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Abstract: Drones have been developed for more than two decades. They have become central to the
functions of various civil aviation and military services. Commercial usage of drones continues to
grow steadily. As the drones have been used widely in different areas, this raises a safety concern,
i.e., all the multi-rotors have an increased risk of motor or sensor faults. This paper considers a
fault-tolerant control (FTC) problem against the inertial motion unit (IMU) sensor fault. First, a neural
network estimator is built for the purpose of fault diagnosis. Second, a fault detection scheme is
designed by comparing the IMU reading with the estimator, where it uses a logic rule to monitor
the IMU state. Third, if the IMU sensor is in faulty state, the Euler angle estimator with neural
network built is used to recover the IMU information which is fed into the controller designed.
Finally, simulation studies are given to illustrate the effectiveness of the proposed FTC.

Keywords: fault diagnosis; neural networks; sensor fault; unmanned aerial vehicle

1. Introduction

Unmanned aerial vehicles (UAVs) have been used in many fields, such as photograph-
ing, monitoring traffic congestion, survellience, and multi-cameras coverage etc [1–3].
The missions for UAVs are becoming more and more challenging. An important problem
in a UAV control system is to monitor the sensor or rotor changes when they are working.
Much work has been done in this area. It has been shown that the use of an analytic
model can allow early detection by measuring available variables. For example, in [4], the
authors develop an incipient fault diagnosis method for a class of induction motors against
stator/rotor winding faults; in [5], the authors present a incipient fault detection filter based
on the generalised correntropy criterion; in [6], the authors propose a diagnosis method for
broken rotor by using the analytic equations related to current signals; in [7], the authors
present a fault detection method for a class of linear discrete time-varying systems. On the
other hand, for UAV applications, it is important not only to detect sensor faults such as
GPS, and inertial measurement units (IMU), but also to accommodate the faults (this is
the so-called fault tolerant control). This topic has attracted increasing attention [8,9]. In
this paper, IMU sensor fault is considered. The problem can be defined as a fault tolerant
control that can accommodate IMU sensor faults, maintaining an acceptable performance.
In [10], the authors presented a data-driven sensor fault diagnosis method. In [11], the
authors also use data-driven method for detecting UAV faults. In [12], the authors propose
a classifier for detecting UAV sensor fault. In [13], the authors use artificial intelligence (AI)
method to learn the samples and estimate roll rate after the gyroscope has a fault. In [14],
the authors develop an Euler angle estimator for improving the result of [13].

In this paper, we propose a fault-tolerant control to handle IMU sensor fault for
quadrotor. The main idea is to build an angular rate estimator for the IMU sensor fault
detection, which is also used for the IMU recovery. It should be noticed that the IMU
fault affects not only angular rate but also the Euler angles. Our paper considers both
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when designing the estimator. First, the observability analysis is used for selecting the
variables for building the angular rate estimator from the sixteen states of the quadrotor
studied. Second, the proposed estimator is composed of a long short-term memory (LSTM)
neural network trained from the collected data. Third, an Euler angle estimator is designed
for improving the angular rate estimation. Finally, a fault diagnosis and IMU recovery
mechanism is proposed. The proposed method extends the result of [14] to more fields:
(1) the variable selection of the proposed neural network observer is analyzed; (2) the
convergence analysis of the proposed scheme is discussed; (3) the modified estimator of
Euler angle is given. The contributions of the present paper include:

• Fault-tolerant control method for dealing with IMU sensor faults completely
• Neural network learning for estimating Euler angles and recovering IMU sensor

information

2. Model of Quadrotor and IMU Sensor Fault

We use a quadrotor model as shown in [14] for our research and conducting simulation.
The drone is assumed to be a rigid body, as shown in Figure 1.

Figure 1. Quadrotor in cross (x) configuration.

For sensor faults, we consider roll or pitch faults caused by gyroscope sensor.

3. Framework of FTC for Sensor Detection and Recovery

In this section, we present a FTC framework against sensor faults. As shown in
Figure 2, it is composed of a normal controller and a sensor processing unit. The former
one works as a normal controller of quadrotor, and the latter one can monitor the system
and recover the sensor information if the fault is diagnosed. The whole system is a fault-
tolerant controller which can detect the IMU sensor faults and continue to maintain the
drone to work safely by recovering the sensor by using the sensor estimator. It is observed
that the two parts are separated and we can design each part independently.

