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Abstract: In this study, a novel digital compound compensation method is proposed to compensate
for the hysteresis nonlinearity and the drift disturbance of a piezoelectric nanopositioning system with
a large range. The overall hysteresis behaviors can be divided into the static amplitude-dependent
behavior and the dynamic rate-dependent behavior, where the static hysteresis is compensated for
by a novel discrete feedforward controller, while the dynamic hysteresis and the drift disturbance
are compensated for by a novel discrete composite feedback controller composed of a drift observer-
based state feedback controller and a repetitive learning controller. Compared with traditional
control strategies, the proposed compound control strategy, including feedforward and feedback
components, can eliminate system errors more effectively when tracking large range signals with
obvious hysteresis. Moreover, the proposed online drift observer is superior over a traditional offline
drift compensator both in response speed and compensation accuracy. Sufficient simulation tests
and convincing tracking experiments, with large range periodic signals up to 90 µm, are carried out.
And comparisons with the two classical control algorithms are performed. The tracking results show
that the mean absolute error of the proposed control method is minor compared with the other two
algorithms, which validates that the proposed strategy can efficiently compensate for the hysteresis
nonlinearity and the drift disturbance.

Keywords: nanopositioning; hysteresis; repetitive learning; Lyapunov-based method; disturbance
observer

1. Introduction

Piezoelectric driven nanopositioning systems play important roles in ultra precise
instruments such as atomic force microscopes [1–3], scanning tunneling microscopes, and
ultra-precision machine tools, etc. Piezoelectric actuators (PEAs) have become the first
choice in the nanopositoning field for its outstanding advantages of ultra high resolution,
fast response, high bandwidth, large driven force, and high stiffness [4]. The resolution
of piezoelectric actuators can reach a few tenths of nanometer accuracy or be even more
precise. When tracking nanometer level step signals, their response time can be as small
as several microseconds, or even smaller. The bandwidth of some piezoelectric actuators
can reach several thousands hertz. Although piezoelectric actuators possess a number
of advantages, as listed above, they have to deal with some typical drawbacks as well,
mainly including hysteresis, creep, drift, and so on, wherein hysteresis and drift are the two
apparent features, especially when tracking large range and time varying signals, which
need to be carefully tackled to achieve satisfactory performance.

Hysteresis, behaving as significant nonlinearity between input voltage and output
displacements, is the main reason of positioning error. In fact, the hysteresis effect of the
PEA turns even worse as the travel range becomes larger. Specifically, the hysteresis can be
divided into two categories: static hysteresis and dynamic hysteresis. Static hysteresis is
caused by the inertial physics of piezoelectric actuators themselves and is mainly related to
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the travel range, while dynamic hysteresis is stimulated by the input signal and mainly
relates with the frequency of the input signal, which can be depicted by the frequency
response or the state space representation. To deal with the hysteresis nonlinearity, many
researches have been conducted and various effective strategies with meaningful results
have been reported [5–7]. Some effective mathematical models have been constructed to
precisely describe the static hysteresis for the error compensation. For example, Duhem
model is developed for the hysteresis description, which is effective to describe the static
hysteresis behaviors of piezoelectric actuators [8]. The backlash-like model and Bouc–
Wen model are developed to describe and compensate for the static hysteresis, which
simplify the mathematical representation and decrease the depiction error [9–11]. Besides,
operator-based models, such as the Preisach model and the Prandtl–Ishlinskii model, are
also proposed to implement compensation for hysteresis [12]. Recently, neural network
(NN), T-S fuzzy system and deep learning technology have been adopted in the PEA
hysteresis modeling through offline data training, and some effective results have been
reported [13–15]. These modeling and compensation methods mentioned above, though
effective in some cases, cannot usually achieve satisfactory performance for a large range
piezoelectric actuator. That is, through decades of efforts, although much improvement
has been achieved for hysteresis modeling and compensation [16], it is still a fairly open
problem facing many challenges.

Drift is another factor decreasing the positioning accuracy and leading to measure-
ment errors of the PEA in practical applications [17]. The thermal drift drives piezoelectric
actuators to gradually deviate from the given set-point. Different strategies are proposed to
model the drift, based on which, various compensation methods are designed to reduce
the errors caused by the drift disturbance. It is noted that most of the reported methods
mainly turn to offline modeling and compensation to deal with the thermal drift, whose
performance cannot be guaranteed when the environment changes sharply or the initial
drift offset point alters for some reasons. Therefore, effective drift estimation and elimina-
tion via a real-time method is a very promising and challenging direction [18], which needs
to be further investigated.

