
Citation: Kong, X.; Yao, Y.; Yang, W.;

Yang, Z.; Su, J. Solving the Flexible

Job Shop Scheduling Problem Using

a Discrete Improved Grey Wolf

Optimization Algorithm. Machines

2022, 10, 1100. https://doi.org/

10.3390/machines10111100

Academic Editor: Dan Zhang

Received: 26 October 2022

Accepted: 17 November 2022

Published: 21 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Solving the Flexible Job Shop Scheduling Problem Using a
Discrete Improved Grey Wolf Optimization Algorithm
Xiaohong Kong 1,*, Yunhang Yao 1 , Wenqiang Yang 1, Zhile Yang 2 and Jinzhe Su 1

1 School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology,
Xinxiang 453003, China

2 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
* Correspondence: nancykong@hist.edu.cn

Abstract: The flexible job shop scheduling problem (FJSP) is of great importance for realistic man-
ufacturing, and the problem has been proven to be NP-hard (non-deterministic polynomial time)
because of its high computational complexity. To optimize makespan and critical machine load of
FJSP, a discrete improved grey wolf optimization (DIGWO) algorithm is proposed. Firstly, combined
with the random Tent chaotic mapping strategy and heuristic rules, a hybrid initialization strategy is
presented to improve the quality of the original population. Secondly, a discrete grey wolf update
operator (DGUO) is designed by discretizing the hunting process of grey wolf optimization so that the
algorithm can solve FJSP effectively. Finally, an adaptive convergence factor is introduced to improve
the global search ability of the algorithm. Thirty-five international benchmark problems as well as
twelve large-scale FJSPs are used to test the performance of the proposed DIGWO. Compared with
the optimization algorithms proposed in recent literature, DIGWO shows better solution accuracy
and convergence performance in FJSPs at different scales.

Keywords: adaptive convergence factor; discrete improved grey wolf optimization; flexible job shop
scheduling problem; hybrid initialization strategy

1. Introduction

Production scheduling is an essential part of modern manufacturing systems, and the
efficient scheduling methods can improve industrial production efficiency, increase the
economic profitability of enterprises and raise customer satisfaction [1–3]. The job shop
scheduling problem (JSP) is one of the most complex problems in production scheduling
and it has been proven to be NP-hard [4]. The flexible job shop scheduling problem (FJSP)
is an extension of JSP. Besides considering operation sequencing, it also needs to assign
the appropriate machine to each operation. As the FJSP is more in line with the reality of
modern manufacturing enterprises, the problem has been widely studied by many experts
and scholars in the past decades [5–7]. Furthermore, the problem is increasingly used
in different environments, such as crane transportation, battery packaging and printing
production [8–10].

The first scholars who proposed the FJSP, Brucker and Schlie, used polynomial graph
algorithm to solve the problem [11]. With the advance of time, various solution methods
were developed for the problem. Up to now, the methods for solving FJSP can be divided
into two main categories: exact and approximate algorithms. Exact algorithms—for ex-
ample, Lagrangian relaxation, branch and bound algorithms and mixed integer linear
programming—have the advantage of seeking the optimal solution of the FJSP [12–14].
However, they are only effective on small-scale FJSPs, and the computation time required
is unaffordable once the size of the problem increases. The second approach has received
more attention in recent studies due to its ability to find a better solution in a shorter
period of time. Currently, metaheuristic algorithms are a kind of approximation algorithm

Machines 2022, 10, 1100. https://doi.org/10.3390/machines10111100 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10111100
https://doi.org/10.3390/machines10111100
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0003-0107-3853
https://orcid.org/0000-0001-6190-9734
https://doi.org/10.3390/machines10111100
https://www.mdpi.com/journal/machines
http://www.mdpi.com/2075-1702/10/11/1100?type=check_update&version=3

Machines 2022, 10, 1100 2 of 38

which have been successfully applied to solve FJSP, such as genetic algorithm (GA), particle
swarm algorithm (PSO), ant colony algorithm (ACO), etc.

Initially, research on metaheuristic algorithms for solving FJSPs lies in proposing new
neighborhood structures and employing tabu search or simulated annealing algorithms
(SA). Brandimarte designed a hierarchical algorithm based on the tabu search for solving
FJSP [15]. Based on the characteristics of FJSP, Najid et al. proposed an improved SA for
solving the problem [16]. With the objective of minimizing the maximum completion time,
Mastrolilli et al. proposed two neighborhood structures (Nopt1, Nopt2) and combined
them with TS, and the results validated the effectiveness of the proposed approach [17].
Recent studies have shown that optimizing the objective of the problem by improving the
neighborhood structure is an effective method. Zhao suggested a hybrid algorithm that
incorporates an improved neighborhood structure. He divided the neighborhood structure
into two levels: the first level for moving processes across machines, and the second level
for moving processes within the same machine [18]. As the size of FJSP grows, however,
the method relying only on improving the neighborhood structure tends to lack diversity
in the solution process, which in turn leads to falling into local optimum. Most current
researchers solve FJSP by mixing swarm intelligence algorithms with constraint rules of the
scheduling problem; the former is used to enhance the diversity of the population, while
the latter is employed to exploit the neighborhood of the more optimal solution.

For GA, Li et al. proposed a hybrid algorithm (HA), which combined GA with tabu
search (TS) for solving FJSP [19]. The setting of parameters in GA is extremely significant,
and a reasonable combination of parameters can better improve the performance of the
algorithm. Therefore, Chang et al. proposed a hybrid genetic algorithm (HGA), and the
Taguchi method was used to optimize the parameters of the GA [20]. Similarly, Chen et al.
suggested a self-learning genetic algorithm (SLGA) to solve the FJSP and dynamically
adjusted its key parameters based on reinforcement learning (RL) [21]. Wu et al. designed
an adaptive population nondominated ranking genetic algorithm III, which combines a
dual control strategy with GA to solve FJSP considering energy consumption [22].

For ACO, Wu et al. proposed a hybrid ant colony algorithm based on a three-
dimensional separation graph model for a multi-objective FJSP in which the optimiza-
tion objectives are makespan, production duration, average idle time and production
cost [23]. Wang et al. presented an improved ant colony algorithm (IACO) to optimize
the makespan of FJSP, which was tested by a real production example and two sets of
well-known benchmark test examples to verify the effectiveness [24]. To solve the FJSP in
a dynamic environment, Zhang et al. combined Multi-Agent System (MAS) negotiation
and ACO, and introduced the features of ACO into the negotiation mechanism to improve
the performance of scheduling [25]. Tian et al. introduced a PN-ACO-based metaheuristic
algorithm for solving energy-efficient FJSP [26].

For PSO, Ding et al. suggested a modified PSO for solving FJSP, and obtained useful
solutions by improved encoding schemes, communication mechanisms of particles and
modification rules for operating candidate machines [27]. Fattahi et al. proposed a hybrid
particle swarm optimization and parallel variable neighborhood search (HPSOPVNS) algo-
rithm for solving a flexible job shop scheduling problem with assembly operations [28]. In
real industrial environments, unplanned and unforeseen events have existed. Considering
the FJSP under machine failure, Nouiri et al. proposed a two-stage particle swarm opti-
mization algorithm (2S-PSO), and the computational results showed that the algorithm has
better robustness and stability compared with literature methods [29].

There has been an increasing number of studies on solving the FJSP using other meta-
heuristic algorithms in recent years. Gao et al. proposed a discrete harmonic search (DHS)
algorithm based on a weighting approach to solve the bi-objective FJSP, and the effective-
ness of the method was demonstrated by using well-known benchmark examples [30].
Feng et al. suggested a dynamic opposite learning assisted grasshopper optimization
algorithm (DOLGOA). The dynamic opposite learning (DOL) strategy is used to improve
the utilization capability of the algorithm [31]. Li et al. introduced a diversified operator im-

Machines 2022, 10, 1100 3 of 38

perialist competitive algorithm (DOICA), which requires minimum makespan, total delay,
total work and total energy consumption [32]. Yuan et al. proposed a hybrid differential
evolution algorithm (HDE) and introduced two neighborhood structures to improve the
search performance [33]. Li et al. designed an improved artificial bee colony algorithm
(IABC) to solve the multi-objective low-carbon job shop scheduling problem with variable
processing speed constraints [34]. Table 1 shows a literature review of various common
algorithms for solving FJSP.

Table 1. Literature review of various popular algorithms for solving FJSP.

Method Representative Algorithms Advantages and
Disadvantages

Exact algorithm Enumerative methods
Lagrangian relaxation, branch
and bound method and mixed
integer linear programming

The optimal solution can be
obtained, but the execution

time is unbearable

Approximate algorithm

Local search algorithm
Tabu search, variable

neighborhood search and
simulated annealing

Excellent local search
capability, but poor diversity

Swarm intelligence algorithm
Particle swarm, ant colony

and artificial bee
colony algorithms

Suitable diversity, but easily
falls into local optimum

The grey wolf optimization (GWO) algorithm is a population-based evolutionary
metaheuristic algorithm proposed by Mirjalili in 2014, which was originally presented
for solving continuous function optimization problems [35]. In GWO, the hierarchical
mechanism and hunting behaviors of the grey wolf population in nature are simulated.
Compared with other metaheuristic algorithms, the GWO algorithm has the advantages
of simple structure, few control parameters and the ability to achieve a balance between
local and global search. It has been successfully applied to several fields in recent years,
such as path planning, SVM model, image processing, power scheduling, signal processing,
etc. [36–40]. However, the algorithm is rarely used on FJSP. As the algorithm is continuous
and FJSP is a discrete problem, it is important to consider how to match the algorithm with
the problem.

At the moment, there are two mainstream solution methods. The first method adopts
a transformation mechanism to interconvert continuous individual position vectors with
discrete scheduling solutions, which has the advantage of being simple to implement and
preserving the updated iterative formulation of the algorithm. Luan et al. suggested an
improved whale optimization algorithm for solving FJSP, in which ROV rules are used to
transform the operation sequence [41]. For FJSP, Yuan et al. proposed a hybrid harmony
search (HHS) algorithm and developed a transformation technique to convert a continuous
harmony vector into a discrete two-vector code for FJSP [42]. Luo et al. designed the
multi-objective flexible job shop scheduling problem (MOFJSP) with variable processing
speed, for which the chromosome encoding is represented by a three-vector representation
corresponding to three subproblems: machine assignment, speed assignment and operation
sequence. The mapping approach and the genetic operator are used to enable the algorithm
to update in the discrete domain [43]. Liu et al. proposed the multi-objective hybrid
salp group algorithm (MHSSA) mixed with Lévy flight, random probability crossover
operator and variational operator [44]. Nevertheless, the transformation method has
certain limitations—some excellent solutions will be missed in the process of conversion,
and a lot of computation time will be wasted.

In the second approach, the discrete update operator is designed to achieve the cor-
respondence between the algorithm and the problem. For the multi-objective flexible job
shop scheduling problem, a hybrid discrete firefly algorithm (HDFA) was proposed by
Karthikeyan et al. The search accuracy and information sharing ability of the algorithm
are improved by discretization [45]. Gu et al. suggested a discrete particle swarm opti-

Machines 2022, 10, 1100 4 of 38

mization (DPSO) algorithm and designed the discrete update process of the algorithm
by using crossover and variational operators [46]. Gao et al. studied a flexible job shop
rescheduling problem for new job insertion and discretized the update mechanism of the
Jaya algorithm, and the results of extensive experiments showed that the DJaya algorithm
is an effective method for solving the problem [47]. Xiao et al. suggested a hybrid algorithm
combining the chemical reaction algorithm and TS, and designed four basic operations
to ensure the diversity of populations [48]. Jiang et al. presented a discrete cat swarm
optimization algorithm in order to solve a low-carbon flexible job shop scheduling problem
with the objective of minimizing the sum of energy cost and delay cost, and designed
discrete forms for the finding and tracking modes in the algorithm to fit the problem [49].
Lu et al. redesigned the propagation, refraction and breaking mechanisms in the water
wave optimization algorithm based on the characteristics of FJSP in order to adapt the
algorithm to the scheduling problem under consideration [50]. Although this method
discards the update formula, the idea of the algorithm is retained. Thus, it is essential to
design a more reasonable discrete update operator. At present, there is already a method
for the discretization of the GWO operator for solving FJSP, but the method simply retains
the process of the head wolf guiding the ordinary wolf hunting in the wolf pack, and does
not facilitate more excavation of GWO [51]. Table 2 contains a literature review on mapping
mechanisms and discrete operators in FJSP.

Table 2. Literature review of conversion methods.

References Objective Type Method Algorithm Characteristic

[41] Makespan Conversion IWOA ROV conversion rule
[42] Makespan Conversion HHS LPV mapping rule

[43] Makespan and total
energy consumption Conversion GWO Ascending mapping

[44]

Makespan, total worker
costs and total

influence of the green
production

Conversion HSSA Ascending mapping

[45]
Makespan, critical

machine load and total
machine load

Discretization HDFA Hamming Distance

[46]
Makespan, critical

machine load and total
machine load

Discretization DPSO Crossover and mutation
update operators

[47]

Makepsan, total flow
time, critical machine

load and total
machine load

Discretization DJaya DJaya update operator

[48] Makepsan Discretization CROTS Discrete collision and
decomposition reactions

[49] Energy consumption
and cost Discretization CSO Discrete seeking and

tracing modes

[50] Energy consumption
and makespan Discretization DWWO

Discrete propagation,
refraction and

breaking behavior

In view of this, a discrete improved grey wolf optimization algorithm (DIGWO) is
proposed in this paper for solving FJSP with the objectives of minimizing makespan and
minimizing critical machine load. The algorithm has the following innovations. Firstly,
a discrete grey wolf update operator is proposed in order to make GWO applicable for
solving FJSP. Secondly, an initialization method incorporating the chaotic mapping strategy
and heuristic rule is designed to obtain high high-quality and diverse initial populations.
Then, an adaptive convergence factor is employed to make the algorithm better balanced

Machines 2022, 10, 1100 5 of 38

in exploitation and exploration. Finally, the effectiveness as well as the superiority of the
proposed algorithm are verified using international benchmark cases.