We assume that the other sensors work well, for example compass, barometer
and accelerometer.
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Figure 2. Architecture Overview of FTC.

4. AI-Based FTC against IMU Sensor Fault

As shown in the quadrotor model, the attitude state includes Euler angles and angular
rates. These attitude states can be measured by IMU which contains accelerometer and
gyroscope. Sometimes a gyroscope may have faults. This implies that the angular rates
may not be available for the rate closed control loop. In this case, the drone may be out
of control, causing the drone crash, even if the accelerometer is still available. Of course,
in general, the compass is also available (this implies that ψ is known). Thus, we intend
to estimate the angular rates by observing other states such as the position (x, y, z), Euler
angles as well as the control inputs. The designed estimator will be used for IMU fault
detection as well as IMU recovery.

We will first discuss the analysis of the observability in order to design the estimator.

4.1. Selecting Variables

In a quadrotor model, we have the sixteen states including the positions, velocities,
Euler angles, angular rates and four PWM signals. How many variables used for designing
estimator angular rates is challenging. One way is to analyze nonlinear model. In [14],
we have given the detailed model which is nonlinear. We can use nonlinear observability
analysis to decide which variables will be used for the estimator design. The following
theorem will be used in our analysis.

Theorem 1. [15] Let

ẋ = f (x, u) (1)

y = h(x) (2)

where x is the manifold of dimension n. Let G be the set of all finite linear combinations formed
with the Lie derivatives of h1, h2, ...hp with respect to f and constant u. Let dG denote the set of the
gradients of the elements of G. The system is weakly (locally) observable if the system satisfies the
controllability rank condition at x0, i.e., dG contains n linearly independent vectors.

We focus on the attitude equations and have the following model.
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φ̇ = p + qsin(φ)tan(θ) + rcos(φ)tan(θ) (3)

θ̇ = qcos(φ)− rsin(φ) (4)

ψ̇ = qsin(φ)sec(θ) + rcos(φ)sec(θ) (5)

ṗ =
Mp

Ix
− qr

(Iz − Iy)

Ix
(6)

q̇ =
Mq

Iy
− pr

(Ix − Iz)

Iy
(7)

ṙ =
Mr

Iz
− pq

(Iy − Ix)

Iz
. (8)

The angular rate controls Mp, Mq, and Mr can be further allocated by the follow-
ing equations

Mp = kT ly(−ω2
1 −ω2

2 + ω2
3 + ω2

4) (9)

Mq = kT lx(ω2
1 −ω2

2 −ω2
3 + ω2

4) (10)

Mr = kD(ω
2
1 −ω2

2 + ω2
3 −ω2

4) (11)

Tz = kT(ω
2
1 + ω2

2 + ω2
3 + ω2

4) (12)

where ωi represents the spinning speed of the ith motor, lx and ly are the arm length along
x and y axes, respectively, and kT and kD are the thrust and torque constants, respectively.

Furthermore, we assume that the Euler angles have small changes. This implies that
p ≈ φ̇, q ≈ θ̇, r ≈ ψ̇. Rearranging the attitude equations, we have

ẋ = f (x) + g(x, u)

=



x2 + x4sin(x1)tan(x3) + x6cos(x1)tan(x3)

−x4x6
(Iz−Iy)

Ix
x4cos(x1)− x6sin(x1);
−x2x6

(Ix−Iz)
Iy

x4sin(x1)sec(x3) + x6cos(x1)sec(x3);

−x2x4
(Iy−Ix)

Iz


+



0
Mp
Ix
0

Mq
Iy

0
Mr
Iz


(13)

y =

 x1
x3
x5

 = h(x) (14)

where

x = [φ, φ̇, θ, θ̇, ψ, ψ̇]T . (15)

The linear combinations with the Lie derivatives are given by

G =



x1
x3
x5
x2
x4
x6

−x4x6
(Iz−Iy)

Ix
+

Mp0
Ix

−x2x6
(Ix−Iz)

Iy
+

Mq0
Iy

−x2x4
(Iy−Ix)

Iz
+ Mr0

Iz


(16)
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where Ωr0 is a constant, and Mp0, Mq0, Mr0 are the control input constants.
The set of the gradients of G is given by

dG =



1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

0 0 0 −x6
(Iz−Iy)

Ix
0 −x4

(Iz−Iy)
Ix

0 −x6
(Ix−Iz)

Iy
0 0 0 −x2

(Ix−Iz)
Iy

0 −x4
(Iy−Ix)

Iz
0 x2

(Iy−Ix)
Iz

0 0


(17)

Check the rank of dG. It is observed that rank(dG)=6. This means that the system is
locally observable at the hover state and is verified near hovering state. This property will
be lost away from that point.