Since the aforementioned drawbacks notably affect the PEA tracking performance,
designing effective real-time feedforward/feedback controllers to decrease tracking errors
becomes one of the most important issues for a PEA positioning system. As the nonlin-
ear control technology and the intelligent control technology have developed rapidly in
recent years [19–21], many advanced control technologies are implemented to compensate
for the nonlinearity and disturbances in piezoelectric actuators [22–25]. Until now, many
researchers have engaged in the PEA nanopositioning control with a number of different
strategies and significant results have recently been reported. For example, a feedforward
component is combined with some feedback control strategies to achieve precise tracking
of piezoelectric actuators in Ref. [26]. In periodical signal tracking, repetitive control is
considered as an efficient closed-loop compensation solution, and in Ref. [27], a novel
repetitive control algorithm is designed to deal with the hysteresis nonlinearity of piezo-
electric actuators. Besides, repetitive learning control has been validated to be able to obtain
satisfactory results in dealing with periodical disturbance, and in Ref. [28], an adaptive
repetitive learning control method is designed to handle the periodical disturbances on the
piezo-driven cantilever. Observer-based control methods are also effective compensation
solutions by combining the online observers with nonlinear control algorithms. In Ref. [29],
a novel high-performance control scheme with a hysteresis compensator and a disturbance
observer is designed for the high-precision motion control of a nanopositioning stage driven
by a piezoelectric actuator, and the experimental results demonstrate the effectiveness of
the proposed method. Recently, the sliding mode control method [30] has been widely
explored to stabilize the piezoelectric nanopositioning systems, and a variety of advanced
sliding mode control strategies have been designed to the meet different requirements
for various practical systems. In Ref. [31], a perturbation estimation-based sliding mode
control method combined with an inverse Bouc-Wen model based hysteresis compen-
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sator is designed, and the asymptotical stability of the closed-loop system is obtained via
Lyapunov-based analysis. The combined control strategy can compensate for the hysteresis
nonlinearity and estimate the disturbance online, thus improving the robustness and the
tracking accuracy of the system. The traditional sliding mode control method is limited in
practical system application for the chattering phenomenon. Due to this reason, a number
of continuous sliding mode control strategies are proposed to handle the chattering [32].
In recent years, the neural network (NN) based control algorithm has become a popular
tool to deal with various uncertainties in the PEA component, which takes advantages of
real-time learning for all kinds of uncertainties, yet the loop calculation becomes a burden
when the knots of network increase to a certain extent [33].

In this paper, a novel discrete compound control strategy is proposed to deal with the
hysteresis nonlinearity and the drift disturbance of a large range piezoelectric nanoposition-
ing system. The static amplitude-dependent hysteresis and the dynamic rate-dependent
hysteresis are compensated for by a feedforward controller and a feedback controller,
respectively. Specifically, an online discrete observer is designed to provide real-time correc-
tion for the disturbance, and a Lyapunov-based repetitive learning controller is employed
to eliminate periodic unmodeled dynamics during the tracking process. The contributions
of this paper are summarized as follows:

• A novel discrete compound control strategy, composed of a feedforward controller and
a composite feedback controller, is proposed to guarantee the tracking performance of
the large range PEA nanopositioning system;

• An efficient online discrete nonlinear observer is designed to implement a real-time
estimation for the disturbance;

• A novel observer-based repetitive learning feedback control algorithm is designed, and
the discrete Lyapunov-based stability analysis is provided to prove that the tracking
error is globally uniformly ultimately bounded.

The rest of this paper is organized as follows. In Section 2, a system identification
algorithm, including dynamic model parameters identification and static hysteresis cali-
bration, is proposed. In Section 3, the system control issue is explicitly formulated and the
discrete control strategy is proposed. In Section 4, the stability of the discrete closed-loop
system is provided via the Lyapunov-based thoery. In Section 5, simulation tests are per-
formed to illustrate the effectiveness of the proposed strategy. In Section 6, simulations
and experiments are carried out, and comparative experiments with two other traditional
control methods are performed to test the tracking accuracy of the proposed control method.
Finally, the conclusions are presented in Section 7.

2. System Modeling and Parameter Identification

This section introduces the dynamic model of the piezoelectric actuators and the
identification of the system parameters and the static hysteresis, which contains three
subsections. The first one is dynamic system modeling, where the dynamic model of
piezoelectric actuators is built. The second subsection is static hysteresis calibration, where
an effective numerical calibration method is proposed to approximate the discrete nonlinear
function of static hysteresis. The third subsection is modeling accuracy validation, where
the accuracy of the proposed model is tested.

2.1. Dynamic Modeling

The spring-mass-damping dynamic model of the piezoelectric actuators is presented
as follows:

a0 ẍ(t) + a1 ẋ(t) + a2x(t) = bu(t) + h(x, t) + d(t), (1)

where t denotes the time variable, and a0, a1, a2 denote the mass, the damping coefficient,
and the stiffness in the spring-mass-damping model, respectively, b is the input coefficient,
and h(x, t), d(t) represent the static hysteresis and the system disturbance.
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In the piezoelectric actuators period signal tracking issues, the disturbance is mainly
made up of two parts, which can be expressed as follows:

d(t) = d1(t)− f1(xd, t), (2)

where xd is the desired periodical signal, d1(t) is a slowly varying signal, and f1(xd, t) is
the periodical signal.

Considering the hardware physical state, a reasonable assumption is presented as follows:

Assumption 1. All disturbances and their derivatives, such as d(t), d1(t), f1(xd, t), ḋ(t), ḋ1(t),
and ḟ1(xd, t) in the piezoelectric actuators, are bounded.

To facilitate the following analysis, without loss of generality, let a0 = 1 and the
Equation (1) be expressed as follows:

ẍ(t) + a1 ẋ(t) + a2x(t) = bu(t) + h(x, t) + d(t). (3)

To calibrate the coefficients a1, a2, b, the 0.1 V swept-sine signals are put into the
piezoelectric actuators, and the frequency responses of the inputs and outputs are obtained
via the experiment. The transfer function of the piezoelectric actuators is obtained via the
System Identification Toolbox of Matlab, which is presented as follows:

G(s) =
5.53× 105

s2 + 1.65× 103s + 5.19× 105 , (4)

where s is the Laplace operator, the input signal is the voltage on the piezoelectric actuators
platform, and the output signal is the voltage of the capacitive displacement sensor, where
1 V stands for 10 µm. According to transfer function in (4), the dynamic parameters in (3)
are identified as a1 = 1.65× 103, a2 = 5.19× 105, b = 5.53× 105, respectively.

