly
improved.
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In the equation, ε is a small positive number to prevent a large calculation error when 
the denominator is extremely small. For different models, the value of ε is not the same. 
Dong et al. [36] proposed 𝜀 ൌ 0.002𝑄௠௔௫ as an approximation, and Zhang [34] took 𝜀 ൌ10ି଻ in the analysis of the side channel pump. In this paper, different values of ε were 
used for comparison, when 𝜀 ൌ 0.002𝑄௠௔௫, the maximum value of Ω could only approach 
0.8, and the obtained vortex loss was serious, the reference value was not suitable for the 
analysis of the Roots pump vortex structure; in the final attempt to select a ε value of 0.001, 
the obtained vortex structure was complete and clear. 

The omega criteria was less susceptible to the choice of a threshold value than the Q 
criterion, and generally 0.52 to 0.65 is selected [35]. Figure 16 depicts the vortex identifi-
cation results when the Roots pump angle was 0° and Ω was 0.51, 0.53, 0.56 and 0.60. 
Noticeably, the vortex structure of the rotor edge and the exhaust port, which primarily 
produces vortex, was mostly unchanged, producing a clearer and more visible vortex 
structure. 

Figure 15. Internal vortex structure of the Roots pump before and after optimization: (a) original
model; (b) Model 14; (c) Model 5.

The choice of threshold selection largely influenced the Q criterion vortex structure.
Hence, a poor threshold selection will largely affect the vortex analysis of the flow field.

For example, when Q = 10,000, most of the vortices at the outlet to be analyzed cannot
be obtained. Therefore, to curb this problem, Liu [35] et al. proposed an omega vortex
identification method, with the calculation formula as follows [35]:

Ω =
‖B‖2

F

‖B‖2
F + ‖A‖2

F + ε
(13)

In the equation, ε is a small positive number to prevent a large calculation error when
the denominator is extremely small. For different models, the value of ε is not the same.
Dong et al. [36] proposed ε = 0.002Qmax as an approximation, and Zhang [34] took ε = 10−7

in the analysis of the side channel pump. In this paper, different values of ε were used for
comparison, when ε = 0.002Qmax, the maximum value of Ω could only approach 0.8, and
the obtained vortex loss was serious, the reference value was not suitable for the analysis
of the Roots pump vortex structure; in the final attempt to select a ε value of 0.001, the
obtained vortex structure was complete and clear.

The omega criteria was less susceptible to the choice of a threshold value than the Q cri-
terion, and generally 0.52 to 0.65 is selected [35]. Figure 16 depicts the vortex identification
results when the Roots pump angle was 0◦ and Ω was 0.51, 0.53, 0.56 and 0.60. Noticeably,
the vortex structure of the rotor edge and the exhaust port, which primarily produces
vortex, was mostly unchanged, producing a clearer and more visible vortex structure.
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Figure 16. The Ω criterion vortex identification results of the Roots pump flow field at different
thresholds: (a) Ω = 0.51; (b) Ω = 0.53; (c) Ω = 0.56; (d) Ω = 0.6.

In contrast to the three-dimensional vortex structure, the two-dimensional planar
vortex cloud map could easily demonstrate the benefits of the omega criterion in generating
both strong and weak vortex. Figure 17 shows a comparison of the vortex distribution
cloud images at the middle section of the Q criterion and omega criterion when the Roots
pump angle was 0◦. The vortex cloud map obtained from the upper limit of the Q criterion
ranged from 5000 to 100,000. Meanwhile, the vortex stratification with different intensities
was not obvious. Therefore, the omega criterion was adopted to analyze the operation of
the Roots pump at different angles.