Furthermore, we consider a full description of quadrotor as

ẍ = 1
m (R(φ, θ, ψ)T̄ −mḡ)

φ̇ = p + qsin(φ)tan(θ) + rcos(φ)tan(θ)
θ̇ = qcos(φ)− rsin(φ)
ψ̇ = qsin(φ)sec(θ) + rcos(φ)sec(θ)

ṗ =
Mp
Ix
− qr (Iz−Iy)

Ix

q̇ =
Mq
Iy
− pr (Ix−Iz)

Iy

ṙ = Mr
Iz
− pq (Iy−Ix)

Iz


(18)

where x represents the position [x, y, z] , and T̄ = [0; 0; T]T , ḡ = [0; 0; g]T .
If considering the measured variables (velocities) to be [ẋ, ẏ, ż], we check if the system

is observable. Still, we check the rank of dG and it is not 9, but 7. Thus, it is concluded that
in this situation, the system is not observable.

Based on the analysis above, we select ten variables related to the estimator design as
shown in Table 1.

Table 1. Variables used for estimator design.

Symbol Parameter Unit

φ Roll rad

θ Pitch rad

ψ Yaw rad

p Roll rate rad/s

q Pitch rate rad/s

r Yaw rate rad/s

ω1 Motor 1’s speed rad/s

ω2 Motor 2’s speed rad/s

ω3 Motor 3’s speed rad/s

ω4 Motor 4’s speed rad/s

4.2. Neural Network Angular Rate Estimator

For handling gyroscope fault, we will consider to use AI techniques to build a nonlinear
mapping function between input and output by learning sample data sets. One of existing
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AI methods is the LSTM neural network which is powerful in dealing with time series
problems. The advantage of LSTM is that the current unit can get the information of all the
units before this unit, but the disadvantage is that the information of the units after this
unit cannot be obtained. For our application, it is to model sequential data and the LSTM is
suitable for our modelling.

It should be noticed that the flight is a time dynamical behavior. Thus, the built LSTM
model can be used for estimating or predicting the next state. The variables used in the
network are attitude information–roll, pitch and yaw and their corresponding three angular
rates. To consider the control action, each PWM signal (it is represented by propeller speed)
is also considered. As shown by the observability computation, these ten variables will be
used for the LSTM modelling.

It denotes

x = [x1, x2, ...x10]
T

= [φ, θ, ψ, p, q, r, ω2
1, ω2

2, ω2
3, ω2

4 ]
T . (19)

For building the LSTM network, the following input and output vectors are used

Xt =


x1,t−D+1, x1,t−D+2 ... x1,t
x2,t−D+1, x2,t−D+2 ... x2,t

... ... ... ...
x10,t−D+1, x10,t−D+2, ... x10,t

, (20)

Yt =


x1,t+1
x2,t+1

...
x6,t+1

 (21)

where Xt represents the input of the LSTM model at time t, Yt including Euler angles and
angular rates, represents the LSTM output which is used for observing roll,pitch and yaw
rates, and D represents the data size. In practices, D will be determined by observing the
training performance.

As shown in Figure 3, in our application, the LSTM network consists of three parts:
input,LSTM and output layers.

Figure 3. LSTM network used.
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By the training, the angular rates can be estimated by using the LSTM network as
show below

Xk+1 = FNN(Xk, Xk−1, ..., Xk−d1, uk, ..., uk−d1)

where Xk = [φ(k), θ(k), ψ(k), p(k), q(k), r(k)]T ,uk = [ω2
1(k), ω2

2(k), ω2
3(k), ω2

4(k)]
T , and FNN

represents the LSTM network. The input and output of the model are shown in Figure 4.

Figure 4. Modelling diagram of LSTM network.

Before the LSTM training, the data should be normalized for the purpose of the
calculation stability. After that, the trained prediction model is used to denormalize the
prediction result, so as to compare and analyze the error with the actual value. After the
prediction sample data are constructed, the LSTM model can be established for training
and prediction according to the following steps.