2.2. Static Hysteresis Calibration

Static hysteresis is caused by the inertial electromagnetic properties of the piezoelectric
actuators, which is irrelevant with the scanning frequency, yet closely relevant with the
amplitude of the input signal. The static hysteresis nonlinearity becomes severe as the
amplitude of the input signal increases. Thus, aiming at tracking for the large range periodic
signals, a novel and efficient discrete static hysteresis calibration method is proposed, fully
taking advantage of the properties of static hysteresis.

First, a low scanning frequency sinusoid signal is input into the piezoelectric actuators
platform, in which the dynamics of the piezoelectric actuators is small enough to be ignored
and the overall hysteresis is regarded as only including the static hysteresis. As shown
in Figure 1, for low frequency scanning, the system dynamics is neglectable, and the
static hysteresis loops of 0.5 rad/s (blue solid line) and 1 rad/s (red dotted line) closely
coincide with each other. As shown in Figure 2, from 10 rad/s to 50 rad/s, the hysteresis
loop expands rapidly with the increase of the scanning frequency, comparing with that
of 0.5 rad/s and 1 rad/s, where the increased part of the hysteresis loop is determined by
the dynamic characteristics. To facilitate the subsequent calculation, the hysteresis loop
of 1 rad/s is selected to calculate the static hysteresis function, whose discrete equation is
expressed as follows:

h1(x, tk) = Yout(x, tk)− |Aout/Ain|Uin(x, tk), (5)

where h1(x, tk) is the static hysteresis function in 1 rad/s, Yout(x, tk) is the output of the
PEA platform, Uin(x, tk) is the sinusoid input signal, tk is the discrete time, Ain, Aout are
amplitudes of the open-loop input and output signals respectively, and Yout(x, tk) and
Uin(x, tk) are data sequences in the discrete form, which can be obtained in the experiment.
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Figure 1. Hysteresis loops with sinusoid signal inputs of 0.5 rad/s and 1 rad/s.
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Figure 2. Hysteresis loops with five different sinusoid signal inputs of angular velocities from
0.5 rad/s to 50 rad/s.

The discrete equation of the static hysteresis function H(x, tk, ω) in ω rad/s is ex-
pressed as follows:

H(x, tk, ω) =

{
h1(x, ωtk), tk 6

N∆T
ω

H(tk − N∆T
ω ), tk >

N∆T
ω

, (6)

where ω is the integral angular velocity, N · ∆T is the signal period in 1 rad/s, ∆T is the
sampling time interval. According to (5) and (6), the periodic static hysteresis function of
any integral angular velocity can be calculated with 1 rad/s input/output signals of the
same amplitude. Selecting the sample time as 0.0001 s, the static hysteresis functions of the
input sinusoid signals with the 90 µm travel range, with four different angular velocities as
1 rad/s, 10 rad/s, 30 rad/s, 50 rad/s, are shown in Figure 3.
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Figure 3. Periodic static hysteresis functions with angular velocities of 1 rad/s, 10 rad/s, 30 rad/s,
50 rad/s from top to bottom, respectively.
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According to the static hysteresis function in (6), the discrete form h(x, tk) of the static
hysteresis term in system (3) is expressed as follows:

h(x, tk) = b
|Ain|
|Aout|

H(x, tk, ω), (7)

where b is the coefficient in (3), Ain, Aout are amplitudes of the open-loop input and output
signals, respectively. To facilitate the model validation in the following subsection, the
discrete form of the system in Ref. (3) is presented as follows:

δ2x(tk) =− a1δx(tk)− a2x(tk) + bu(tk) + h(x, tk)

+ d(tk), (8)

where the delta operator is defined as follows:

δx(tk) =
x(tk+1)− x(tk)

∆T
, (9)

with ∆T being the sampling time, and x(tk), x(tk+1) being the displacement signals in two
adjacent sampling moments.

2.3. Modeling Accuracy Validation

In this subsection, the accuracy of the piezoelectric actuators model, including both
the obtained dynamic model and the static hysteresis calibration illustrated in the previous
two subsections, is validated through experiments.

To validate the effectiveness of the piezoelectric actuators modeling method proposed
in the first two subsections, sinusoid signals with a large travel range up to 90 µm and
angular velocities of 30 rad/s and 50 rad/s, respectively, which can stimulate the hysteresis
characteristics to a relatively high level, are input into the real piezoelectric actuators
platform and the constructed mathematical model, respectively. The sampling period is set
as 0.0001 s. The obtained results are shown in Figure 4, from which it is clear that the overall
hysteresis loops (the red one is generated by the piezoelectric actuators platform and the
blue one is generated by the mathematical model), including the static part and the dynamic
part, closely coincide with each other. The results demonstrate that the mathematical model
well describes the hysteresis characteristics, even for the large range input signals with high
angular velocity. As will be illustrated subsequently, the unmodeled uncertainty and the
thermal drift disturbance can be compensated by the Lyapunov-based nonlinear feedback
control method designed in the following sections.
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Figure 4. Hysteresis loops generated by the experiment and the model (30 rad/s with the left
subfigure and 50 rad/s with the right subfigure).

Remark 1. In this paper, periodical signals are labeled by angular velocities (rad/s) instead of
frequencies (Hz), which can be conveniently converted with each other. For example, signals with
angular velocities of 10 rad/s, 30 rad/s and 50 rad/s are corresponding to frequencies of 1.59 Hz,
4.77 Hz and 7.96 Hz.
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3. Closed-Loop System Control Method Design

This section presented the system tracking problem formulation and nonlinear con-
troller design. An effective discrete disturbance observer is constructed and a discrete
nonlinear feedback control strategy, combined with the Lyapunov-based repetitive learning
control technology, is proposed to compensate for the tracking error.