The contributions of this paper are in the following five aspects.

1. A hybrid initialization method which combines heuristic rules and random Tent
chaotic mapping strategy is proposed for generating original populations with high
quality and without loss of diversity.

2. For the characteristics of FJSP, a discrete grey wolf update operator is designed to
improve the search performance of the algorithm while ensuring that the algorithm
can solve the problem.

3. An adaptive convergence factor is proposed to improve the exploration and exploita-
tion capability of the algorithm.

4. The improved algorithm is applied to solve the benchmark test problems in the
existing literature, and the results show that DIGWO is competitive compared to other
algorithms.

5. The performance of DIGWO was executed on 47 FJSP instances of different sizes, and
the experimental results show the effectiveness of DIGWO in solving this problem
under this condition.

The sections of this paper are organized as follows. Section 1 is an introduction,
and it gives the background of the topic as well as the motivation for the research. In
Section 2, the mathematical models of the multi-objective FJSP and the original GWO are
given. The specific steps of the improvement strategy are described in detail in Section 3. In
Section 4, the performance of the proposed DIGWO is tested on continuous-type benchmark
functions. The effectiveness of DIGWO is verified using the international standard FJSP in
Section 5. Finally, the work is summarized and directions for future research are proposed.

2. Mathematical Models of FJSP
2.1. Problem Description

FJSP is an idealized combinatorial optimization problem induced from actual shop
production. Initially, FJSP was derived from JSP. In JSP, the items to be produced are
uniformly defined as jobs which have one or more steps. The steps are defined as operations,
and the equipment used to process the job is uniformly defined as machines in the process.
JSP has the constraint of job sequencing, i.e., each job is processed on its corresponding
machine according to a certain processing flow until all jobs are processed. Therefore, FJSP
can be considered as an extended version of JSP due to the fact that it eliminates some of
the machine constraints and because the number of machines that can be selected for each
operation is not limited to only one.

There is one more significant classification that needs to be clarified before solving for
FJSP. That is, it can be classified according to the number of machines that can be selected
for the operation: total FJSP (T-FJSP) and partial FJSP (P-FJSP). As can be seen from the
above, FJSP breaks through the singularity of the number of machines that can be selected
for an operation, and if all operations can be processed by any machine, this case is defined
as T-FJSP. If there are operations that cannot be processed on certain machines, then this
situation can be classified as P-FJSP. Compared to T-FJSP, P-FJSP is more universal, so this
study focuses on P-FJSP [52]. An example of a 3 × 3 scale P-FJSP is shown in Table 3,
where the first two columns indicate the job number and operation number, and the rest of
the data represent the machines that can be selected for operational processing and their
corresponding processing times. It can be clearly seen that operation 1 of job 1 is allowed
to be processed on all three machines, while operation 3 of job 2 and operation 1 of job 3
are allowed to be processed on only a part of the machines.

Machines 2022, 10, 1100 6 of 38

Table 3. An instance of 3 × 3 P-FJSP.

Job (n) Operation (g)
Machines (m)

M1 M2 M3

1
1 3 5 7
2 6 - 3

2
1 - 6 4
2 5 4 5
3 2 - -

3
1 5 7 -
2 - 3 -
3 4 6 5

A P-FJSP of size n×m is described as follows: there are n mutually independent jobs
J = {J1, J2, . . . Jn} assigned to m machines M = {M1, M2, . . . Mm} for processing. Each job
contains several operations, for example, the ith job Ji in the job set contains g operations{

Oi,1, Oi,2, . . . , Oi,g
}

. It is important to note that the processing time for operating Oi,j varies
with the machine selected due to the different processing capabilities of the machines. The
task of scheduling in this paper is to assign jobs to corresponding machines and to adjust
the processing order, subject to several constraints, and to optimize the makespan and the
critical machine load; the mathematical model of FJSP can be found in the literature [53].
The constraints satisfied by FJSP are as follows.

1. All machines can be started at time 0.
2. Different jobs have the same processing priority, and different operations within the

same job have different priorities.
3. Only one operation can be processed by a machine at the same time.
4. Once the machine is running, the process is not interrupted.
5. Operations are performed in a preset processing order and one operation can only be

processed by the machine once.
6. Machine failures do not occur.
7. The time spent on the transfer and setup of the machine is not taken into account.

2.2. Model of FJSP

A two-objective FJSP is considered, and its main purpose is to assign each job to the
corresponding machine according to the processing constraints. A scheduling table that
ensures minimum makespan and minimum critical machine load is finally obtained. The
objective function can be represented by Equations (1) and (2) with some constraints. For
better understanding, the notations and variables mentioned in the problem model below
are given in Table 4, along with the abbreviations commonly used in the article.

Table 4. Notation definitions and abbreviations in the article.

Notations and Abbreviations Description

i Index of jobs, i = {1, 2, . . . , n}
j Index for operation of job, j = {1, 2, . . . , g}
k Index of machines, k = {1, 2, . . . , m}
n Total number of jobs
m Total number of machines
g The number of operations contained in the current job
J The set of all jobs

M The set of all machines
Mk The kth machine in M
Ji The ith job in J

Machines 2022, 10, 1100 7 of 38

Table 4. Cont.

Notations and Abbreviations Description

Oi,j The operation j of job i
si,j,k The start time of operation j of job i on machine k
ti,j,k The processing time of operation j of job i on machine k
ei,j,k The end time of operation j of job i on machine k

Xi,j,k
Decision variable: if operation j of job i is processed on

machine k, then 1; otherwise, 0
Cmax Makespan
WLk The workload on machine k
HI Hybrid initialization

DGUO Discrete grey wolf update operator
MS Machine sequence
OS Operation sequence
ub The upper boundary of the search space
lb The lower boundary of the search space

IPOX Improved priority operation crossover
MPX Multi-point crossover

Objective:

minF1 = min(Cmax) = min{max
n
∑

i=1

g
∑

j=1
(si,j,k + ti,j,k)} , 1 ≤ i ≤ n (1)

minF2 = mmin(WLk) = min

(
max

(
n
∑

i=1

g
∑

j=1
ti,j,k ∗ Xi,j,k

))
, 1 ≤ k ≤ m (2)

Cmax denotes the largest makespan of all jobs, si,j,k represents the start time of operation
j of job i on machine k, ei,j,k is the end time of operation j of job i on machine k and ti,j,k
denotes the processing time of operation j of job i on machine k. WLk is the workload on
machine k.

Subject to:

ti,j,k > 0, i = 1, 2, . . . , n; j = 1, 2, . . . , g; k = 1, 2, . . . , m. (3)

si,j,k + ti,j,k ≤ ei,j,k (4)

m

∑
k=1

Xi,j,k = 1 (5)

n

∑
i=1

g

∑
j=1

Xi,j,k = 1 (6)

Xi,j,k =

{
1 when operation j of job i is assigned to machine k
0 otherwise

(7)

The constraint in Equation (3) indicates that the processing time of each operation is
greater than 0. The constraints in Equation (4) ensure that the same job contains operations
with different levels of priority constraints between them. The constraint in Equation (5) indi-
cates that each operation is only assigned to one machine, and the constraint in Equation (6)
ensures that each machine can only process one operation at any time. Constraint (7) is a
decision variable that indicates whether the operation Oi,j is assigned to machine Mk.

2.3. Basic GWO Algorithm

GWO is a novel metaheuristic algorithm proposed by Mirgalili et al. in 2014, inspired
by the habits of grey wolf packs, and the algorithm works by mimicking the hierarchical
stratification and prey attack behavior within the wolf pack [35]. Grey wolves live in packs,

Machines 2022, 10, 1100 8 of 38

with an average of 5 to 12 wolves per pack. The characteristics of GWO are described
below. In the hierarchical stratification mechanism, all individuals in the population can
be divided into four classes according to their status. As shown in Figure 1, the alpha (α),
beta (β), delta (δ) and omega (ω) wolves are in the order from top to bottom. The α is the
first rank, which is responsible for making decisions on group actions in the population.
The second level is β. This level is responsible for assisting αwolves, and when αwolves
die or become old, βwolves will be promoted to the status of αwolves. The δwolf plays
the role of the trainer of the α wolf in the pack, and it is responsible for reinforcing the
orders of the α wolf to the bottom level wolves. The last level of the wolf pack is the ω
wolf, and they need to follow the orders of the first three levels of wolves to complete their
required tasks.

Machines 2022, 10, x FOR PEER REVIEW 8 of 40

2.3. Basic GWO Algorithm
GWO is a novel metaheuristic algorithm proposed by Mirgalili et al. in 2014, inspired

by the habits of grey wolf packs, and the algorithm works by mimicking the hierarchical
stratification and prey attack behavior within the wolf pack [35]. Grey wolves live in
packs, with an average of 5 to 12 wolves per pack. The characteristics of GWO are de-
scribed below. In the hierarchical stratification mechanism, all individuals in the popula-
tion can be divided into four classes according to their status. As shown in Figure 1, the
alpha (α), beta (β), delta (δ) and omega (ω) wolves are in the order from top to bottom.
The α is the first rank, which is responsible for making decisions on group actions in the
population. The second level is β. This level is responsible for assisting α wolves, and
when α wolves die or become old, β wolves will be promoted to the status of α wolves.
The δ wolf plays the role of the trainer of the α wolf in the pack, and it is responsible for
reinforcing the orders of the α wolf to the bottom level wolves. The last level of the wolf
pack is the ω wolf, and they need to follow the orders of the first three levels of wolves to
complete their required tasks.

Figure 1. Population hierarchy mechanism of GWO.

The update mechanism of GWO is divided into the following parts: surrounding
prey, hunting, attacking prey and searching for prey. The grey wolf pack is guided for-
ward by the leader wolf, and because the individual position of the prey cannot be iden-
tified in the abstract model, the three leader wolves are approximated as the possible po-
sitions of the prey.

2.3.1. Encircling Prey
The process of encircling the prey by the grey wolf can be represented by a mathe-

matical model shown in Formulas (8) and (9). 𝐷ሬሬ⃗ = |𝐶 ∙ 𝑋⃗௣(𝑡) − 𝑋⃗(𝑡)| (8)

𝑋⃗(𝑡 + 1) = 𝑋⃗௣ − 𝐴 ∙ 𝐷ሬሬ⃗ (9)

where 𝑋⃗(𝑡 + 1) represents the position vector of the next generation of the grey wolf, 𝑋⃗௣(𝑡) denotes the position vector of the prey, 𝑋⃗(𝑡) indicates the current position vector
of the grey wolf and 𝐷ሬሬ⃗ is the absolute distance between the grey wolf and the prey. The
coefficient vectors A and C are calculated as follows: 𝐴 = 2𝑎⃗ ⋅ 𝑟ଵ − 𝑎⃗ (10)

𝐶 = 2 ⋅ 𝑟ଶ (11)

Figure 1. Population hierarchy mechanism of GWO.

The update mechanism of GWO is divided into the following parts: surrounding prey,
hunting, attacking prey and searching for prey. The grey wolf pack is guided forward by
the leader wolf, and because the individual position of the prey cannot be identified in
the abstract model, the three leader wolves are approximated as the possible positions of
the prey.

2.3.1. Encircling Prey

The process of encircling the prey by the grey wolf can be represented by a mathemati-
cal model shown in Formulas (8) and (9).

→
D = |

→
C ·
→
Xp(t)−

→
X(t)| (8)

→
X(t + 1) =

→
Xp −

→
A·
→
D (9)

where
→
X(t + 1) represents the position vector of the next generation of the grey wolf,

→
Xp(t)

denotes the position vector of the prey,
→
X(t) indicates the current position vector of the grey

wolf and
→
D is the absolute distance between the grey wolf and the prey. The coefficient

vectors A and C are calculated as follows:

→
A = 2

→
a ·→r 1 −

→
a (10)

→
C = 2 ·→r 2 (11)

where
→
a has self-adaptive property and decreases linearly from 2 to 0 with increasing

iterations,
→
r 1 and

→
r 2 are random vectors in the range [0, 1].

Machines 2022, 10, 1100 9 of 38

2.3.2. Hunting

In the process of hunting, the position of the prey is known to the wolf pack; however,
the position of the optimal solution cannot be determined in the abstract search process.
Therefore, the position of the individual is updated according to the three best solutions so
far: alpha, beta and delta. This process can be represented by a mathematical model shown
in Equations (12)–(14).

X(t + 1) =
X1(t) + X2(t) + X3(t)

3
(12)

→
X1 =

→
Xα −

→
A1·(

→
Dα),

→
X2 =

→
Xβ −

→
A2·(

→
Dβ),

→
X3 =

→
Xδ −

→
A3·(

→
Dδ) (13)

→
Dα = |

→
C1·
→
Xα −

→
X|,
→
Dβ = |

→
C2·
→
Xβ −

→
X|,
→
Dδ = |

→
C3·
→
Xδ −

→
X| (14)

where X1(t), X2(t) and X3(t) denote the movement steps of individual grey wolves in

three directions.
→
Xα,

→
Xβ and

→
Xδ represent the position vectors of the three head wolves.

→
A1,

→
A2 and

→
A3 denote the coefficient vectors.