Step 1. Select a flight or simulation data, and construct training samples and predic-
tion samples.

Step 2. Data preprocessing, normalize training samples and prediction samples.
Step 3. Input the training samples into the LSTM, change the number of hidden layer

nodes of the LSTM, and determine the network structure by minimizing the error between
the output result and the real sample.

Step 4. Input the prediction sample into the trained network, get the trajectory predic-
tion result, and perform denormalization.

Step 5. compare with other algorithms and analyze the prediction effect. Therefore, the
flow chart of the LSTM-based trajectory prediction model algorithm is shown in Figure 5.

The loss function uses the root mean square error (RMSE) function which is given by

ERMSE =

√√√√ 1
N

N

∑
i=1

(yLSTM prediction − yi)2 (22)

where yLSTM prediction is the LSTM output, and yi is the output of the sample.
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It is observed that the angular rate information can be obtained by

X̂k+1 = FNN(X̂k, X̂k−1, ..., X̂k−d1, uk, ..., uk−d1) + L(Zk − Ẑk) (23)

Ẑk = CX̂k (24)

where

X̂k = [φ̂(k), θ̂(k), ψ̂(k), p̂(k), q̂(k), r̂(k)]T ,

uk = [ω2
1(k), ω2

2(k), ω2
3(k), ω2

4(k)]
T ,

C =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


Zk = [φ(k), θ(k), ψ(k)]T ,

Ẑk = [φ̂(k), θ̂(k), ψ̂(k)]T .

For analysis purpose, we re-arrange the equation as

Xk+1 = Xk + FNN(Xk−1, Xk−2, ..., Xk−d1, uk−1, ..., uk−d1)− Xk

= Xk + F̄NN(Xk−1, Xk−2, ..., Xk−d1, uk−1, ..., uk−d1)

where F̄NN = FNN − Xk. It should be noticed that this can also be written as

X̂k+1 = X̂k + F̄NN(X̂k−1, X̂k−2, ..., X̂k−d1, uk−1, ..., uk−d1)

+L(Zk − Ẑk)

Zk = CXk

Ẑk = CX̂k

Thus, we have the error equation

X̃k+1 = X̃k + ε(·)− LCX̃k

= (I − LC)X̃k + ε(·)
= ĀX̃k + ε(·) (25)

Z̃k = CX̃k (26)

where X̃k = Xk − X̂k, Ā = I − LC,

ε(·) = F̄NN(Xk−1, ..., Xk−d1, ..., uk−d1)

−F̄NN(X̂k−1, ..., X̂k−d1, uk−1, ..., uk−d1), (27)

and Z̃k = Zk − Ẑk. A reasonable assumption is that the output of the actual system is
bounded. It should be noticed that the neural network output F̄ is bounded. Thus, ε is
also bounded.

It can be seen that the proposed LSTM network is a nonlinear observer-like estimator
by using the observed vector Zk. Such a design can enhance the performance of the
estimator. The convergence analysis of the proposed estimator can be given below.

Define a Lyapunov function

V = X̃T
k PX̃k (28)
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Thus, we have

∆V = X̃T
k+1PX̃k+1 − X̃T

k PX̃k

= X̃T
k (ĀT PĀ− P)X̃k+1 + 2X̃T

k ĀT Pε + εT Pε

≤ −λmin(Q)||X̃k||2 +
λmin

2
(Q)||X̃k||2

+
2

λmin(Q)
||ĀT P||2 ‖ ε ‖2 + ‖ P ‖‖ ε ‖2

= −λmin
2

(Q)||X̃k||2 + ε̄ (29)

where we have used the inequality 2ab ≤ σa2 + 1
σ b2, ε̄ = max{ 2

λmin(Q)
||ĀT P||2 ‖ ε ‖2 + ‖

P ‖‖ ε ‖2}, Q can be obtained from the following equation

ĀT PĀ− P + Q = 0. (30)

with λmin(Q) denoted as the minimum eigenvalue of Q. It should be noticed that ∆V < 0

if ||X̄k|| >
√

ε̄
λmin

2 (Q)
. This implies that it is uniformly ultimate bounded according to [16].

It can be observed from the above that the LSTM neural network is a key part in the
proposed estimator. It can be trained by learning the samples collected from the drone.