3.1. Tracking Error System Formulation

The tracking error is defined as follows:

e(tk) =x(tk)− xd(tk), (10)

where e(tk) is the piezoelectric actuators system tracking error, x(tk) is the displacement
signal, and xd(tk) is the reference signal in the tracking task. With the delta operator in
(9), the first order and second order derivatives of e(tk) in the discrete form are expressed
as follows:

δe(tk) = δx(tk)− δxd(tk), (11)

δ2e(tk) = δ2x(tk)− δ2xd(tk). (12)

The constructed model of the piezoelectric actuators (3) is substituted into (12), and
the following error dynamic system is presented:

δ2e(tk) =− a1δx(tk)− a2x(tk) + bu(tk) + h(x, tk) + d(tk)

− δ2xd(tk). (13)

A first order linear filter auxiliary signal and its derivative in discrete form are defined
as follows:

r(tk) = δe(tk) + αe(tk), (14)

δr(tk) = δ2e(tk) + αδe(tk), (15)

where α is the parameter.
Then, (13) is substituted into (15), and the open loop error system of the piezoelectric

actuators is presented as follows:

δr(tk) =− a1δx(tk)− a2x(tk) + αδe(tk) + h(x, tk)

+ d(tk)− δ2xd(tk) + bu(tk). (16)

With all signals discretized in (16), the discrete compound controller is proposed in
the next subsection.

3.2. Controller Design

The discrete compound controller is proposed as follows:

u(tk) =
1
b

[
a1δx(tk) + a2x(tk)− αδx(tk) + αδxd(tk)

+ δ2xd(tk)− d̂(tk)− b
|Ain|
|Aout|

H(x, tk, ω)

+ kq f̂ (x, tk)− λr(tk)
]
, (17)
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where x(tk) is the displacement signal of the piezoelectric actuators, xd(tk) is the reference
signal in the tracking task, d̂(tk), with the updated law by the discrete nonlinear observer,
is the estimation of the drift disturbance, f̂ (x, tk), updated by the repetitive learning control
law, is the estimation of the periodical unmodeled uncertainty, H(x, tk, ω) is the static
hysteresis function calibrated in (6), b, a1, a2 are identified system parameters, and α, kq, λ
are the control gains.

As shown in Figure 5, to facilitate the analysis and illustrate the work principle more
clearly, the discrete compound control strategy is divided into three control layers. In the
first layer, the static amplitude-dependent hysteresis is compensated by the feedforward
sub-controller and the feedback controller, respectively. In the second layer, the dynamic
rate-dependent hysteresis is compensated by the system state feedback sub-controller, and
specifically, an online discrete observer is designed to provide real time correction for the
disturbance. In the third layer, the Lyapunov-based repetitive learning sub-controller is
employed to eliminate periodic unmodeled dynamics during the tracking process. As
illustrated in Figure 5, the compound controller u(tk) is expressed in a form of three
sub-controllers, as follows:

u(tk) =u1(tk) + u2(tk) + u3(tk), (18)

u1(tk) =
1
b

[
a1δx(tk) + a2x(tk)− αδx(tk) + αδxd(tk)

+ δ2xd(tk)− d̂(tk)− λr(tk)
]
, (19)

u2(tk) =−
|Ain|
|Aout|

H(x, tk, ω), (20)

u3(tk) =
kq

b
f̂ (x, tk), (21)

where u1(tk) is the observer-based state feedback controller, u2(tk) is the feedforward
controller, and u3(tk) is the repetitive learning controller.

A/D module

D/A 

module

Piezoelectric 
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Piezoelectric 

actuator (PEA)

x

Feedforward 

controller

d
x + ++

-

+e
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controller

Observer update laws

Observer based 

feedback 

controller +

The first layer

The second layerThe third layer

Figure 5. Control system diagram.

Then, inspired by Ref. [34], the discrete disturbance observer is designed as follows:

d̂(tk) =z(tk) + k1r(tk), (22)

δz(tk) =k1

[
a1δx(tk) + a2x(tk)− αδx(tk) + αδxd(tk)

+ δ2xd(tk)− b
|Ain|
|Aout|

H(x, tk, ω)− bu(tk)− d̂(tk)
]
, (23)

where d̂ is the estimation of the thermal drift disturbance, z is an auxiliary variable, and k1
is an observer gain.

Taking the time difference on both sides of (23), the following equation is obtained:

δd̂(tk) =δz(tk) + k1δr(tk), (24)
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which, by substituting (23), can be further rewritten into the following form:

δd̂(tk) =k1

[
a1δx(tk) + a2x(tk)− αδx(tk) + αδxd(tk)

+ δ2xd(tk)− b
|Ain|
|Aout|

H(x, tk, ω)− bu(tk)− d̂(tk)
]

+ k1δr(tk). (25)

Furthermore, the following discrete difference equation is obtained by substituting
the open-loop error system (16) into (25):

δd̃(tk) = −k1d̃(tk) + δd(tk). (26)

where d̃(tk) = d(tk)− d̂(tk).
According to Assumption 1, δd(tk) is bounded by a positive constant λ1:

| δd(tk) |6 λ1. (27)

Thus, utilizing (26), the following inequality is obtained:

| δd̃(tk) + k1d̃(tk) |6 λ1, (28)

whose solution can be expressed as follows:

d̃(0)e−k1tk − λ1

k1

(
1− e−k1tk

)
6 d̃(tk)