→
Dα,

→
Dβ and

→
Dδ show the distance of the current

grey wolf individual to the alpha wolf, beta wolf and delta wolf, respectively.

2.3.3. Attacking Prey and Search for Prey

The behaviors of attacking prey and searching for prey in GWO correspond to the
exploitation and exploration of the algorithm, and these two processes are determined by
the control parameters A and C. It is known by the above description that A is a random
value in the interval [−2a, 2a]. When |A|<1, the grey wolf will attack in the direction of
the prey, and on the contrary, the grey wolf will be forced to move away from the prey. This
means that the unknown space will be explored as much as possible in the early stages of
the algorithm iteration. In the middle and late stages of the iteration, |A| will be greater
than 1 with high probability, which is beneficial to make the population move quickly to
a more desirable area. Compared to vector A, it is important to note that the C vector is
characterized by a random value rather than a linear descent throughout the algorithm
update process. Therefore, the stochastic nature of the C vector means that its emphasis is
on exploration ability, which is more significant to help the algorithm in the later iterations.

3. Proposed Discrete Improved Grey Wolf Optimization Algorithm
3.1. The Framework of the Proposed DIGWO

In this paper, a discrete improved grey wolf optimization algorithm (DIGWO) is
proposed. In order to apply GWO to solve FJSP as well as to enhance the search capability
of the algorithm, DIGWO contains three improved strategies, namely hybrid initialization
(HI), discrete grey wolf update operator (DGUO) and adaptive convergence factor. The
process of discretization follows the basic principles of GWO, in which the update operator
of the evolutionary algorithm is used and the key parameters in GWO are retained. The
flowchart of DIGWO is shown in Figure 2. The steps of the algorithm are as follows.

Step 1: Input the parameters of the algorithm, the information of the FJSP case and the
termination conditions, etc.

Step 2: Initialize the population and calculate the fitness of all individuals (c.f. Section 3.3).
Step 3: Determine whether the termination condition is reached—if yes, go to step 9;

otherwise, go to step 4.
Step 4: Three optimal individuals in the population are labeled according to the size

of the fitness, namely Xalpha, Xbeta and Xdelta.
Step 5: Update the control parameters a and A (c.f. Section 3.4).
Step 6: Update all individuals in the population using the DGUO, with different

update mechanisms for common and alpha wolves (c.f. Sections 3.5.1 and 3.5.2).
Step 7: The offspring grey wolf individuals were selected and preserved according to

the acceptance probability paccept (c.f. Section 3.5.3).

Machines 2022, 10, 1100 10 of 38

Step 8: Determine if the termination condition is met—if yes, go to step 9; otherwise,
return to step 4.

Step 9: Output the optimal solution and its coding sequence.
Machines 2022, 10, x FOR PEER REVIEW 11 of 40

Figure 2. Proposed working flow chart of DIGWO.

3.2. Solution Representation
The solution of the proposed algorithm contains two vectors: the machine selection

vector and the operation sequence vector. In order to represent these two subproblems
more rationally, an integer coding approach is adopted in this paper. Next, the 3 × 3 FJSP
example in Table 3 is used to explain the encoding and decoding methods.

The machine selection (MS) vector is made up of an array of integers. The encoding
of the machine sequence corresponds to the order of the job numbers from the smallest to
the largest, as shown in Figure 3. The machine sequence can be expressed as MS ={2, 3, 3, 3, 1, 1, 2, 1}. It should be noted that each element in the MS sequence represents the
machine number; for example, the fourth element of the MS indicates that machine 𝑀ଷ is
selected by operation 1 of job 2.

The operation sequence (OS) vector consists of an array of integers, representing the
job information and operation processing order in FJSP. As shown in Figure 3, the opera-

Figure 2. Proposed working flow chart of DIGWO.

In order to elaborate the proposed DIGWO more carefully, the key strategies of
the algorithm as well as the parameters are mainly discussed below, and the algorithm
is thoroughly analyzed in the subsequent sections. In the proposed DIGWO, two key
parameters are defined: the control parameter λ in the adaptive convergence factor A and
the distance acceptance probability paccept. These two key parameters are described in
detail in Sections 3.4 and 3.5.3.

In the initialization phase, the modified Tent chaotic mapping is used to generate the
operation sequences and the heuristic rules are used to generate the machine sequences.
The specific initialization steps can be found in Section 3.3. Next, in the update phase of
the algorithm, the improved convergence factor is used to optimize the balance between

Machines 2022, 10, 1100 11 of 38

global search and local search for DIGWO. The specific improved formula can be found in
Section 3.4. Before introducing DGUO, it is important to highlight that the encoding type
of DIGWO is discrete during solving FJSP. Therefore, the update formula of the original
GWO is no longer used, and the discrete update operator is designed according to the
characteristics of the FJSP. The following steps are followed in one update of the algorithm.
The population was divided into two parts, the leader wolves and the ordinary wolves.
Firstly, the ordinary wolves of the population are updated, and the mode of updating
is determined by the value of the adaptive convergence factor A. If |A| < 1, then the
appropriate leader wolf is selected by roulette and updated in the discrete domain. On
the contrary, an individual in the population of ordinary wolves is selected for updating.
Secondly, the leader wolves are updated. For the operation sequence and machine sequence
of the leader wolves, the neighborhood adjustment based on the critical path is adopted.
Finally, the traditional elite strategy and the reception criterion based on distance proposed
in this paper are combined to generate new populations, and the individuals of leader
wolves and ordinary wolves are merged for the next iteration of updating. The detailed
description of DGUO can be found in Section 3.5.

3.2. Solution Representation

The solution of the proposed algorithm contains two vectors: the machine selection
vector and the operation sequence vector. In order to represent these two subproblems
more rationally, an integer coding approach is adopted in this paper. Next, the 3 × 3 FJSP
example in Table 3 is used to explain the encoding and decoding methods.

The machine selection (MS) vector is made up of an array of integers. The encoding
of the machine sequence corresponds to the order of the job numbers from the small-
est to the largest, as shown in Figure 3. The machine sequence can be expressed as
MS = {2, 3, 3, 3, 1, 1, 2, 1}. It should be noted that each element in the MS sequence
represents the machine number; for example, the fourth element of the MS indicates that
machine M3 is selected by operation 1 of job 2.

Machines 2022, 10, x FOR PEER REVIEW 12 of 40

tion sequence can be expressed as OS = {3, 2, 1, 1, 3, 1, 2, 3}. It should be noted that the el-
ements in the OS vector are represented by job numbers. In the order starting at the left,
if the element of the OS at the 𝑛th position is 𝑖 and it appears 𝑗 times in the current se-
quence, the element correspond to the information about operation 𝑗 of job 𝑖 and is 𝑂௜,௝.
Therefore, it can be seen from the OS vector in Figure 3 that the decoding order is 𝑂ଷ,ଵ → 𝑂ଶ,ଵ → 𝑂ଵ,ଵ → 𝑂ଵ,ଶ → 𝑂ଷ,ଶ → 𝑂ଵ,ଷ → 𝑂ଶ,ଶ → 𝑂ଷ,ଶ.

The decoding process is as follows. First, all operations are assigned to the corre-
sponding machines based on the MS vector. Meanwhile, the processing order of all oper-
ations on each machine is determined by the OS vector. Then, the earliest start time of the
current operation is determined according to the constraint rules of FJSP. Finally, a rea-
sonable scheduling scheme is obtained by arranging all operations to their corresponding
positions. Figure 4 shows the Gantt chart of a 3 × 3 FJSP instance.

Figure 3. Representation of the solution.

Figure 4. An example of a Gantt chart for a processing arrangement.

3.3. Population Initialization
For swarm intelligence algorithms, the quality of the original population can be im-

proved by effective initialization methods, and it is able to give a positive impact during
the subsequent iterations. Currently, most of the initialization methods in studies about
FJSP use random methods to generate populations. Nevertheless, it is difficult to guaran-
tee the quality of the generated initial populations by only using random methods. Con-
sequently, it is important to design effective strategies for the initialization phase to im-
prove the search performance of the algorithm.

Figure 3. Representation of the solution.

The operation sequence (OS) vector consists of an array of integers, representing the
job information and operation processing order in FJSP. As shown in Figure 3, the operation
sequence can be expressed as OS = {3, 2, 1, 1, 3, 1, 2, 3}. It should be noted that the
elements in the OS vector are represented by job numbers. In the order starting at the
left, if the element of the OS at the nth position is i and it appears j times in the current
sequence, the element correspond to the information about operation j of job i and is
Oi,j. Therefore, it can be seen from the OS vector in Figure 3 that the decoding order is
O3,1 → O2,1 → O1,1 → O1,2 → O3,2 → O1,3 → O2,2 → O3,2 .

The decoding process is as follows. First, all operations are assigned to the correspond-
ing machines based on the MS vector. Meanwhile, the processing order of all operations on
each machine is determined by the OS vector. Then, the earliest start time of the current
operation is determined according to the constraint rules of FJSP. Finally, a reasonable
scheduling scheme is obtained by arranging all operations to their corresponding positions.
Figure 4 shows the Gantt chart of a 3 × 3 FJSP instance.

Machines 2022, 10, 1100 12 of 38

Machines 2022, 10, x FOR PEER REVIEW 12 of 40

tion sequence can be expressed as OS = {3, 2, 1, 1, 3, 1, 2, 3}. It should be noted that the el-
ements in the OS vector are represented by job numbers. In the order starting at the left,
if the element of the OS at the 𝑛th position is 𝑖 and it appears 𝑗 times in the current se-
quence, the element correspond to the information about operation 𝑗 of job 𝑖 and is 𝑂௜,௝.
Therefore, it can be seen from the OS vector in Figure 3 that the decoding order is 𝑂ଷ,ଵ → 𝑂ଶ,ଵ → 𝑂ଵ,ଵ → 𝑂ଵ,ଶ → 𝑂ଷ,ଶ → 𝑂ଵ,ଷ → 𝑂ଶ,ଶ → 𝑂ଷ,ଶ.

The decoding process is as follows. First, all operations are assigned to the corre-
sponding machines based on the MS vector. Meanwhile, the processing order of all oper-
ations on each machine is determined by the OS vector. Then, the earliest start time of the
current operation is determined according to the constraint rules of FJSP. Finally, a rea-
sonable scheduling scheme is obtained by arranging all operations to their corresponding
positions. Figure 4 shows the Gantt chart of a 3 × 3 FJSP instance.

Figure 3. Representation of the solution.

Figure 4. An example of a Gantt chart for a processing arrangement.

3.3. Population Initialization
For swarm intelligence algorithms, the quality of the original population can be im-

proved by effective initialization methods, and it is able to give a positive impact during
the subsequent iterations. Currently, most of the initialization methods in studies about
FJSP use random methods to generate populations. Nevertheless, it is difficult to guaran-
tee the quality of the generated initial populations by only using random methods. Con-
sequently, it is important to design effective strategies for the initialization phase to im-
prove the search performance of the algorithm.

Figure 4. An example of a Gantt chart for a processing arrangement.

3.3. Population Initialization

For swarm intelligence algorithms, the quality of the original population can be
improved by effective initialization methods, and it is able to give a positive impact during
the subsequent iterations. Currently, most of the initialization methods in studies about FJSP
use random methods to generate populations. Nevertheless, it is difficult to guarantee the
quality of the generated initial populations by only using random methods. Consequently,
it is important to design effective strategies for the initialization phase to improve the
search performance of the algorithm.

Tent chaotic sequences, with their favorable randomness, ergodicity and regularity,
are often used to combine with metaheuristic algorithms to improve population diversity
and enable the algorithm’s global search capability [54]. In this paper, a modified Tent
chaotic sequence is introduced, and its expression is shown in Formula (15). The variables
obtained by Tent chaotic mapping in the search space are shown in Equation (16).

yi
j+1 =

{
2yi

j + rand(0, 1)× 1
N yi

j ∈ [0, 1
2]

2(1− yi
j) + rand(0, 1)× 1

N yi
j ∈ (1

2 , 1]
(15)

xi
j = lbi +

(
ubi − lbi

)
yi

j (16)

where rand(0, 1) is the random number within the interval [0, 1], i is the individual number,
j is the number of the chaotic variable, N is the total number of individuals within the
population and ub and lb are the upper and lower bounds of the current variable in the
search space, respectively.

As shown in Figure 5, the machines are selected for the current operation in order
from left to right according to the code, and the MS is finally obtained. A string of position
index codes is obtained by arranging the obtained chaotic sequence in ascending order, and
then transformed into an operation sequence according to the distribution of jobs and their
operations. In Figure 5, the chaotic sequence {0.15, 2.84, 1.66, 0.54, 2.02, 1.83} is transformed
into the operation codes {O1,1, O3,1, O2,1, O1,2, O3,2, O2,2}.

Machines 2022, 10, 1100 13 of 38

Machines 2022, 10, x FOR PEER REVIEW 13 of 40

Tent chaotic sequences, with their favorable randomness, ergodicity and regularity,
are often used to combine with metaheuristic algorithms to improve population diversity
and enable the algorithm’s global search capability [54]. In this paper, a modified Tent
chaotic sequence is introduced, and its expression is shown in Formula (15). The variables
obtained by Tent chaotic mapping in the search space are shown in Equation (16).

𝑦௝ାଵ௜ = ൞ 2𝑦௝௜ + 𝑟𝑎𝑛𝑑(0,1) × 1𝑁2(1 − 𝑦௝௜) + 𝑟𝑎𝑛𝑑(0,1) × 1𝑁
𝑦௝௜ ∈ [0, 12]𝑦௝௜ ∈ (12 , 1] (15)

𝑥௝௜ = 𝑙𝑏௜ + (𝑢𝑏௜ − 𝑙𝑏௜)𝑦௝௜ (16)

where 𝑟𝑎𝑛𝑑(0, 1) is the random number within the interval [0, 1], 𝑖 is the individual
number, 𝑗 is the number of the chaotic variable, 𝑁 is the total number of individuals
within the population and 𝑢𝑏 and 𝑙𝑏 are the upper and lower bounds of the current var-
iable in the search space, respectively.