Figure 5. Algorithm flow chart.

4.3. Euler Angle Estimator

In a quadrotor, the gyroscope sensor not only affects the angular rate measurement,
but also Euler angle reading. This implies that when the gyroscope is in faulty state, it also
affects the Euler angle reading. Since we assume that the compass works well, the yaw
angle is still fine. We will estimate the Euler angles (φ, θ) when the gyroscope fault occurs.
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For Euler angle estimation, we use the following translational motion equations.

m
Tz

Em =
m
Tz

[

 ẍ
ÿ
z̈

−
 0

0
g

]

=

 cos(φ)sin(θ)cos(ψ) + sin(φ)sin(ψ)
cos(φ)sin(θ)sin(ψ)− sin(φ)cos(ψ)

cos(φ)cos(θ)


where Em = aI − g, aI = [ẍ, ÿ, z̈]T and g = [0, 0, g]T .

Let

b =

 cos(φ)sin(θ)cos(ψ) + sin(φ)sin(ψ)
cos(φ)sin(θ)sin(ψ)− sin(φ)cos(ψ)

cos(φ)cos(θ)

. (31)

Taking normalization of two sides, we have

m
Tz Em

|| m
Tz Em||

=
b
||b|| . (32)

It should be noticed that

||b|| =
√

c2φs2θc2ψ + s2φs2ψ + c2φs2θs2ψ + s2φc2ψ + c2φc2θ

=
√

c2s2θ + s2 + c2φc2θ

=
√

c2s + s2 = 1

where c2φ = cos2(φ), s2θ = sin2(θ), c2ψ = cos2(ψ), s2φ = sin2(φ), s2ψ = sin2(ψ), c2θ =
cos2(θ). Thus,we hve

m
Tz Em

|| m
Tz Em||

→ En =
Em

||Em||
(33)

En =

 cos(φ)sin(θ)cos(ψ) + sin(φ)sin(ψ)
cos(φ)sin(θ)sin(ψ)− sin(φ)cos(ψ)

cos(φ)cos(θ)

. (34)

From our calculation, it can be seen that the vector En = [en1, en2, en3]
T does not

have the mass m and thrust Tz. This simplifies our computation. Thus, we have the
following equations

φ̂ = sin−1(−en1sin(ψ) + en2cos(ψ)) (35)

θ̂ = sin−1( en1cos(ψ)+en2sin(ψ)√
e2

n3+(en1cos(ψ)+en2sin(ψ))2
). (36)

The estimated Euler angle should be calibrated by using the measured acceleration
readings φaccel , θaccel . The working principle of using acceleration to estimate Euler angle is
as follows.

We can obtain the acceleration information ab = [abx, aby, abz]
T and the gravity vector

g. During the hovering state, by ignoring the effect of yaw, we have

ab =

 cosφ 0 −sinθ
sinθsinφ cosφ cosθsinφ
sinθcosφ −sinφ cosθcosφ

g (37)
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Thus, we have

φaccel = arctan(
aby

abz
) (38)

θaccel = arcsin(
abx
g
) (39)

The following calibration is used for estimating angles

φ̂est = αφ̂ + (1− α)φaccel (40)

θ̂est = αθ̂ + (1− α)θaccel (41)

where α is a factor which is a filter-like one. This factor is determined by training. The esti-
mation of Euler angle is obtained.

4.4. Imu Fault Detection and Recovery Decision Mechanism

From the obtained LSTM neural network, we can obtain the estimated LSTM network
error, that is ỹ = y− ŷ, where y is the sample data, and ŷ is the network output. Based on
the statistic information, we can obtain a threshold given by

Threshold = mean value + const ∗ deviation (42)

where mean value represents the mean of the statistic information, deviation represents the
standard deviation of the statistic information,and const is determined by users. The fault
diagnosis mechanism regarding IMU sensor is given by

• If the LSTM neural network estimated ||ỹ|| > Threshold, IMU has faults in angu-
lar rate;

• otherwise, IMU has no fault occurrence. In this situation, the actual angular rate
measurement is used.

Once the angular rate fault in IMU sensor is detected, the recovery should be made
by using the proposed estimator. Figure 6 shows the angular rate estimator. The entire
fault-tolerant control against sensor fault with diagnosis and recovery scheme is shown in
Figure 7, where the fault diagnosis determines the switching between the sensor reading
and recovery.