6 d̃(0)e−k1tk +
λ1

k1

(
1− e−k1tk

)
, (29)

implying that d̃(tk) is bounded.
Meanwhile, based on (26), the following expression is obtained:

d̃(tk) =d(tk) +
(

d̃(0)− d(0)
)

e−k1tk

− k1e−k1tk
k

∑
i=1

ek1ti d(ti)∆T, (30)

where ∆T is the sampling interval. According to (2), the disturbance is mainly made up of
two parts as:

d(tk) = d1(tk)− f1(xd, tk), (31)

where d1(tk) is a slowly varying signal, and f1(xd, t) is the periodical signal.
By substituting (31) into (30), the observer error can be then calculated as follows:

d̃(tk) = ∆d(tk)− f1(xd, tk), (32)

where ∆d(tk) is presented as:

∆d(tk) =d1(tk) +
(

d̃(0)− d(0)
)

e−k1tk

− k1e−k1tk
k

∑
i=1

ek1ti d(ti)∆T. (33)

According to Assumption 1 and (29), both f1(xd, tk) and d̃(tk) are bounded. Then,
from (32), it is seen that ∆d(tk) is bounded.
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The periodical error f1(xd, tk) can be estimated by the following repetitive learning
algorithm. The repetitive learning law f̂ (x, tk) is designed as follows:

f̂ (x, tk) =

−kp
tk

N∆T
r(tk), tk 6 N∆T

Satρ[ f̂ (x, tk − N∆T)]− kpr(tk), tk > N∆T
, (34)

where N∆T is the period of f1(x, tk), kp is a control gain, and Satρ(·) is the saturation
function defined as follows:

Satρ[ f (x, t)] =


ρ, f (x, t) > ρ

f (x, t), | f (x, t)| 6 ρ

−ρ, f (x, t) < −ρ

. (35)

4. Discrete Closed-Loop System Stability Analysis

The globally uniformly ultimately bounded stability of the discrete closed-loop system
is derived through the Lyapunov-based method. The main stability theorem is presented
as follows.

Theorem 1. Via the composite control algorithm in (17), (22), (23), and (34), the closed-loop system
error e(tk) is globally uniformly ultimately bounded (GUUB).

Proof. The closed-loop error system is obtained by substituting the control law (17) into
the open-loop error system (16), which is presented as follows:

δr(tk) = ∆d(tk)− f̃ (x, tk)− λr(tk), (36)

with f̃ (x, tk) being the estimation errors of f1(x, tk), explicitly defined as:

f̃ (x, tk) = f1(x, tk)− kq f̂ (x, tk). (37)

Substituting (34) into (37), the learning error is obtained as follows:

f̃ (x, tk) = f1(x, tk−N)− kqSatρ

[
f̂ (x, tk−N)

]
+kpkqr(tk). (38)

According to the closed-loop error system, the following Lyapunov function candidate
is constructed:

V(tk) =
1
2

r2(tk)

+
1

2kpkq

k−1

∑
i=k−N

{
f1(x, ti)− kqSatρ

[
f̂ (x, ti)

]}2
∆T. (39)

To facilitate the mathematic description in the next step, the following auxiliary signal
M(ti) is defined:

M(ti) = f1(x, ti)− kqSatρ

[
f̂ (x, ti)

]
, (40)

then, V(tk) can be rewritten into the following form:

V(tk) =
1
2

r2(tk) +
1

2kpkq

k−1

∑
i=k−N

M(ti)
2∆T, (41)
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The difference equation of V(tk) is obtained via the delta operator as follows:

δV(tk) =r(tk)δr(tk) +
∆T
2

[
δr(tk)

]2

+
1

(2kpkq∆T)

{
M2(tk)−M2(tk−1)

+ M2(tk−1)− ...−M2(tk−N+1)

+ M2(tk−N+1)−M2(tk−N)
}

∆T, (42)

⇒ δV(tk) =r(tk)δr(tk) +
∆T
2

[
δr(tk)

]2

+
1

(2kpkq∆T)

{
M2(tk)−M2(tk−N)

}
∆T, (43)

⇒ δV(tk) =r(tk)δr(tk) +
∆T
2

[
δr(tk)

]2

+
1

2kpkq

{{
f1(x, tk)− kqSatρ

[
f̂ (x, tk)

]}2

−
{

f 1(x, tk−N)− kqSatρ

[
f̂ (x, tk−N)

]}2}
. (44)

To facilitate the description, the following substitution is introduced:

Ω(tk) =
∆T
2

[
δr(tk)

]2
. (45)

With the above substitution, δV(tk) is presented as follows:

δV(tk) =r(tk)δr(tk)

+ Ω(tk) +
1

2kpkq

{{
f1(x, tk)− kqSatρ

[
f̂ (x, tk)

]}2

−
{

f1(x, tk−N)− kqSatρ

[
f̂ (x, tk−N)

]}2}
. (46)

Substituting (38) into (46), δV(tk) can be expressed as follows:

δV(tk) =r(tk)δr(tk)

+ Ω(tk) +
1

2kpkq

{{
f1(x, tk)− kqSatρ

[
f̂ (x, tk)

]}2

−
{

f̃ (x, tk)− kpkqr(tk)
}2}

, (47)

δV(tk) =r(tk)δr(tk)

+ Ω(tk) +
1

2kpkq

{{
f1(x, tk)− kqSatρ

[
f̂ (x, tk)

]}2

−
{

f̃ 2(x, tk)− 2kpkqr(tk) f̃ (x, tk) + k2
pk2

qr2(tk)
}}

. (48)

Then, noting the following fact [35]:{
f1(x, tk)− kqSatρ

[
f̂ (x, tk)

]}2
− f̃ 2(x, tk) 6 0, (49)
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δV(tk) is transformed as:

δV(tk) 6− λr2(tk)− r(tk) f̃ (x, tk) + r(tk)∆d(tk) + Ω(tk)

+
1

2kpkq

{
2kpkqr(tk) f̃ (x, tk)− k2

pk2
qr2(tk)

}
, (50)

⇒ δV(tk) 6−
(

λ +
kpkq − 1

2

)
r2(tk) +

∆d(tk)
2

2
+ Ω(tk). (51)

Let ε = Ω(tk) +
∆d(tk)

2

2 , then the following inequality is obtained:

δV(tk) 6 −
(

λ +
kpkq − 1

2

)
r2(tk) + ε. (52)

To facilitate the description, the following substitution is introduced:

ψ =
1

kpkq

k−1

∑
i=k−N

{
f1(x, ti)− kqSatρ

[
f̂ (x, ti)

]}2
∆T. (53)

In (53), f1(x, ti) and Satρ

[
f̂ (x, ti)

]
are bounded, thus ψ is bounded. The transformation

of (52) is expressed as follows:

δV(tk) 6−
(

λ +
kpkq − 1

2

)[
r2(tk)

+ ψ
]
+
(

λ +
kpkq − 1

2

)
ψ + ε. (54)

By substituting (39) into (54), the following transformation is obtained:

δV(tk) 6 −(2λ + kpkq − 1)V(tk) +
(

λ +
kpkq − 1

2

)
ψ + ε. (55)

With ψ and ε bounded, to facilitate the analysis, let β1 be the upper bound of
(

λ +

kpkq−1
2

)
ψ + ε and let β2 = 2λ + kpkq − 1. With properly selecting parameters, β1 > 0 and

β2 > 0 can be ensured. Then, (55) can be rewritten into the following form:

δV(tk) 6 −β2V(tk) + β1. (56)

The solution of the above differential inequality is expressed as follows:

V(tk) 6 V(0)e−β2tk +
β1

β2

(
1− e−β2tk

)
. (57)

According to (39), the following inequality can be derived:

‖ r(tk) ‖6
√

2V(0)e−β2tk +
2β1

β2

(
1− e−β2tk

)
. (58)

⇒ lim
k→∞

‖ r(tk) ‖6
√

2β1

β2
. (59)

According to the above analysis, r(tk) is globally uniformly ultimately bounded
(GUUB). Thus, according to the property of the first order linear filter, when r(tk) is a
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globally uniformly ultimately bounded (GUUB), the system tracking error e(tk) is globally
uniformly ultimately bounded (GUUB).

5. Simulation Analysis

The tracking accuracy of the control method poposed in this paper is tested under a
MATLAB/SIMULINK environment. To validate the performance of the proposed strategy,
large range periodic signal tracking simulations are carried out and the contrasts with two
traditional control methods are carried out. In these simulations, the sample period of the
control system is 0.0001 s.

The dynamic model of the piezoelectric actuators for simulation is presented as follows:

ẍ(t) + a1 ẋ(t) + a2x(t) = bu(t) + h(x, t) + d(t), (60)

where a1 = 1.65× 103, a2 = 5.19× 105, b = 5.53× 105, h(x, t) is calculated by (6) using the
off-line experiment data, the time slowly varying signal with a large initial step, namely
d(t) = 1.00× 105 + 3× 103sin(0.001t) is selected to simulate the thermal drift. In the
nominal model during the simulation, error parameter a1 = 6.50× 102 is adopted to
simulate the unmodeled uncertainty as f (x, t) in (60).

The tracking performance of the sinusoid signal in 30 rad/s with a rip length of 90 µm
is presented in Figure 6. The top subfigure presents the output displacement of the system
in contrast with the reference, which reveals that, with a large travel range and relatively
high speed, the proposed control strategy can compensate for the nonlinearity, disturbances,
and uncertainties to ensure high accuracy tracking. The middle subfigure illustrates that
the tracking error converges to a very small neighborhood of zero. The oscillating actions
in the starting transient interval are caused by the large initial step of thermal drift. The
mean absolute error (MAE) of the control method in 5 s is 0.0054 µm, which is neglectable
when compared with the trip length. The bottom subfigure is the control input, which is
smooth and effective.

To further illustrate the advantage of this strategy, comparisons with other two nonlin-
ear control technologies in tracking large range periodic signals are carried out. One is the
exact model knowledge (EMK) based feedback control, and the other is the observer-based
feedback control. The discrete EMK controller is expressed as follows:

u(tk) =
1
b

[
a1δx(tk) + a2x(tk)− αδx(tk) + αδxd(tk)

+ δδxd(tk)− b
|Ain|
|Aout|

H(x, tk, ω)− λr(tk)
]
, (61)

which can exactly compensate for the nonlinearity in the identified model, but is not able to
handle the unmodeled dynamics and disturbances. The discrete observer-based controller
is presented as follows:

u(tk) =
1
b

[
a1δx(tk) + a2x(tk)− αδx(tk) + αδxd(tk)

+ δδxd(tk)− d̂(tk)− b
|Ain|
|Aout|

H(x, tk, ω)− λr(tk)
]
, (62)

which can estimate the thermal drift disturbances in real-time but the performance is not
satisfactory in compensating for unmodeled uncertainties. The system parameters in (61)
and (62) are obtained via using the System Identification Toolbox of Matlab, which are
the same as the parameters of the dynamic model in (60). Besides, the particle swarm
optimization (PSO) method in [31] is also very suitable for the parameter identification of
Equations (61) and (62).
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Figure 6. Simulation results of the sinusoid signal tracking via the proposed control algorithm
(30 rad/s).