As shown in Figure 5, the machines are selected for the current operation in order
from left to right according to the code, and the MS is finally obtained. A string of position
index codes is obtained by arranging the obtained chaotic sequence in ascending order,
and then transformed into an operation sequence according to the distribution of jobs and
their operations. In Figure 5, the chaotic sequence {0.15, 2.84, 1.66, 0.54, 2.02, 1.83} is trans-
formed into the operation codes {𝑂ଵ,ଵ, 𝑂ଷ,ଵ, 𝑂ଶ,ଵ, 𝑂ଵ,ଶ, 𝑂ଷ,ଶ, 𝑂ଶ,ଶ}.

Figure 5. The generation process for the encoding of the initial population.

Three heuristic strategies are introduced in the initialization phase of the machine
sequence to improve the quality of the initial population. Combined with the chaotic map-
ping strategy, these three strategies are described as follows.

Random initialization: This is the earliest initialization method, and the reason for
adopting this strategy is that it guarantees a high diversity of the initial populations gen-
erated. (1) Generate a sequence of operations by chaotic mapping. (2) Randomly select a

Figure 5. The generation process for the encoding of the initial population.

Three heuristic strategies are introduced in the initialization phase of the machine
sequence to improve the quality of the initial population. Combined with the chaotic
mapping strategy, these three strategies are described as follows.

Random initialization: This is the earliest initialization method, and the reason for
adopting this strategy is that it guarantees a high diversity of the initial populations
generated. (1) Generate a sequence of operations by chaotic mapping. (2) Randomly
select a machine from its corresponding set of select machines for the current operation, in
left-to-right order. (3) Repeat step 2 until a complete vector of machines is generated.

Local processing time minimization rule: The purpose of this rule is to select a machine
with the minimum processing time for each operation, thus reducing the corresponding
processing time [55]. (1) Generate a sequence of operations by chaotic mapping. (2) Select a
machine with the minimum processing time for the current operation from its correspond-
ing set of available machines, in left-to-right order. (3) Repeat step 2 until a complete vector
of machines is generated.

Minimum completion time: The purpose of this rule is to optimize the maximum
completion time and prevent over-selection of the machine with the smallest processing
time, which could lead to a machine with high performance but too many operations sched-
uled to be processed, while a machine with low performance is left idle [56]. (1) Generate
a sequence of operations by chaotic mapping. (2) In left-to-right order, if the selectable
machines for the current operation are greater than or equal to two, determine the machine
with the smallest completion time based on the earliest start time and processing time.
(3) Repeat step 2 until a complete vector of machines is generated.

Each of the three strategies mentioned above has been proven effective in the literature,
so a hybrid initialization approach (HI) is proposed by combining the advantages of the
three strategies. The strategy is described in Algorithm 1.

Machines 2022, 10, 1100 14 of 38

Algorithm 1. Hybrid initialization (HI) strategy

Input: Total number of individuals n
Output: Initial population
1. for i = 1:n do
2. The initial population is generated using a random initialization rule, size [n/3]

3.
The initial population is generated employing the local minimum processing time rule,

size [n/3]

4.
The initial population is generated applying the minimum completion time rule,

size [n/3]
5. Combine the initial populations generated by the above three rules, denoted as P
6. if size of P = n then
7. break
8. else
9. Generate the rest with a random initialization strategy
10. end if
11. end for

3.4. Nonlinear Convergence Factor

Needless to say, the primary consideration for metaheuristics is how to better balance
the exploration and exploitation capabilities of the algorithm. This is no exception in
GWO. The parameter A, in the traditional GWO, plays the role of regulating the global and
local search capability of the algorithm. Throughout the search process of the algorithm,
|A| < 1, the ordinary wolf will move in the direction of the head wolf individual in the
population, which reflects the local search of the algorithm. On the contrary, the grey
wolf individuals will move away from the head wolf, which corresponds to the global
search ability of the algorithm. The change in parameter A is determined by the linearly
decreasing parameter a. Nevertheless, since FJSP itself is a combinatorial optimization
problem with high complexity, it is difficult to accurately adapt to the complex nonlinear
search process if only the traditional parameter a of GWO is used to control the update of
the algorithm.

Therefore, a nonlinear control parameter strategy based on exponential functions is
proposed in this section. At the early stage of the algorithm update, the descent rate of the
proposed parameter a is accelerated, which aims to improve the convergence rate of GWO.
In the later stages, the slowdown is performed to enhance the exploitation of the algorithm.
The modified convergence factor a can be defined as shown in the Equation (17):

a = 2− 2·λ· t
T
·e
−0.7t

T (17)

where t is the number of current iterations, T is the maximum number of iterations and λ
is used to regulate the non-linear declining trend of a. To visualize the convergence trend
of the proposed parameter a, Figure 6 simulates the evolution curve of the parameter a at
different λ values.

Machines 2022, 10, 1100 15 of 38

Machines 2022, 10, x FOR PEER REVIEW 15 of 40

proposed parameter 𝑎 is accelerated, which aims to improve the convergence rate of
GWO. In the later stages, the slowdown is performed to enhance the exploitation of the
algorithm. The modified convergence factor 𝑎 can be defined as shown in the Equation
(17): 𝑎 = 2 − 2 ∙ 𝜆 ∙ 𝑡𝑇 ∙ 𝑒ି଴.଻௧் (17)

where 𝑡 is the number of current iterations, 𝑇 is the maximum number of iterations and 𝜆 is used to regulate the non-linear declining trend of 𝑎. To visualize the convergence
trend of the proposed parameter 𝑎, Figure 6 simulates the evolution curve of the param-
eter 𝑎 at different 𝜆 values.

Figure 6. Convergence trend of parameter 𝑎 in different cases.

3.5. Discrete Grey Wolf Update Operator (DGUO)
The GWO was first proposed to be applicable for solving continuous optimization

problems; nevertheless, FJSP, as a typical discrete combinatorial optimization problem,
cannot be directly used by GWO for solving it. For this reason, a reasonable discretization
of the coding vector of GWO is required. In this section, a discrete grey wolf update oper-
ator (DGUO) is designed, in which each solution corresponds to a grey wolf, and it con-
sists of two parts, i.e., the operation part and the machine part. Its update method is shown
in Algorithm 2.

The proposed DGUO has the following three characteristics. According to the social
hierarchy of GWO, the wolf packs are divided into leader wolves (α, β, δ) and ordinary
wolves (ω), and the role of the leader wolves is to guide the ordinary wolves towards the
direction of prey. To distinguish the identity from ordinary wolves, the DGUO is designed
with different update methods for these two kinds of wolves. Secondly, in order to en-
hance individual communication within the population, an intra-population information
interoperability strategy was introduced for the update of common wolves, as the move-
ment of ordinary wolves in the search space during the update of GWO was only related
to the leader wolves. Finally, a hamming distance-based reception mechanism was

Figure 6. Convergence trend of parameter a in different cases.

3.5. Discrete Grey Wolf Update Operator (DGUO)

The GWO was first proposed to be applicable for solving continuous optimization
problems; nevertheless, FJSP, as a typical discrete combinatorial optimization problem,
cannot be directly used by GWO for solving it. For this reason, a reasonable discretization of
the coding vector of GWO is required. In this section, a discrete grey wolf update operator
(DGUO) is designed, in which each solution corresponds to a grey wolf, and it consists of
two parts, i.e., the operation part and the machine part. Its update method is shown in
Algorithm 2.

The proposed DGUO has the following three characteristics. According to the social
hierarchy of GWO, the wolf packs are divided into leader wolves (α, β, δ) and ordinary
wolves (ω), and the role of the leader wolves is to guide the ordinary wolves towards
the direction of prey. To distinguish the identity from ordinary wolves, the DGUO is
designed with different update methods for these two kinds of wolves. Secondly, in
order to enhance individual communication within the population, an intra-population
information interoperability strategy was introduced for the update of common wolves,
as the movement of ordinary wolves in the search space during the update of GWO was
only related to the leader wolves. Finally, a hamming distance-based reception mechanism
was adopted to enhance the population diversity and avoid premature convergence of
the algorithm.

A two-dimensional space vector schematic is used to explain the update mechanism of
DIGWO. The legend has been marked. In Figure 7, (a) and (b) denote the renewal method of
ordinary wolves at different stages, respectively. R represents a randomly selected ordinary
wolf in the population, and w represents the current ordinary wolf. If |A| < 1, the ordinary
wolf is called by the leader wolf to approach it; otherwise, an ordinary wolf is randomly
selected in the population to determine the direction and step length of the next movement
of the current individual. Figure 7c represents the update of the head wolf, which relies only
on its own experience as it moves through the search space. Figure 7d indicates that the
generated new generation of individuals is retained not only with reference to the fitness of
the individuals, but also selected with a certain probability based on the hamming distance.

Machines 2022, 10, 1100 16 of 38

Machines 2022, 10, x FOR PEER REVIEW 16 of 40

adopted to enhance the population diversity and avoid premature convergence of the al-
gorithm.

A two-dimensional space vector schematic is used to explain the update mechanism
of DIGWO. The legend has been marked. In Figure 7, (a) and (b) denote the renewal
method of ordinary wolves at different stages, respectively. R represents a randomly se-
lected ordinary wolf in the population, and w represents the current ordinary wolf. If |A|
< 1, the ordinary wolf is called by the leader wolf to approach it; otherwise, an ordinary
wolf is randomly selected in the population to determine the direction and step length of
the next movement of the current individual. Figure 7c represents the update of the head
wolf, which relies only on its own experience as it moves through the search space. Figure
7d indicates that the generated new generation of individuals is retained not only with
reference to the fitness of the individuals, but also selected with a certain probability based
on the hamming distance.

Figure 7. Schematic diagram of the update mechanism of DIGWO. (a) The update method of the
ordinary wolf when |A| < 1; (b) The update method of the ordinary wolf when |A| > 1; (c) The
update method of leader wolf; (d) Selection of new individuals based on hamming distance.

Figure 7. Schematic diagram of the update mechanism of DIGWO. (a) The update method of the
ordinary wolf when |A| < 1; (b) The update method of the ordinary wolf when |A| > 1; (c) The
update method of leader wolf; (d) Selection of new individuals based on hamming distance.

3.5.1. Update Approach Based on Leader Wolf

In order for the leader wolf to better guide the population toward the optimal solution,
the update method of the leader wolf will be redesigned. In the design of the update
operator for the leader wolf, it combines the coding characteristics of the operation sequence
and machine sequence in FJSP, and the strategy of the critical path is also introduced.

The description of the critical path is given below. The critical path is the longest
path from the start node to the end node in the feasible scheduling [1]. According to the
critical path method in operational research, moving the critical operations in the critical
path can improve the solution of FJSP. Therefore, in order to enhance the convergence of
the algorithm while reducing the computational cost, the neighborhood structures used
are designed based on the movement on the critical path. As shown in Figure 8, all the
operations contained in the black line box constitute a complete critical path, where O3,1
O4,1, O4,2, O4,3 and O1,3 are the critical operations on the critical path. When two or more
consecutive critical operations are on the same machine, we call them critical blocks. As
shown in Figure 8, O4,3 and O1,3 are critical blocks.

Machines 2022, 10, 1100 17 of 38

Algorithm 2. Overall update process of DGUO

Input: The OS vectors and MS vectors of all grey wolves in t generation, total number of
individuals n
Output: The OS vectors and MS vectors of all grey wolves in t + 1 generation

1
All grey Wolf individuals of the t generation were sorted according to the non-decreasing
order of makespan

2 Xleader ← The three individuals with the smallest makespan
3 Xnormal ← Remaining individual grey wolves
4 for i = 1 : n− 3 do
5 P1 ← Xnormal(i)
6 if |A| <= 1 then
7 P2 is selected from the Xleader by roulette
8 else
9 P2, not the ith individual, is randomly selected from within the Xnormal
10 end if
11 {O f f1, O f f2} ← IPOXCrossover{P1, P2}
12 {O f f1, O f f2} ← MPXMutation{P1, P2}
13 generate a random number r2 ∈ [0, 1]
14 if r2 > paccept then
15 the offspring individual with the smallest makespan is preserved
16 else
17 the offspring individuals further away from P2 is preserved
18 end if
19 end for
20 for j = 1 : 3 do
21 the jth OS vector was updated by the swap operation based on the critical block
22 generate a random number r3 ∈ [0, 1]
23 if r3 < 0.7 then

24
the jth MS vector was updated using multi-point mutation to randomly select

a machine
25 else

26
the jth MS vector was updated using multi-point mutation to select the machine with

minimum processing time
27 end if
28 end for

29
return the leader wolf and the normal wolf are merged, and the OS and MS of the t+1th
generation are output

Machines 2022, 10, x FOR PEER REVIEW 18 of 40

3.5.1. Update Approach Based on Leader Wolf
In order for the leader wolf to better guide the population toward the optimal solu-

tion, the update method of the leader wolf will be redesigned. In the design of the update
operator for the leader wolf, it combines the coding characteristics of the operation se-
quence and machine sequence in FJSP, and the strategy of the critical path is also intro-
duced.