Figure 6. Sensor estimator.
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Figure 7. FTC against sensor fault with fault diagnosis.

5. Simulation Experiments

The proposed AI-based FTC can be verified by our simulation. During the simulation,
the IMU sensor is assumed to have a fault at a certain time and the recovery is triggered to
maintain the drone control. The simulation studies below use the computer ThinkPad X390
which has the 8th Gen Intel Core processors. MATLAB and its Deep Learning Toolbox are
used in the simulation. The toolbox is a framework developed by the MathWorks used in
the development of deep neural networks, including the LSTM network.

The rate gyro fault is considered. The proposed LSTM estimator can predict Euler
angle and angular rate by using the previous states. The structure of the proposed LSTM
network is composed of 10 inputs, 288 hidden units, and 6 outputs. For the LSTM learning,
we use the random number to generate the four rotor control signals which are fed into
the quadrotor model of [14] to receive the six output states (three Euler angles and three
angular rates). In total, 59,960 sample data are collected. These data are divided into two
groups: training set and test set. The training set has 50,981 samples, while the test set
has 8979 samples. For time series Xk, Xk−1, ...Xk−D, the delayed term D is 20. During
the LSTM learning, it takes 158 epochs (about 592 min) satisfying the RMSE performance
requirement. The convergence process is shown in Figure 8. For the training set, Figure 9
shows the estimates of Euler angles, while Figure 10 shows the estimates of angular rates
(we zoom in the figure, having a better insight into the data). For the test set, Figure 11
shows the estimates of Euler angle, while Figure 12 shows the estimates of angular rate (we
zoom in the figure, having a better insight into the data). It can be seen that the estimated
values from the LSTM network closely match the sample data. This implies that the LSTM
network can be used for estimating angular rate. Furthermore, the nonlinear estimator is
designed by using (23) and (24), where the matrix L is selected as

L =



0.9 0 0
0 0.9 0
0 0 0.9

0.9 0 0
0 0.9 0
0 0 0.9

 (43)
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Figure 8. Convergence of the LSTM training.

Figure 9. Estimated Euler angles of the LSTM training set: red line represents LSTM output; blue line
represents sample output.
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Figure 10. Estimated same angular rates of the LSTM training set: red line represents LSTM output;
blue line represents sample output.

Figure 11. Estimated Euler angles of the LSTM test set: red line represents LSTM output; blue line
represents sample output.



Machines 2022, 10, 1088 15 of 24

Figure 12. Estimated angular rates of the LSTM test set: red line represents LSTM output; blue line
represents sample output.

As our discussion before, when having IMU fault, Euler angle estimator is necessary
for calibration. The calibration rules are shown in Equations (40) and (41), where the factor
α = 0.95. The estimated Euler angles are input to the LSTM network.

In the simulation, it is assumed that a fault at IMU (roll rate) occurs at time = 25 s,
where the bias fault is introduced (the bias offset is 1.2 rad/s). The random noise with
amplitude = 0.00025 rad/s is added in the simulation. Figure 13 shows the position (xyz)
result, while Figure 14 shows the 2D (xy) result. It should be noticed that the tracking
performance along x, y, z axes is good, even the IMU sensor fault occurrence. For the fault
diagnosis, we use Figure 15 to demonstrate it, where the threshold is chosen as 1.01 rad/s.
It can be seen that the sensor fault is detected immediately once it happens. Thus, both
Euler angle and LSTM estimators are used. The roll rate signal is recovered by using the
proposed scheme. For Euler angle estimation, the result is shown in Figure 16. It can be
seen that the difference between both the estimated and actual angles is small. For the roll
and pitch rate estimation, the result is shown in Figure 17. From the figure, it is found
that the outputs of the LSTM network are close to the actual ones without fault occurrence.
We also tested the control without considering gyroscope fault estimator when the bias
fault happens. In this case, we do not use any gyroscope sensor handling. Figure 18 shows
the control performance of the position along x,y,z axes, while Figure 19 shows the 2D
position profile along x,y axes. It is observed that the control performance is poor without
considering gyroscope sensor handling. From the figures, it is shown that the position
along y-axis is out of control. This also proves that a FTC technology has to incorporate
sensor fault processing unit such that the system can continue to be operated safely.
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Figure 13. Bias fault: the position control performance (red line–desired, blue line–actual).