The performance comparisons of the three control strategies are presented in
Figures 7 and 8. As shown in Figure 7, the sinusoid signal in 10 rad/s with 90 µm range
is tracked via three controllers. The proposed control strategy overwhelms the other two
methods in tracking accuracy. The tracking error of the EMK method is the largest among
the three methods as a result of drift and unmodeled dynamics. The tracking error of the
observer-based method is close to but still not as precise as the proposed method as a result
of unmodeled dynamics, which is compensated by the repetitive learning technology in
the latter method. The tracking performance comparisons with the reference signal in
30 rad/s are shown in Figure 8, whose conclusion is similar as that of Figure 7. Moreover,
the proposed method provides much more precise tracking results than the observer-based
method in higher speed tracking. For the tracking task with the reference signal in 10 rad/s,
the mean absolute error (MAE) of the control methods in 5 s are 0.0008 µm and 0.0022 µm
by the proposed method and the observer-based method, respectively, which reveals that
the error of the observer-based method is 2.75 times of that of the proposed method. For
the tracking task with the reference signal in 30 rad/s, the mean absolute error (MAE) of
the control methods in 5 s are 0.0054 µm and 0.0174 µm by the proposed and the observer-
based method, respectively, which reveals that the error of the observer-based method is
3.22 times of that of the proposed method. Through the error analysis above, the ratio of the
tracking error with the observer-based method to that with the proposed method increases
as the tracking angular velocity rises, which further demonstrates the high performance of
the proposed method, especially when tracking relatively high speed signals.
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Figure 7. Simulation results of the three control methods (10 rad/s).
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Figure 8. Simulation results of the three control methods (30 rad/s).

6. Hardware Experiment

In this section, hardware experiments are carried out to validate the tracking per-
formance of the proposed method. The section is divided into two subsections, namely
experiment setup and experiment result analysis. The first subsection illustrates the ex-
periment environment for the real-time control system. The second subsection presents
the main experiment results, including tracking results for various angular velocities and
comparisons with different control strategies.

6.1. Experiment Setup

As presented in Figure 9, experiments in this paper are conducted on the piezoelectric
actuators platform (P-517.3CD, Physik Instrumente) installed on a self-made cross-scale
atomic force microscope. The mass of the sample platform loaded on PEA is about 300 g.
The piezoelectric actuators platform is linked with the voltage amplifier (E-505, Physik
Instrumente), and the range of the input voltages in the voltage amplifier are from −2 V
to 12 V and the range of the output voltages are from −30 V to 130 V. The capacitive
displacement sensors are embedded in the piezoelectric actuators platform with interfaces
in the E-505 voltage amplifier. The E-505 voltage amplifier is linked with the PCI-1716
data acquisition card (Advantech) embeded in the computer. The computer receives the
data from the PCI card in real-time and then processes via the nonlinear control algorithm
with the toolbox of real-time windows target in MATLAB/SIMULINK, where the discrete
control strategies are programmed and performed. The sampling period of the hardware
experiment platform is 0.0001 s.

PEA

Voltage Amplifier

PCI Interface

Figure 9. Experiment setup.
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6.2. Experiment Results Analysis

In this subsection, the tracking accuracy of the control method in this paper for
different angular velocities is tested on the experiment platform and the comparisons with
the control strategies in (61) and (62) are conducted. The control parameters of the three
controllers are presented in Table 1.

Table 1. The control parameters of the three controllers.

Methods Control Gains

EMK λ = 90, α = 4130.
Observer-based λ = 90, α = 4130, k1 = 530.

Proposed λ = 90, α = 4130, k1 = 530, kp = 6000, kq = 19.

The tracking results of the sinusoid reference signals in 10 rad/s, 30 rad/s, 50 rad/s
with the trip length of 90 µm are presented in Figure 10–12. The top subfigures of
Figures 10–12 are the piezoelectric actuators displacements of the system and the references
trajectory, which reveal that, in large travel range and relatively high speed, the control
method proposed in this paper can compensate for the nonlinearity and disturbances to
guarantee the tracking task in high accuracy. The middle subfigures of Figures 10–12
illustrate that the closed-loop system errors stabilize in a very small neighborhood of zero,
which corresponds to the stability theorem in Section 4. It can be seen from the results
that, since the convergence result of the closed-loop system is GUUB, the tracking error
converges to a small neighborhood of zero displacement and cannot completely converge
to zero displacement. The mean absolute error (MAE) of the control methods in 5 s are
0.1418 µm, 0.2885 µm and 0.4247 µm in 10 rad/s, 30 rad/s and 50 rad/s, respectively,
which are 0.16%, 0.32% and 0.47% of the 90 µm trip length, respectively. The tracking error
increases when the signal angular velocity speeds up.

To further analyze the performance of the proposed strategy, comparisons with the
EMK control strategy in (61) and the observer-based state feedback control strategy in (62)
are made for tracking large range periodic signals with different angular velocities.
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Figure 10. Experimental results of the sinusoid signal via the proposed algorithm (10 rad/s).
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Figure 11. Experimental results of the sinusoid signal via the proposed algorithm (30 rad/s).
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Figure 12. Experimental results of the sinusoid signal via the proposed algorithm (50 rad/s).