The description of the critical path is given below. The critical path is the longest path
from the start node to the end node in the feasible scheduling [1]. According to the critical
path method in operational research, moving the critical operations in the critical path can
improve the solution of FJSP. Therefore, in order to enhance the convergence of the algo-
rithm while reducing the computational cost, the neighborhood structures used are de-
signed based on the movement on the critical path. As shown in Figure 8, all the opera-
tions contained in the black line box constitute a complete critical path, where 𝑂ଷ,ଵ 𝑂ସ,ଵ, 𝑂ସ,ଶ, 𝑂ସ,ଷ and 𝑂ଵ,ଷ are the critical operations on the critical path. When two or more con-
secutive critical operations are on the same machine, we call them critical blocks. As
shown in Figure 8, 𝑂ସ,ଷ and 𝑂ଵ,ଷ are critical blocks.

Figure 8. An example of a critical path in a Gantt chart.

• Update of operation sequence
The update method of the operation sequence is shown in Figure 9. A new operation

sequence is generated by moving the two key operations in the key block [45]. The process
of moving needs to satisfy the FJSP constraint that the two operations to be exchanged do
not belong to the same job. The rules for the exchange are as follows.
1. The swapping operation is performed only on the critical block.
2. Only the first two and last two critical operations of the critical block are considered

for swapping.
3. If there are only two critical operations in the block, the two operations are swapped.

Figure 8. An example of a critical path in a Gantt chart.

Machines 2022, 10, 1100 18 of 38

• Update of operation sequence

The update method of the operation sequence is shown in Figure 9. A new operation
sequence is generated by moving the two key operations in the key block [45]. The process
of moving needs to satisfy the FJSP constraint that the two operations to be exchanged do
not belong to the same job. The rules for the exchange are as follows.

1. The swapping operation is performed only on the critical block.
2. Only the first two and last two critical operations of the critical block are considered

for swapping.
3. If there are only two critical operations in the block, the two operations are swapped.

Machines 2022, 10, x FOR PEER REVIEW 19 of 40

Figure 9. Update diagram of operation sequence.

• Update of machine sequence
The machine sequence is updated as shown in Figure 10. A new machine sequence

is generated by reselecting machines for the critical operations in the critical path. The
specific steps are as follows.
1. Determine the number of available machines 𝑚 in the critical operation 𝑂௜,௝.
2. If the number of selectable machines is equal to one (𝑚 = 1), a new critical operation 𝑂௜,௘ is selected; if 𝑚 = 2, another machine is selected for replacement; if 𝑚 ≥ 2, a

machine with the smallest processing time is selected from it for replacement.

Figure 10. Multi-point mutation based on machine sequences.

3.5.2. Update Approach Based on Ordinary Wolf
In the proposed DGUO, the update of ordinary wolves has the following three fea-

tures. Firstly, the crossover operator is introduced to achieve the information interaction
between the leader wolf and the ordinary wolf, and it can enhance the global search ability
of the algorithm. Secondly, the roulette method is used to select one of the three leading
wolves for the selection of crossover parents. The significance of using the roulette method
is that high-quality information is used more often. Finally, the control parameter 𝐴 in
GWO is retained and improved. If |𝐴| < 1, the crossover operation is performed between
the current individual and the leader wolf; otherwise, an ordinary wolf is randomly se-
lected from the population to crossover with the current individual. The improved prior-
ity operation crossover (IPOX) used to operate the sequence update is shown in Figure 11.
For machine sequences, the multi-point crossover (MPX) operation is used as shown in
Figure 12. These two crossover operators are described below.
• IPOX crossover

Step 1: The job set 𝐽 = {𝐽ଵ, 𝐽ଶ, 𝐽ଷ, I, 𝐽௡} is randomly divided into two sets, 𝑈ଵ and 𝑈ଶ.
Step 2: All elements of the operation sequence of the parent (𝑃ଵ) which belong to the

set 𝑈ଵ are directly retained in Child (𝐶ଵ) in their original positions. Similarly, the elements
of the parent 𝑃ଶ which belong to the set 𝑈ଶ are directly retained in 𝐶ଶ and remain in
their original positions

Figure 9. Update diagram of operation sequence.

• Update of machine sequence

The machine sequence is updated as shown in Figure 10. A new machine sequence
is generated by reselecting machines for the critical operations in the critical path. The
specific steps are as follows.

1. Determine the number of available machines m in the critical operation Oi,j.
2. If the number of selectable machines is equal to one (m = 1), a new critical operation

Oi,e is selected; if m = 2, another machine is selected for replacement; if m ≥ 2, a
machine with the smallest processing time is selected from it for replacement.

Machines 2022, 10, x FOR PEER REVIEW 19 of 40

Figure 9. Update diagram of operation sequence.

• Update of machine sequence
The machine sequence is updated as shown in Figure 10. A new machine sequence

is generated by reselecting machines for the critical operations in the critical path. The
specific steps are as follows.
1. Determine the number of available machines 𝑚 in the critical operation 𝑂௜,௝.
2. If the number of selectable machines is equal to one (𝑚 = 1), a new critical operation 𝑂௜,௘ is selected; if 𝑚 = 2, another machine is selected for replacement; if 𝑚 ≥ 2, a

machine with the smallest processing time is selected from it for replacement.

Figure 10. Multi-point mutation based on machine sequences.

3.5.2. Update Approach Based on Ordinary Wolf
In the proposed DGUO, the update of ordinary wolves has the following three fea-

tures. Firstly, the crossover operator is introduced to achieve the information interaction
between the leader wolf and the ordinary wolf, and it can enhance the global search ability
of the algorithm. Secondly, the roulette method is used to select one of the three leading
wolves for the selection of crossover parents. The significance of using the roulette method
is that high-quality information is used more often. Finally, the control parameter 𝐴 in
GWO is retained and improved. If |𝐴| < 1, the crossover operation is performed between
the current individual and the leader wolf; otherwise, an ordinary wolf is randomly se-
lected from the population to crossover with the current individual. The improved prior-
ity operation crossover (IPOX) used to operate the sequence update is shown in Figure 11.
For machine sequences, the multi-point crossover (MPX) operation is used as shown in
Figure 12. These two crossover operators are described below.
• IPOX crossover

Step 1: The job set 𝐽 = {𝐽ଵ, 𝐽ଶ, 𝐽ଷ, I, 𝐽௡} is randomly divided into two sets, 𝑈ଵ and 𝑈ଶ.
Step 2: All elements of the operation sequence of the parent (𝑃ଵ) which belong to the

set 𝑈ଵ are directly retained in Child (𝐶ଵ) in their original positions. Similarly, the elements
of the parent 𝑃ଶ which belong to the set 𝑈ଶ are directly retained in 𝐶ଶ and remain in
their original positions

Figure 10. Multi-point mutation based on machine sequences.

3.5.2. Update Approach Based on Ordinary Wolf

In the proposed DGUO, the update of ordinary wolves has the following three features.
Firstly, the crossover operator is introduced to achieve the information interaction between
the leader wolf and the ordinary wolf, and it can enhance the global search ability of the
algorithm. Secondly, the roulette method is used to select one of the three leading wolves
for the selection of crossover parents. The significance of using the roulette method is that
high-quality information is used more often. Finally, the control parameter A in GWO
is retained and improved. If |A| < 1, the crossover operation is performed between the
current individual and the leader wolf; otherwise, an ordinary wolf is randomly selected
from the population to crossover with the current individual. The improved priority
operation crossover (IPOX) used to operate the sequence update is shown in Figure 11.

Machines 2022, 10, 1100 19 of 38

For machine sequences, the multi-point crossover (MPX) operation is used as shown in
Figure 12. These two crossover operators are described below.

Machines 2022, 10, x FOR PEER REVIEW 20 of 40

Step 3: The vacant places of 𝐶ଵ are filled by the elements of the operation sequence
of the parent 𝑃ଶ which belong to the set 𝑈ଶ sequentially. Likewise, the elements belong-
ing to the set 𝑈ଵ in the 𝑃ଵ are filled sequentially to the remaining positions in 𝐶ଶ in or-
der.

Figure 11. IPOX crossover based on operation sequence.

• MPX crossover
Step 1: A random array Ra consisting of 0 and 1 is generated and its length is equal

to MS.
Step 2: Determine all the positions in RA where the elements are 1 and note them as

Index; find the elements at Index position in P1 and P2 and swap them.
Step 3: The remaining elements in P1 and P2 are not moved.

Figure 12. MPX crossover based on machine sequences.

Figure 11. IPOX crossover based on operation sequence.

Machines 2022, 10, x FOR PEER REVIEW 20 of 40

Step 3: The vacant places of 𝐶ଵ are filled by the elements of the operation sequence
of the parent 𝑃ଶ which belong to the set 𝑈ଶ sequentially. Likewise, the elements belong-
ing to the set 𝑈ଵ in the 𝑃ଵ are filled sequentially to the remaining positions in 𝐶ଶ in or-
der.

Figure 11. IPOX crossover based on operation sequence.

• MPX crossover
Step 1: A random array Ra consisting of 0 and 1 is generated and its length is equal

to MS.
Step 2: Determine all the positions in RA where the elements are 1 and note them as

Index; find the elements at Index position in P1 and P2 and swap them.
Step 3: The remaining elements in P1 and P2 are not moved.

Figure 12. MPX crossover based on machine sequences.

Figure 12. MPX crossover based on machine sequences.

• IPOX crossover

Step 1: The job set J = {J1, J2, J3, I, Jn} is randomly divided into two sets, U1 and U2.
Step 2: All elements of the operation sequence of the parent (P1) which belong to the

set U1 are directly retained in Child (C1) in their original positions. Similarly, the elements
of the parent P2 which belong to the set U2 are directly retained in C2 and remain in their
original positions

Step 3: The vacant places of C1 are filled by the elements of the operation sequence of
the parent P2 which belong to the set U2 sequentially. Likewise, the elements belonging to
the set U1 in the P1 are filled sequentially to the remaining positions in C2 in order.

• MPX crossover

Machines 2022, 10, 1100 20 of 38

Step 1: A random array Ra consisting of 0 and 1 is generated and its length is equal
to MS.

Step 2: Determine all the positions in RA where the elements are 1 and note them as
Index; find the elements at Index position in P1 and P2 and swap them.

Step 3: The remaining elements in P1 and P2 are not moved.

3.5.3. Acceptance Criteria

In order to prevent the population rapidly converging to non-optimal space during
the update process, a distance-based reception criterion is proposed. Similar to the role of
the control parameter C in GWO, the individual further away from the optimal ones in
the search space also has a chance to be retained. Considering the discrete nature of the
encoding, the distances are also discretized and called hamming distances in solving the
FJSP [45].

For machine sequences, the hamming distance between two individuals is expressed using
the number of unequal elements in the sequence. An example of hamming distance is as follows:
if there are two machine sequences in the FJSP solution space, Pcurrent = (1, 3, 2, 1, 4, 2, 1, 1) and
Pbest = (3, 1, 2, 1, 2, 2, 1, 1), and if there are three points of inconsistency between the two
sequences, the hamming distance is 3. This calculation procedure is shown in Figure 13. For
operational sequences, the hamming distance between two individuals can be measured by
the number of swaps. For example, two operation sequences in FJSP solution space are as
follows: Pcurrent = (3, 1, 2, 2, 1, 1, 3, 2) and Pbest = (1, 3, 2, 1, 2, 1, 2, 3); the Pcurrent will need
four swaps to obtain Pbest, so the hamming distance is 4. This process is shown in Figure 14.
The hamming distance between two individuals and the best individual is calculated and
compared in turn. If the acceptance probability paccept is satisfied, then the individual is
retained using the hamming distance; otherwise, the individual with high fitness in the
offspring will be retained.

Machines 2022, 10, x FOR PEER REVIEW 21 of 40

3.5.3. Acceptance Criteria
In order to prevent the population rapidly converging to non-optimal space during

the update process, a distance-based reception criterion is proposed. Similar to the role of
the control parameter C in GWO, the individual further away from the optimal ones in
the search space also has a chance to be retained. Considering the discrete nature of the
encoding, the distances are also discretized and called hamming distances in solving the
FJSP [45].

For machine sequences, the hamming distance between two individuals is expressed
using the number of unequal elements in the sequence. An example of hamming distance
is as follows: if there are two machine sequences in the FJSP solution space, 𝑃௖௨௥௥௘௡௧ =(1,3,2,1,4,2,1,1) and 𝑃௕௘௦௧ = (3,1,2,1,2,2,1,1), and if there are three points of inconsistency
between the two sequences, the hamming distance is 3. This calculation procedure is
shown in Figure 13. For operational sequences, the hamming distance between two indi-
viduals can be measured by the number of swaps. For example, two operation sequences
in FJSP solution space are as follows: 𝑃௖௨௥௥௘௡௧ = (3,1,2,2,1,1,3,2) and 𝑃௕௘௦௧ = (1,3,2,1,2,1,2,3); the 𝑃௖௨௥௥௘௡௧ will need four swaps to obtain 𝑃௕௘௦௧, so the hamming dis-
tance is 4. This process is shown in Figure 14. The hamming distance between two indi-
viduals and the best individual is calculated and compared in turn. If the acceptance prob-
ability 𝑝௔௖௖௘௣௧ is satisfied, then the individual is retained using the hamming distance;
otherwise, the individual with high fitness in the offspring will be retained.

Figure 13. Schematic diagram of hamming distance calculation in machine sequences.

Figure 14. Schematic diagram of hamming distance calculation in the operation sequence.

Figure 13. Schematic diagram of hamming distance calculation in machine sequences.

Machines 2022, 10, x FOR PEER REVIEW 21 of 40

3.5.3. Acceptance Criteria
In order to prevent the population rapidly converging to non-optimal space during

the update process, a distance-based reception criterion is proposed. Similar to the role of
the control parameter C in GWO, the individual further away from the optimal ones in
the search space also has a chance to be retained. Considering the discrete nature of the
encoding, the distances are also discretized and called hamming distances in solving the
FJSP [45].