Figure 14. Bias fault: the 2D position control performance.
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Figure 15. Bias fault: fault diagnosis result (red line–threshold, blue line–residual).

Figure 16. Bias fault: Euler angle estimation (red line–estimated angle, blue line–actual angle measurement).
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Figure 17. Bias fault: angular rate estimation (red line–estimated signal,blue line–faulty signal, green
line–actual signal without fault occurrence).

Figure 18. Bias fault: control result without sensor handling: the position profile (red line–desired,
blue line–actual).
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Figure 19. Bias fault: control result without sensor handling: the 2D position profile.

We consider another fault type—multiplication fault. In the simulation, it is assumed
that the fault at IMU (roll rate) occurs at time = 25 s, where the roll rate multiplies by 2.8.
For this kind of fault, Figure 20 shows the position (xyz) result, while Figure 21 shows
the 2D (xy) result. It should be noticed that the tracking performance along x, y, z axes
is still good, even with the fault occurrence. For the fault diagnosis, we use Figure 22 to
demonstrate it, where the threshold is chosen as 1.01 rad/s. It can be seen that the sensor
fault is detected immediately once it happens. Thus, both Euler angle and LSTM estimators
are used. The roll rate signal is recovered by using the proposed scheme. For Euler angle
estimation, the result is shown in Figure 23. It can be seen that the difference between both
the estimated and actual angles is small. For the roll and pitch rate estimation, the result
is shown in Figure 24. From the figure, it can be seen that the estimated angular rates are
close to the actual ones. We also tested the control without considering the sensor estimator.
In this case, we do not use any gyroscope sensor handling. Unfortunately, the attitude
control is out of control at time = 27.28 s. Figure 25 shows the control result of Euler angle,
where the maximum amplitudes of the roll, pitch and yaw angles are 79.25 rad (4557.3 deg),
33.02 rad (1891.9 deg) and 6.0074× 104 rad (3.442 ×106 deg) , respectively. Figure 26 shows
the control result of angular rate. Obviously, a breakdown is observed from the angular
rate control.
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Figure 20. Multiplication fault : the position control performance (red line–desired, blue line–actual).

Figure 21. Multiplication fault: the 2D position control performance.
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Figure 22. Multiplication fault: fault detection result (red line–threshold, blue line–residual).

Figure 23. Multiplication fault: Euler angle estimation (red line–estimated angle, blue line–actual
angle measurement).
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Figure 24. Multiplication fault: angular rate estimation (red line–estimated signal, blue line–faulty
signal, green line–actual signal without fault occurrence).

Figure 25. Multiplication fault: control result of Euler angle without sensor handling.
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Figure 26. Multiplication fault: control result of angular rate without sensor handling.

The proposed LSTM estimator of the angular rate requires to learn sequence data:
Euler angle, angular rate and all rotor control signals. As discussed in the previous section,
the LSTM is a complex unit which uses a model based on short-term memory processes
to build longer-term memory. Two study cases have shown that Euler angle and angular
rate can be estimated correctly. Even if during the drone control process, the IMU fault
occurs, the designed scheme still can diagnose the fault and recover the sensor information.
The drawback of the proposed scheme is that during the whole recovery process, the other
sensors such as accelerometer and compass must be healthy.

Comments: In [13], the authors use the LSTM for the IMU fault diagnosis and recovery.
However, the authors assume that Euler angles are available. This is not realistic because
the Euler angle measurement is a fusion of gyroscope with accelerometer. This implies that
Euler angle measurement is not reliable in this situation. The proposed method solves this
issue by adding the Euler angle estimator.

6. Discussion and Conclusions

The development of sensor fault diagnosis and recovery is an important topic in the
drone control. AI-based design in estimating the angular rate of IMU is still a challenge.
The difficulty point is that the estimator also involves Euler angle compensation due to the
IMU fault.

This paper has presented a FTC design method when having a IMU sensor fault. It is
assumed that the sensor fault may have a bias or multiplication fault. The proposed LSTM
neural network is adopted to perform the supervised learning. Since the IMU fault also
affects Euler angle measurement, we have proposed to use the translational equations for
calibrating Euler angle. The detailed simulation has be given to show the effectiveness of
the proposed method. For future work, we will implement the proposed algorithm in a real
quadrotor. Furthermore, we will develop an anti GPS spoofing scheme for UAV control.
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