Figure 18 displays the vortex distribution cloud diagram at the middle section when
the omega criterion was used at different rotation angles before and after optimization. It
was keenly observed that prior to the optimization the vortices were mostly concentrated
in the rotor and outlet areas, with less vortices in the inlet area, and more concentrated
vortices emerging at the outlet area. However, after optimization, the vortex changes were
not obvious at the inlet and rotor edges, and the strong eddy area was greatly reduced at
the outlet. Therefore, the vortex at the exhaust port was clearly optimized by various reflux
groove shapes.
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5.2. The Pressure Distribution in the Roots Pump

Figure 19 presents a pressure cloud diagram when the rotor turned at 0◦, 60◦, 120◦

and 180◦ at the fourth week before and after optimization of the two-blade Roots pump.
Noticeably, when the fundamental volume was connected to the exhaust port, the presence
of the reflux groove structure subtly produced high-pressure gas in the exhaust section
input to the fundamental volume through the reflux groove structure. The essence of this
phenomenon was to stabilize the pressure on both sides when the fundamental volume
was disconnected to the exhaust port. Nonetheless, when the angle was set to 0◦ (180◦), the
volume pressure of the right element became higher in the structure with the reflux groove
as juxtaposed to the structure without the reflux groove. The process of connecting the
volume of the left element with the exhaust section at 60–120◦ was also compared with the
pressure cloud diagram of the flow field before and after optimization at 60◦. At this time,
the volume of the element was just in contact with the inner reflux groove, and the pressure
in the volume of the element was basically analogous before and after the optimization,
justifying that the thickness of the inner reflux groove was appropriate and would not
cause large leakages. When the position was 120◦, the volume of the left element contacts
with the exhaust section, and the volume pressure of the left element of the optimized
model became higher. When the fundamental volume on both sides was connected to the
exhaust section, the presence of the inner reflux groove structure increased the pressure
in the fundamental volume, which reduced the high-pressure gas reflux intensity at the
exhaust port at the moment of connection. This effectively reduced the pressure pulsation
at the exhaust side and restrained the vortex disturbance and aerodynamic noise. Finally,
the pressure differential of the rectangular reflux groove at 0◦ and 180◦ was comparatively
less and had a superior effect of minimizing thepressure pulsation when compared to the
arc-shaped reflux groove in the pressure cloud diagram.
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6. Conclusions

The simulation of
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Roots pump was carried out using Pumplinx V4.6.0 software. This
paper mainly investigated the influence of different reflux groove structures on the flow
field of a Roots pump, especially the influence on the pressure pulsation of the exhaust port.
The pros and cons of the Q criterion and omega criterion in obtaining the vortex structure
of the Roots pump were compared, and the following findings are summarized below:

(1) The reflux groove structure only had a better optimization effect on the outlet flow
pulsation of the Roots pump; nevertheless, it had a subtle effect on the inlet flow field,
which was within the range of 5%. The effect of the rectangular reflux groove on
reducing the pulsation amplitude was comparatively better compared to the curved
reflux groove. In addition, the flow loss of the rectangular reflux groove was quite
substantial than that of the curved reflux groove.

(2) With regards to the rectangular groove, the outlet flow pulsation unevenness and
the exhaust pressure pulsation coefficient gradually decreased with the increase in
the thickness and angle of the reflux groove, meanwhile increasing the flow rate.
Taking the flow rate and outlet pulsation into consideration, the effect was more
pronounced when the reflux groove angle was approximately 45◦ and the thickness
was approximately 7.5 mm. Without considering the other optimized structures, the
size of the reflux groove could avert the negative flow when the angle was 45–60◦ and
the thickness was 7.5–10 mm.

(3) When the Bezier curve of the arc-type reflux groove was constructed to determine the
starting point, middle point and the end point, it was realized that the increase in the
coefficient c1 and coefficient c2, the decreased proportion of the flow inhomogeneity
was higher. However, the change in c1 had minimal impact on the inhomogeneity
when c1 was less than 0.45, and the optimization effect increased only modestly
as c2 increased. When both c1 and c2 were more than 0.45, the change in c2 had a
disproportionately large impact on the Roots pump’s pressure pulsation.

(4) Although the Q criterion could be analyzed quickly, it had a poor capacity to capture
both strong and weak vortices, and this capability was significantly influenced by the
threshold. The Q criterion is therefore proposed for qualitative analysis. In comparison
to the Q criterion, the vortex structure captured by the omega criterion was more
distinct, continuous and less sensitive to the threshold. In the Roots pump, when ε
was 0.001, the effect of obtaining the vortex was better, and the vortex production
site of the Roots pump was mainly located in the rotor edge and outlet sections. At
the same time, the reflux groove structure had a good effect on reducing the vortex
structures at the outlet section.
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