For machine sequences, the hamming distance between two individuals is expressed
using the number of unequal elements in the sequence. An example of hamming distance
is as follows: if there are two machine sequences in the FJSP solution space, 𝑃௖௨௥௥௘௡௧ =(1,3,2,1,4,2,1,1) and 𝑃௕௘௦௧ = (3,1,2,1,2,2,1,1), and if there are three points of inconsistency
between the two sequences, the hamming distance is 3. This calculation procedure is
shown in Figure 13. For operational sequences, the hamming distance between two indi-
viduals can be measured by the number of swaps. For example, two operation sequences
in FJSP solution space are as follows: 𝑃௖௨௥௥௘௡௧ = (3,1,2,2,1,1,3,2) and 𝑃௕௘௦௧ = (1,3,2,1,2,1,2,3); the 𝑃௖௨௥௥௘௡௧ will need four swaps to obtain 𝑃௕௘௦௧, so the hamming dis-
tance is 4. This process is shown in Figure 14. The hamming distance between two indi-
viduals and the best individual is calculated and compared in turn. If the acceptance prob-
ability 𝑝௔௖௖௘௣௧ is satisfied, then the individual is retained using the hamming distance;
otherwise, the individual with high fitness in the offspring will be retained.

Figure 13. Schematic diagram of hamming distance calculation in machine sequences.

Figure 14. Schematic diagram of hamming distance calculation in the operation sequence.

Figure 14. Schematic diagram of hamming distance calculation in the operation sequence.

Machines 2022, 10, 1100 21 of 38

4. Numerical Analysis

In this section, to investigate the accuracy and stability of the proposed DIGWO,
eight benchmark test functions are employed in the experiments with dimensions set
to D = 30, 50 and 100. As shown in Table 5, the functions are characterized by U, M,
S and N, corresponding to unimodal, multimodal, separable and non-separable. The
proposed DIGWO was coded in MATLAB 2016a software on an Intel 3.80 GHz Pentium
Gold processor with 8 Gb RAM on a Win10 operating system. In the later experiments for
solving FJSP, this same operating environment is used.

Table 5. Details of benchmark functions.

Name Functions C Range fmin

Sphere f1(x) = ∑n
i=1 x2

i US [−100, 100] 0
Sumsquare f2(x) = ∑n

i=1 ix2
i US [−10, 10] 0

Schwefel2.21 f3(x) = max
i
{|xi|, 1 6 i 6 n} UN [−100, 100] 0

Schwefel2.22 f4(x) = ∑n
i−1|xi|+ Πn

i=1|xi| UN [−10, 10] 0
Rosenbrock f5(x) = ∑n−1

i=1 [100(xi+1 − x2
i)

2
+ (xi − 1)2] UN [−5, 10] 0

Rastrigin F6(x) = ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

MS [−5.12, 5.12] 0
Ackley F7(x) = −20 exp

(
−0.2 1

n ∑n
i=1 x2

i

)
− exp

(
1
n ∑n

i=1 cos(2πxi)
)
+ 20 + e MN [−32, 32] 0

Levy F13(x) = ∑n
i=1 (xi − 1)2[1+ sin2(3πxi + 1)] + |xn− 1|[1+ sin2(3πxn)] MN [−10, 10] 0

The unimodal function has only one optimal solution, Io it is used to verify the
exploitation capability of the algorithm. In contrast, the multimodal function has multiple
local optima and is therefore used to test the exploration capability of the algorithm. The
purpose of setting multiple dimensions is to test the stability of the algorithms’ performance
on problems of different complexity. To verify the effectiveness and superiority of the
algorithms, there are five metaheuristic algorithms which have been proposed in recent
years used for comparison: GWO, PSO, MFO, SSA, SCA and Jaya [35,57–61]. In order
to ensure fairness during the experiment, the population size was set to 30, and the
maximum number of iterations was set to 3000, 5000 and 10,000 according to the order of
the dimensionality (D = 30, 50, 100). All other parameters of the algorithms involved in the
comparison were set according to the relevant literature. Each algorithm was run 30 times
independently on each benchmark function.

Tables 6–8 give the running results of the comparison algorithm obtained in the test
functions of 30, 50 and 100 dimensions. The mean (Mean) and standard deviation (Std)
obtained from the run results are used as evaluation metrics to represent the performance
of the algorithm. The best results are bolded. To test the significance difference between
the algorithms, the Wilcoxon signed rank test with a significance level of 0.05 is used. The
statistical result Sig is marked as “+/ = /−”, which means DIGWO is better than, equal
to or inferior to the algorithms involved in the comparison.

Machines 2022, 10, 1100 22 of 38

Table 6. Comparison of results for 30-dimension benchmark functions.

Algorithm f1 f2 f3 f4 f5 f6 f7 f8

DIGWO Mean 2.60 × 10−267 6.28 × 10−271 5.05 ×10−65 4.73 × 10−157 2.68 × 101 0 7.82 × 10−15 3.61
Std 0 0 1.63 ×10−64 7.25 × 10−157 1.04 0 0 2.07

PSO
Mean 4.17 × 10−22 1.07 × 10−19 1.58 × 10−1 5.52 × 10−11 3.25 × 101 3.53 × 101 1.54 × 10−12 1.10 × 10−2

Std 1.63 × 10−21 3.29 × 10−19 6.30× 10−2 1.21 × 10−10 2.87 × 101 1.00 × 101 3.87 × 10−12 3.38 × 10−2

Sig + + + + = + + -

MFO
Mean 2.00 × 103 2.50 × 101 6.77 × 101 4.00 × 101 1.36 × 105 1.54 × 102 1.53 × 101 8.72 × 101

Std 4.10 × 103 4.44 × 101 8.65 2.41 × 101 6.57 × 104 3.41 × 101 6.70 8.90 × 101

Sig + + + + + + + =

SSA
Mean 6.44 × 10−9 6.74 × 10−11 3.20 6.91 × 10−1 5.14 × 101 6.99 × 101 1.90 4.85× 10−2

Std 1.29 × 10−9 1.30 × 10−11 2.67 8.96 × 10−1 3.32 × 101 1.11 × 101 8.84 × 10−1 7.32× 10−2

Sig + + + + + + + -

SCA
Mean 1.76 × 10−11 6.44 × 10−13 3.12 4.27 × 10−17 2.78 × 101 2.87 × 10−2 9.64 2.03 × 101

Std 7.85 × 10−11 2.87 × 10−12 5.25 9.67 × 10−17 3.15 × 10−1 1.28 × 10−1 9.80 1.64
Sig + + + + + + + +

Jaya
Mean 1.50 × 101 2.60 × 10−1 4.93E-01 3.08 × 101 3.74 × 10−2 7.94 × 101 7.66 6.86 × 10−1

Std 1.31 × 101 6.87 3.10E-01 1.28 × 101 3.04 × 10−2 3.58 × 101 6.87 6.54 × 10−1

Sig + + + + - + + +

GWO
Mean 3.55 × 10−226 1.25 × 10−228 8.17 × 10−58 1.18 × 10−130 2.74 × 101 0 7.99 × 10−15 5.92

Std 0 0 3.30 × 10−57 3.63 × 10−130 1.34 0 7.94 × 10−16 1.43
Sig + + + + = = = +

Table 7. Comparison of results for 50-dimension benchmark functions.

Algorithm f1 f2 f3 f4 f5 f6 f7 f8

DIGWO Mean 0 0 9.22 × 10−74 1.33 × 10−200 4.69 × 101 0 8.88 × 10−15 1.34 × 101

Std 0 0 2.35 × 10−73 0 8.03 × 10−1 0 2.27 × 10−15 2.42

PSO
Mean 4.85 × 10−16 1.78 × 10−14 1.07 1.49 × 10−6 8.13 × 101 9.17 × 101 3.73 × 10−9 2.20 × 10−2

Std 9.50 × 10−16 7.89 × 10−14 2.00 × 10−1 5.56 × 10−6 3.89 × 101 2.75 × 101 6.51 × 10−9 4.51 × 10−2

Sig + + + + + + + -

MFO
Mean 7.00 × 103 9.50 × 101 8.07 × 101 6.20 × 101 3.10 × 105 2.72 × 102 1.97 × 101 1.44 × 102

Std 8.01 × 103 8.87 × 101 5.71 2.84 × 101 1.66 × 105 4.19 × 101 4.18 × 10−1 1.19 × 102

Sig + + + + + + + +

SSA
Mean 1.76 × 10−8 1.85 × 10−10 1.17 × 101 1.72 7.14 × 101 1.07 × 102 2.36 8.67 × 10−2

Std 1.99 × 10−9 2.80 × 10−11 3.61 1.77 3.44 × 101 2.71 × 101 5.29 × 10−1 2.18 × 10−1

Sig + + + + = + + +

SCA
Mean 7.21 × 10−6 5.47 × 10−8 2.93 × 101 4.21 × 10−15 4.84 × 101 1.09 × 101 1.55 × 101 4.31 × 101

Std 2.52 × 10−5 1.85 × 10−7 9.13 1.57 × 10−14 4.77 × 10−1 2.41 × 101 8.17 2.26
Sig + + + + + + + +

Jaya
Mean 6.03 × 103 1.96 × 101 6.25 × 10−1 3.86 × 101 1.54 × 10−2 1.44 × 102 3.36 7.48 × 101

Std 5.48 × 103 4.14 × 101 2.13 × 10−1 2.01 × 101 2.24 × 10−2 5.87 × 101 4.85 1.18 × 102

Sig + + + + - + + =

GWO
Mean 4.20 × 10−283 4.06 × 10−285 5.57 × 10−64 3.43 × 10−165 4.64 × 101 0 1.03 × 10−14 1.74 × 101

Std 0 0 1.57 × 10−63 0 1.03 0 2.89 × 10−15 3.19
Sig + + + + = = = +

Table 8. Comparison of results for 100-dimension benchmark functions.

Algorithm f1 f2 f3 f4 f5 f6 f7 f8

DIGWO Mean 0 0 2.06 × 10−85 4.51 × 10−288 9.69 × 101 0 1.37 × 10−14 5.35 × 101

Std 0 0 7.84 × 10−85 0 8.96 × 10−1 0 2.00 × 10−15 3.47

PSO
Mean 4.43 × 10−9 1.24 × 10−9 3.01 5.21 × 10−4 2.01 × 102 2.73 × 102 6.08 × 10−2 1.15 × 10−1

Std 1.25 × 10−8 2.02 × 10−9 2.83 × 10−1 9.67 × 10−4 6.31 × 101 5.08 × 101 2.71 × 10−1 2.38 × 10−1

Sig + + + + + + + -

MFO
Mean 1.57 × 104 2.35 × 102 9.25 × 101 1.37 × 102 8.71 × 105 6.32 × 102 1.98 × 101 4.46 × 102

Std 9.11 × 103 1.60 × 102 2.05 4.62 × 101 4.47 × 105 8.99 × 101 2.97 × 10−1 3.70 × 102

Sig + + + + + + + +

SSA
Mean 7.02 × 10−8 7.13 × 10−10 2.25 × 101 6.55 1.75 × 102 2.07 × 102 3.64 4.64 × 101

Std 7.93 × 10−9 7.63 × 10−11 3.78 2.99 6.15 × 101 4.81 × 101 6.24 × 10−1 9.53 × 101

Sig + + + + + + + -

SCA
Mean 2.63 × 101 2.67 × 10−1 6.85 × 101 8.59 × 10−11 4.09 × 103 1.22 × 102 1.93 × 101 1.18 × 102

Std 5.37 × 101 5.58 × 10−1 5.41 3.31 × 10−10 3.45 × 103 6.83 × 101 4.63 1.92 × 101

Sig + + + + + + + +

Jaya
Mean 3.45 × 104 2.40 × 102 3.21 × 10−1 1.46 × 102 5.47 × 10−2 3.13 × 102 5.00 3.17 × 102

Std 3.41 × 104 1.91 × 102 1.59 × 10−1 5.09 × 101 3.40 × 10−2 9.82 × 101 4.83 4.05 × 102

Sig + + + + + + + =

GWO
Mean 0 0 4.76 × 10−61 3.96 × 10−232 9.69 × 101 0 1.51 × 10−14 6.26 × 101

Std 0 0 2.13 × 10−60 0 1.03 0 2.13 × 10−15 3.63
Sig = = + + = = + +

From Tables 6–8, it can be concluded that DIGWO has greater convergence and
stability on most problems. In particular, the proposed algorithm achieves better results on
all problems compared to the original GWO. Combining the statistical results of standard
deviation and Wilcoxon test results, DIGWO significantly outperforms other algorithms

Machines 2022, 10, 1100 23 of 38

on problems, excluding f 5 and f 8, and is robust on problems with different dimensions.
The results of the statistical significance tests obtained by the proposed DIGWO and
comparison algorithms in different dimensions are discussed below. In the comparison
with PSO, DIGWO has 20 results that outperform PSO, one result that is not significantly
different from PSO and three results that are worse than PSO. In the comparison with MFO,
DIGWO had 23 results superior to MFO and one result not significantly different from
MFO. In the comparison with SSA, DIGWO had 21 results better than SSA, one result not
significantly different from SSA and two results worse than SSA. In the comparison with
SCA, all results of DIGWO were better than SCA. In the comparison with Jaya, DIGWO
had 20 results better than Jaya, two results not significantly different from Jaya and two
results worse than Jaya. In the comparison with GWO, 14 results of DIGWO were better
than GWO, and 10 results were not significantly different from GWO.