The tracking accuracy comparisons with the two other nonlinear control technologies
in the piezoelectric actuators platform are presented in Figure 13–15 with angular velocities
of 10 rad/s, 30 rad/s, and 50 rad/s, respectively. The total mean absolute errors (MAEs) of
the three control methods are shown in Table 2. As presented in Figure 13, the reference
sinusoid signal with a 90 µm range in 10 rad/s is tracked via three control strategies. The
mean absolute error (MAE) of the control methods proposed in this paper, the observer-
based method and the EMK method, are 0.1418 µm, 0.1607 µm, and 1.8525 µm, respectively.
The proposed method has a minimum tracking error, but only by a very small margin
compared with the observer-based method. In Figure 14 with a tracking signal in angular
velocity of 30 rad/s, the mean absolute error (MAE) of the control methods proposed
in this paper, the observer-based control algorithm, and the EMK control algorithm are
0.2885 µm, 0.5228 µm, and 0.9135 µm, respectively. With the tracking velocity speeding
up, the proposed method begins to widen the advantage in tracking accuracy. It is worth
noticing in Figure 14 that, in the top subfigure, the EMK method seems to be closer to the
reference in the enlarged view of the peak. Thus, one more enlarged view is added to help
illustrate the comparison. Moreover, according to the mean absolute error (MAE), it is very
clear that the proposed method has the smallest mean absolute error in the above three
control methods. As presented in Figure 15 with the tracking signal in angular velocity of
50 rad/s, the mean absolute error (MAE) of the control methods proposed in this paper, the
observer-based control algorithm, and the EMK control algorithm are 0.4274 µm, 1.1927 µm,
and 1.5036 µm, respectively. The control method proposed in this paper further widens
the advantage.
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Figure 13. Experimental results of the three control methods (10 rad/s).

-20
0

20
40
60
80

D
is

p
 (

m
)

Reference

EMK

Observer based

Proposed

-40

-20

0

20

40

E
rr

o
r 

(
m

)

EMK

Observer based

Proposed

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t (s)

-2

0

2

4

6

8

C
o

n
tr

o
l 
In

p
u

t 
(V

)

EMK

Observer based

Proposed

1.49

66

67

2.98 2.99

79

79.5

80

2.6 2.7 2.8 2.9

-2

1

2.6 2.8 3

0
2
4
6

Figure 14. Experimental results of the three control methods (30 rad/s).
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Figure 15. Experimental results of the three control methods (50 rad/s).

Table 2. The mean absolute errors (MAEs) of the three control methods.

Methods 10 rad/s (MAE) 30 rad/s (MAE) 50 rad/s (MAE)

EMK 1.8525 µm 0.9135 µm 1.5036 µm
Observer-based 0.1607 µm 0.5228 µm 1.1927 µm

Proposed 0.1418 µm 0.2885 µm 0.4274 µm
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Based on the above experimental result analysis, the proposed control strategy over-
whelms the other two methods in tracking accuracy as a result of the drift disturbance
compensated for by the observer and the unmodeled dynamics compensated for by the
repetitive learning technology. Moreover, the advantage of the control method proposed in
this paper widens as the tracking speed increases. Taking comparisons between the control
method proposed in this paper and the observer-based control algorithm as an example, in
10 rad/s, the mean absolute error (MAE) of the control methods in 5 s are 0.1418 µm and
0.1607 µm by the proposed method and the observer-based method, respectively, which
reveals that the tracking error with the observer-based method is 1.13 times that of the pro-
posed method. In 30 rad/s, the absolute averages of the tracking errors in 5 s are 0.2885 µm
and 0.5228 µm by the proposed method and the observer-based method, respectively, which
reveals that the tracking error with the observer-based method is 1.81 times that of the
proposed method. In 50 rad/s, the absolute averages of tracking errors in 5 s are 0.4274 µm
and 1.1927 µm by the proposed method and the observer-based method, respectively,
which reveals that the tracking error with the observer-based method is 2.79 times that
of the proposed method. Through the experimental error analysis above, the ratio of the
tracking error with the observer-based method to that with the proposed method increases
as the tracking angular velocity rises, which further demonstrates the high performance of
the proposed method, especially in tracking relatively high speed signals.

The hysteresis loop compensation results of the reference sinusoid signal with 10 rad/s,
30 rad/s and 50 rad/s are shown in Figures 16–18. It is clear that the large hysteresis of
the piezoelectric actuators in the open-loop status is effectively compensated for by the
proposed strategy. Moreover, it can be seen from the figures that the linearity of the
input/output with 10 rad/s is the highest and the linearity with 50 rad/s is a bit lower
compared with the two other results, which corresponds to the absolute average of the
tracking errors distribution from 10 rad/s to 50 rad/s.
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Figure 16. Hysteresis loops in 10 rad/s generated with open-loop status (left) and closed-loop status
via the proposed strategy (right).
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Figure 17. Hysteresis loops in 30 rad/s generated with open-loop status (left) and closed-loop status
via the proposed strategy (right).
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Figure 18. Hysteresis loops in 50 rad/s generated with open-loop status (left) and closed-loop status
via the proposed strategy (right).

7. Conclusions

In this paper, a novel discrete compound compensation strategy, combining feedfor-
ward control with feedback control, is proposed to eliminate the system error mainly caused
through the system hysteresis nonlinearity and the disturbances when tracking large travel
range periodic signal. In the feedforward controller, a novel offline calibrate method is
designed to eliminate the static hysteresis disturbance. A novel composite feedback control
strategy, which is composed of a nonlinear observer and a repetitive learning control law,
is designed to compensate for the dynamic hysteresis, the drift disturbance, and the system
unmodeled uncertainty. The globally uniformly ultimately bounded (GUUB) stability
of the control system is proved via the Lyapunov-based method. The high performance
of the whole discrete compound compensation strategy is validated by simulations and
experiments. Contrasts with two traditional control algorithms are performed and the
outstanding performance of the control strategy proposed in this paper is verified by the
results of tracking large range periodic signals with different angular velocities.
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