To further investigate the performance of DIGWO, some representative test functions
are selected to analyze the convergence trends of all the algorithms involved in the com-
parison. The convergence curves are shown in Figures 15–17. The convergence curves of
the multimodal benchmark functions are shown in Figures 15 and 16, and the convergence
curves of the unimodal benchmark test functions are shown in Figure 17. It can be observed
that the proposed algorithm outperforms other algorithms in terms of convergence speed
and accuracy. This also shows the effectiveness of the proposed improvement strategy in
DIGWO. Figures 15 and 17 show that the results of the algorithm can still be improved
even in the middle and late stages of the iteration, which further indicates the improved
development capability. The convergence curve in Figure 16 shows that DIGWO can con-
verge to the theoretical optimum in the shortest time, which also verifies the efficient global
search capability of DIGWO. In conclusion, the overall search performance of DIGWO
based on the chaotic mapping strategy and adaptive convergence factor is effective.

Machines 2022, 10, x FOR PEER REVIEW 25 of 40

Figure 15. Convergence curves obtained by the algorithms involved in the comparison (dimension
= 30).

Figure 16. Convergence curves obtained by the algorithms involved in the comparison (dimension
= 50).

Figure 15. Convergence curves obtained by the algorithms involved in the comparison
(dimension = 30).

Machines 2022, 10, 1100 24 of 38

Machines 2022, 10, x FOR PEER REVIEW 25 of 40

Figure 15. Convergence curves obtained by the algorithms involved in the comparison (dimension
= 30).

Figure 16. Convergence curves obtained by the algorithms involved in the comparison (dimension
= 50).

Figure 16. Convergence curves obtained by the algorithms involved in the comparison
(dimension = 50).

Machines 2022, 10, x FOR PEER REVIEW 26 of 40

Figure 17. Convergence curves obtained by the algorithms involved in the comparison (dimension
= 100).

5. Simulation of FJSP Based on DIGWO
5.1. Notation

The following notations are used in this section to evaluate algorithms or problems,
and the definitions of these notations are explained below.

LB: Lower bound of the makespan values found so far.
Best: Best makespan in several independent runs.
WL: Best critical machine load achieved from several independent runs.
Avg: The average makespan obtained from several independent runs.
Tcpu: Computation time required for several independent runs to obtain the best

makespan (seconds).
T(AV): The average computation time obtained by the current algorithm for all prob-

lems in the test problem set.
RE: The relative error between the optimal makespan obtained by the current algo-

rithm and the LB, given by Equation (18). RE = Best − LBLB (18)

MRE: The average RE obtained by the current algorithm for all problems of the test
problem set.

RPI: Relative percentage increase, given by Formula (19). RPI = MK୧ − MKୠMKୠ (19)

where MK௜ is the best makespan obtained by the ith comparison algorithm, and MKୠ de-
notes the best makespan among all the algorithms involved in the comparison.

Figure 17. Convergence curves obtained by the algorithms involved in the comparison
(dimension = 100).

5. Simulation of FJSP Based on DIGWO
5.1. Notation

The following notations are used in this section to evaluate algorithms or problems,
and the definitions of these notations are explained below.

LB: Lower bound of the makespan values found so far.
Best: Best makespan in several independent runs.
WL: Best critical machine load achieved from several independent runs.
Avg: The average makespan obtained from several independent runs.

Machines 2022, 10, 1100 25 of 38

Tcpu: Computation time required for several independent runs to obtain the best
makespan (seconds).

T(AV): The average computation time obtained by the current algorithm for all prob-
lems in the test problem set.

RE: The relative error between the optimal makespan obtained by the current algo-
rithm and the LB, given by Equation (18).

RE =
Best− LB

LB
(18)

MRE: The average RE obtained by the current algorithm for all problems of the test
problem set.

RPI: Relative percentage increase, given by Formula (19).

RPI =
MKi −MKb

MKb
(19)

where MKi is the best makespan obtained by the ith comparison algorithm, and MKb
denotes the best makespan among all the algorithms involved in the comparison.

5.2. Description of Test Examples

In order to test the performance of the algorithm, international benchmark arithmetic
cases are used. The well-known experimental sets include KCdata, BRdata and Fdata.

BRdata is offered by Brandimarte and includes 10 problems: MK01–MK10, ranging
in size from 10 jobs to 20 jobs, 4 machines to 15 machines, with medium flexibility and a
range of F 0.15–0.35 [15].

KCdata is provided by Kacem, which contains five problems: Kacem01–Kacem05,
ranging in size from 4 jobs and 5 machines to 15 jobs and 10 machines, and all four problems
are total flexible job shop scheduling problems, except Kacem02 [62].

Fdata is provided by Fattahi et al. which contains 20 problems, namely SFJS01–SFJS10
and MFJS01–MFJS10. The size of the problems ranges from two jobs and two machines to
nine jobs and eight machines [63].

The existing literature does not contain test problems for large-scale FJSP; therefore, a
dataset is proposed and named YAdata, which contains 12 test problems. The details of
these problems are given in Table 9, where Job denotes the number of jobs, Machine means
the number of machines, Operation represents the number of operations contained in each
job, F denotes the ratio of the number of machines that can be selected for each operation
to the total number of machines and Time denotes the range of processing time values.

Table 9. Information about the generated LSFJSP.

Problem Job Machine Operation F Time

YA01
100 60 10–20

0.2
5–20YA02 0.3

YA03 0.5
YA04

100 60 10–20
0.2

5–20YA05 0.3
YA06 0.5
YA07

100 60 10–20
0.2

5–20YA08 0.3
YA09 0.5
YA10

100 60 10–20
0.2

5–20YA11 0.3
YA12 0.5

Machines 2022, 10, 1100 26 of 38

5.3. Parameter Analysis

The parameter configuration affects the performance of the algorithm in solving
the problem. In the proposed DIGWO, the parameters that perform best in the same
environment are obtained through experimental tests. Depending on the size of the test
problem, the total population of DIGWO is set to 50 when testing three international
benchmark FJSPs, namely BRdata, KCdata and Fdata. In testing the large-scale FJSP,
namely YAdata, the total population is set to 50. The number of generations is set to 200.

The following sensitivity tests were performed for the key parameters used in the
proposed DIGWO. For fairness, Mk04 was used as the test problem and the Avg obtained
from 20 independent runs was collected to evaluate the performance. The parameter levels
are as follows: λ = {0.5, 1.0, 1.5, 2.0} and paccept = {0.1, 0.2, 0.3, 0.4}. The experimental
results obtained with different combinations of parameters are given in Table 10. The
comprehensive observation shows that the best performance of the algorithm is obtained
when λ = 1.5 and paccept = 0.1.

Table 10. Sensitivity analysis of key parameters.

DIGWO λ = 0.5 λ = 1.0 λ = 1.5 λ = 2.0

paccept = 0.1 64.55 64.20 64.05 65.00
paccept = 0.2 64.80 65.05 65.70 65.10
paccept = 0.3 64.60 65.45 65.60 66.20
paccept = 0.4 65.20 65.60 65.00 65.05

5.4. Analysis of the Effectiveness of the Proposed Strategy
5.4.1. Validation of the DGUO Strategy

To verify the effectiveness of the DGUO proposed in this paper, the performance of
GWO-1 and GWO-2 is compared. GWO-1 is the basic grey wolf optimization algorithm
and it uses the conversion mechanism which is already available in the literature [41].
The GWO-2 is a discrete algorithm that uses the DGUO strategy proposed in this paper.
Other than that, none of the other improvement strategies proposed in this paper were
used during the experiments. The performance of these two algorithms was evaluated on
BRdata considering the same parameters. To ensure fairness during the experiments, the
results after 20 independent runs are shown in Table 11.

Table 11. Comparison of proposed updating methods.

Instance
GWO-1 GWO-2

Best WL Avg Tcpu Best Best WL Avg Tcpu

MK01 44 42 47.85 9.307 42 41 36 42.35 7.043
MK02 37 36 39.5 9.890 30 28 28 28.9 7.233
MK03 232 213 245.6 23.62 204 204 204 204.45 14.52
MK04 76 73 80.75 14.60 73 66 66 70.4 10.52
MK05 189 187 196.3 16.79 176 173 173 176.7 11.25
MK06 100 88 107.1 23.59 94 77 74 81.1 14.98
MK07 177 171 185.85 16.40 163 145 145 149.75 11.47
MK08 543 542 567.2 33.16 523 523 523 524.6 21.90
MK09 412 380 431.5 36.72 377 337 337 350.25 22.27
MK10 342 310 357.45 37.53 301 252 244 265.1 22.33

As can be seen from Table 11, GWO-2 always outperforms or equals GWO-1 for
both makespan and critical machine load metrics. The average computation time for all
instances of GWO-2 on BRdata is 14.3516. This value is smaller than the GWO-1. The
resulting advantage in computation time can be attributed to the fact that the algorithm
uses a transformation mechanism that requires additional computations at each generation.
A comparative box plot of the average RPI values is given in Figure 18, and it can be clearly

Machines 2022, 10, 1100 27 of 38

seen that GWO-2 has the smaller box block and is positioned downwards, which means
that the algorithm is highly robust and convergent.

Machines 2022, 10, x FOR PEER REVIEW 29 of 40

Figure 18. The mean RPI of the comparison algorithm based on the proposed DGUO.

Figure 19. The convergence curve of the optimal makespan of the comparison algorithm in MK08.

5.4.2. Validation of Initialization Strategy
In order to test the performance of the hybrid initialization strategy mentioned in

Section 3.3, this section includes the test of the two comparison algorithms, DIGWO-RI
and DIGWO. It should be noted that the initial populations of DIGWO-RI are generated
randomly. To ensure fairness during the experiments, the same components and all pa-
rameters were set identically, and the results after 20 independent runs are shown in Table
12.

Combining Table 12 and Figure 20, it can be seen that the proposed DIGWO has bet-
ter makespan and critical machine load than DIGWO-RI on all instances of BRdata. This
demonstrates that combining heuristic rules with chaotic mapping strategies can provide
suitable initial populations. The optimal convergence curves obtained by the comparison
algorithms on MK02 are given in Figure 21. It is observed that DIGWO converges to the

Figure 18. The mean RPI of the comparison algorithm based on the proposed DGUO.

To further analyze the performance, Figure 19 shows the convergence curves of the
two compared algorithms on MK08. It can be found that GWO-2 converges to the optimal
makespan in 61 generations, and GWO-1 converges in 163 generations. Therefore, the
improved discrete update mechanism can enhance the convergence speed of the algorithm.

Machines 2022, 10, x FOR PEER REVIEW 29 of 40

Figure 18. The mean RPI of the comparison algorithm based on the proposed DGUO.

Figure 19. The convergence curve of the optimal makespan of the comparison algorithm in MK08.

5.4.2. Validation of Initialization Strategy
In order to test the performance of the hybrid initialization strategy mentioned in

Section 3.3, this section includes the test of the two comparison algorithms, DIGWO-RI
and DIGWO. It should be noted that the initial populations of DIGWO-RI are generated
randomly. To ensure fairness during the experiments, the same components and all pa-
rameters were set identically, and the results after 20 independent runs are shown in Table
12.

Combining Table 12 and Figure 20, it can be seen that the proposed DIGWO has bet-
ter makespan and critical machine load than DIGWO-RI on all instances of BRdata. This
demonstrates that combining heuristic rules with chaotic mapping strategies can provide
suitable initial populations. The optimal convergence curves obtained by the comparison
algorithms on MK02 are given in Figure 21. It is observed that DIGWO converges to the

Figure 19. The convergence curve of the optimal makespan of the comparison algorithm in MK08.

5.4.2. Validation of Initialization Strategy

In order to test the performance of the hybrid initialization strategy mentioned in
Section 3.3, this section includes the test of the two comparison algorithms, DIGWO-RI and
DIGWO. It should be noted that the initial populations of DIGWO-RI are generated ran-
domly. To ensure fairness during the experiments, the same components and all parameters
were set identically, and the results after 20 independent runs are shown in Table 12.

Machines 2022, 10, 1100 28 of 38

Table 12. Comparison of proposed initialization strategy.

Instance
DIGWO-RI DIGWO

Best WL Avg Tcpu Best WL Avg Tcpu

MK01 40 36 41.4 7.806 40 36 41.3 7.159
MK02 27 27 27.5 11.13 26 26 27.1 8.195
MK03 204 204 204 15.21 204 204 204 15.42
MK04 60 60 64.95 10.32 60 60 63.8 10.65
MK05 173 173 176.2 11.28 173 173 173.5 11.23
MK06 65 62 69.2 16.52 62 58 63.7 16.93
MK07 145 145 149.7 11.89 140 140 142.2 12.04
MK08 523 523 523 21.71 523 523 523 21.79
MK09 311 307 323.4 23.25 307 299 314.7 22.95
MK10 226 222 235.7 24.07 211 206 216.5 24.38

Combining Table 12 and Figure 20, it can be seen that the proposed DIGWO has better
makespan and critical machine load than DIGWO-RI on all instances of BRdata. This
demonstrates that combining heuristic rules with chaotic mapping strategies can provide
suitable initial populations. The optimal convergence curves obtained by the comparison
algorithms on MK02 are given in Figure 21. It is observed that DIGWO converges to
the optimal makespan in 58 iterations, while DIGWO-RI converges in 63 generations.
Additionally, it should be noted that DIGWO is much better than the comparison algorithm
in the results of the first iteration. Consequently, the improved initialization strategy
proposed in this paper can generate high-quality initial solutions and enable the algorithm
to converge to the optimal solution earlier.

Machines 2022, 10, x FOR PEER REVIEW 30 of 40

optimal makespan in 58 iterations, while DIGWO-RI converges in 63 generations. Addi-
tionally, it should be noted that DIGWO is much better than the comparison algorithm in
the results of the first iteration. Consequently, the improved initialization strategy pro-
posed in this paper can generate high-quality initial solutions and enable the algorithm to
converge to the optimal solution earlier.

Table 12. Comparison of proposed initialization strategy.

Instance
DIGWO-RI DIGWO

Best WL Avg Tcpu Best WL Avg Tcpu
MK01 40 36 41.4 7.806 40 36 41.3 7.159
MK02 27 27 27.5 11.13 26 26 27.1 8.195
MK03 204 204 204 15.21 204 204 204 15.42
MK04 60 60 64.95 10.32 60 60 63.8 10.65
MK05 173 173 176.2 11.28 173 173 173.5 11.23
MK06 65 62 69.2 16.52 62 58 63.7 16.93
MK07 145 145 149.7 11.89 140 140 142.2 12.04
MK08 523 523 523 21.71 523 523 523 21.79
MK09 311 307 323.4 23.25 307 299 314.7 22.95
MK10 226 222 235.7 24.07 211 206 216.5 24.38

Figure 20. Mean RPI for the comparison algorithm based on the initialization strategy.

Figure 20. Mean RPI for the comparison algorithm based on the initialization strategy.

Machines 2022, 10, 1100 29 of 38

Machines 2022, 10, x FOR PEER REVIEW 31 of 40

Figure 21. The convergence curve of the optimal makespan of the comparison algorithm in MK02.

5.5. Comparison with Other Algorithms
In this section, DIGWO is compared with algorithms proposed in recent years, and

“Best” is the primary metric considered in the process of comparison. To further analyze
the overall performance of the algorithm, MRE is also used as a participating comparative
performance metric. Considering the differences in programming platforms, processor
speed and coding skills used by the algorithms involved in the comparison, the original
programming environment and programming platform are given accordingly in the com-
parison process, and Tcpu and T(AV) are used as comparison metrics. In the following,
KCdata, BRdata and Fdata are used as experimental test problems and the comparison
results are shown.

5.5.1. Comparison Results in KCdata
In this section, KCdata is used to test the performance of the proposed algorithm, and

the results of the proposed algorithm are compared with recent studies IWOA,
GATS+HM, HDFA and IACO [24,41,45,64]. To ensure fairness in the experimental pro-
cess, the results of 20 independent runs are shown in Table 13. From the results in Table
13, it can be found that the best makespan obtained by the proposed DIGWO is always
better than or equal to the other five compared algorithms, and the average computation
time is shorter. In summary, the proposed DIGWO has more competitive advantages in
terms of the accuracy of the search and convergence speed. Figure 22 shows the optimal
resultant Gantt chart (makespan = 11) obtained by the proposed algorithm in Kacem05.

Figure 21. The convergence curve of the optimal makespan of the comparison algorithm in MK02.

5.5. Comparison with Other Algorithms

In this section, DIGWO is compared with algorithms proposed in recent years, and
“Best” is the primary metric considered in the process of comparison. To further analyze
the overall performance of the algorithm, MRE is also used as a participating comparative
performance metric. Considering the differences in programming platforms, processor
speed and coding skills used by the algorithms involved in the comparison, the original
programming environment and programming platform are given accordingly in the com-
parison process, and Tcpu and T(AV) are used as comparison metrics. In the following,
KCdata, BRdata and Fdata are used as experimental test problems and the comparison
results are shown.

5.5.1. Comparison Results in KCdata

In this section, KCdata is used to test the performance of the proposed algorithm, and
the results of the proposed algorithm are compared with recent studies IWOA, GATS+HM,
HDFA and IACO [24,41,45,64]. To ensure fairness in the experimental process, the results
of 20 independent runs are shown in Table 13. From the results in Table 13, it can be found
that the best makespan obtained by the proposed DIGWO is always better than or equal
to the other five compared algorithms, and the average computation time is shorter. In
summary, the proposed DIGWO has more competitive advantages in terms of the accuracy
of the search and convergence speed. Figure 22 shows the optimal resultant Gantt chart
(makespan = 11) obtained by the proposed algorithm in Kacem05.

Machines 2022, 10, 1100 30 of 38

Table 13. Comparison of DIGWO with other algorithms for KCdata.

Instance n×m
IWOA a GATS+HM b HDFA c IACO d HGWO e DIWO

Best Tcpu Best Tcpu Best Tcpu Best Tcpu Best Tcpu Best WL Avg Tcpu

Kacem01 4 × 5 11 1.8 11 0.05 11 0.13 11 0.51 11 5.6 11 11 11 3.49
Kacem02 8 × 8 14 2.9 14 0.36 14 3.53 14 3.53 14 14.8 14 14 14 4.59
Kacem03 10 × 7 13 3.3 11 0.73 11 2.63 11 3.26 11 16.8 11 11 11 4.74
Kacem04 10 × 10 7 4.1 7 1.51 7 3.36 7 4.45 7 17.5 7 6 7 5.27
Kacem05 15 × 10 14 7.9 11 29.7 11 19.3 11 4.86 13 40.4 11 11 11.3 8.34
T(AV) 4.0 6.5 5.8 3.3 19.0 5.29

a The CPU time on an Intel 1.80 GHz Core i5-8250 processor with 8 Gb RAM in MATLAB 2016a. b The CPU time
on an Intel 2.1 GHz processor with 3 Gb RAM in Java. c The CPU time on an Intel 2.0 GHz Core 2 Duo processor
with 4 Gb RAM in C++. d No system data provided by authors. e The CPU time on an Intel 1.80 GHz Core i5-8250
processor with 8 Gb RAM in MATLAB 2016a.

Machines 2022, 10, x FOR PEER REVIEW 32 of 40

Figure 22. Gantt chart of the best results for Kacem05 (makespan = 11).

Table 13. Comparison of DIGWO with other algorithms for KCdata.

Instance 𝐧 × 𝐦
IWOA a GATS+HM b HDFA c IACO d HGWO e DIWO

Best Tcpu Best Tcpu Best Tcpu Best Tcpu Best Tcpu Best WL Avg Tcpu
Kacem01 4 × 5 11 1.8 11 0.05 11 0.13 11 0.51 11 5.6 11 11 11 3.49
Kacem02 8 × 8 14 2.9 14 0.36 14 3.53 14 3.53 14 14.8 14 14 14 4.59
Kacem03 10 × 7 13 3.3 11 0.73 11 2.63 11 3.26 11 16.8 11 11 11 4.74
Kacem04 10 × 10 7 4.1 7 1.51 7 3.36 7 4.45 7 17.5 7 6 7 5.27
Kacem05 15 × 10 14 7.9 11 29.7 11 19.3 11 4.86 13 40.4 11 11 11.3 8.34

T(AV) 4.0 6.5 5.8 3.3 19.0 5.29
a The CPU time on an Intel 1.80 GHz Core i5-8250 processor with 8 Gb RAM in MATLAB 2016a. b
The CPU time on an Intel 2.1 GHz processor with 3 Gb RAM in Java. c The CPU time on an Intel 2.0
GHz Core 2 Duo processor with 4 Gb RAM in C++. d No system data provided by authors. e The
CPU time on an Intel 1.80 GHz Core i5-8250 processor with 8 Gb RAM in MATLAB 2016a.

5.5.2. Comparison Results in BRdata
In this section, BRdata is used to test the performance of the proposed algorithm, and

the results of the proposed DIGWO are compared with those of recent studies IWOA,
HGWO, PGDHS, GWO and SLGA [21,41,51,65,66]. To eliminate randomness in the exper-
imental process, the results of 20 independent runs are shown in Table 14. The LB in the
third column is provided by industrial solver DELMIA Quintiq [1]. It can be clearly seen
that the proposed DIGWO obtains six lower bounds out of ten instances. According to the
MRE metrics obtained by the algorithm, it is known that the proposed algorithm outper-
forms the other five compared algorithms in terms of solution accuracy. The T(AV) metric
shows that the proposed algorithm also has the shortest average running time for all prob-
lems. Figure 23 shows the Gantt chart of the optimal results obtained by the proposed
algorithm in MK09 (makespan = 307).

Figure 22. Gantt chart of the best results for Kacem05 (makespan = 11).

5.5.2. Comparison Results in BRdata

In this section, BRdata is used to test the performance of the proposed algorithm,
and the results of the proposed DIGWO are compared with those of recent studies IWOA,
HGWO, PGDHS, GWO and SLGA [21,41,51,65,66]. To eliminate randomness in the ex-
perimental process, the results of 20 independent runs are shown in Table 14. The LB in
the third column is provided by industrial solver DELMIA Quintiq [1]. It can be clearly
seen that the proposed DIGWO obtains six lower bounds out of ten instances. According
to the MRE metrics obtained by the algorithm, it is known that the proposed algorithm
outperforms the other five compared algorithms in terms of solution accuracy. The T(AV)
metric shows that the proposed algorithm also has the shortest average running time for all
problems. Figure 23 shows the Gantt chart of the optimal results obtained by the proposed
algorithm in MK09 (makespan = 307).

Machines 2022, 10, 1100 31 of 38

Table 14. Comparison of DIGWO with other algorithms for BRdata.

Instance n ×m LB
IWOA a HGWO b PGDHS c GWO d SLGA e DIGWO

Best Tcpu Best Tcpu Best Tcpu Best Tcpu Best Tcpu Best WL Avg Tcpu

MK01 10 × 6 40 40 8.2 40 36.3 40 5.3 40 64.6 40 27.6 40 36 41.3 7.159
MK02 10 × 6 26 26 8.8 29 38.7 26 5.4 29 70.0 27 29.1 26 26 27.1 8.195
MK03 15 × 8 204 204 31.3 204 165.8 204 24.1 204 377.6 204 112.6 204 204 204 15.42
MK04 15 × 8 60 60 15.7 65 75.9 62 14.7 64 218.2 60 63.2 60 60 63.8 10.65
MK05 15 × 4 172 175 21.2 175 95.7 173 9.0 175 131.4 172 60.4 173 173 173.5 11.23
MK06 10 × 15 57 63 30.5 79 168.6 62 25.8 69 480.7 69 72.8 62 58 63.7 16.93
MK07 20 × 5 139 144 24.7 149 92.1 140 13.9 147 213.4 144 57.8 140 140 142.2 12.04
MK08 20 × 10 523 523 89.2 523 340.8 523 53.6 523 1026.2 523 521.7 523 523 523 21.79
MK09 20 × 10 307 339 121.4 325 378.9 307 62.4 322 1123.8 320 552.5 307 299 314.7 22.95
MK10 20 × 15 189 242 96.7 253 388.5 211 79.0 249 1744.3 254 1335.2 211 206 216.5 24.38
T(AV) 44.8 178.1 29.3 545.0 283.3 15.07
MRE 0.0543 0.1071 0.0250 0.0834 0.0671 0.0217

a The CPU time on an Intel 1.80 GHz Core i5-8250 processor with 8 Gb RAM in MATLAB 2016a. b,d The CPU time
on 2 Gb RAM in FORTRAN. c The CPU time on an Intel 2.8 GHz PC with 1 GB RAM in C++. e The CPU time on
an Intel 1.80 GHz Core i5-4590 processor with 8 Gb RAM in MATLAB 2018a.

Machines 2022, 10, x FOR PEER REVIEW 33 of 40

Figure 23. Gantt chart of the best results for MK09 (makespan = 307).

Table 14. Comparison of DIGWO with other algorithms for BRdata.

In-
stance n × m LB

IWOA a HGWO b PGDHS c GWO d SLGA e DIGWO
Best Tcpu Best Tcpu Best Tcpu Best Tcpu Best Tcpu Best WL Avg Tcpu

MK01 10 × 6 40 40 8.2 40 36.3 40 5.3 40 64.6 40 27.6 40 36 41.3 7.159
MK02 10 × 6 26 26 8.8 29 38.7 26 5.4 29 70.0 27 29.1 26 26 27.1 8.195
MK03 15 × 8 204 204 31.3 204 165.8 204 24.1 204 377.6 204 112.6 204 204 204 15.42
MK04 15 × 8 60 60 15.7 65 75.9 62 14.7 64 218.2 60 63.2 60 60 63.8 10.65
MK05 15 × 4 172 175 21.2 175 95.7 173 9.0 175 131.4 172 60.4 173 173 173.5 11.23
MK06 10 × 15 57 63 30.5 79 168.6 62 25.8 69 480.7 69 72.8 62 58 63.7 16.93
MK07 20 × 5 139 144 24.7 149 92.1 140 13.9 147 213.4 144 57.8 140 140 142.2 12.04
MK08 20 × 10 523 523 89.2 523 340.8 523 53.6 523 1026.2 523 521.7 523 523 523 21.79
MK09 20 × 10 307 339 121.4 325 378.9 307 62.4 322 1123.8 320 552.5 307 299 314.7 22.95
MK10 20 × 15 189 242 96.7 253 388.5 211 79.0 249 1744.3 254 1335.2 211 206 216.5 24.38
T(AV) 44.8 178.1 29.3 545.0 283.3 15.07
MRE 0.0543 0.1071 0.0250 0.0834 0.0671 0.0217

a The CPU time on an Intel 1.80 GHz Core i5-8250 processor with 8 Gb RAM in MATLAB 2016a. b,d
The CPU time on 2 Gb RAM in FORTRAN. c The CPU time on an Intel 2.8 GHz PC with 1 GB RAM
in C++. e The CPU time on an Intel 1.80 GHz Core i5-4590 processor with 8 Gb RAM in MATLAB
2018a.

5.5.3. Comparison Results in Fdata
In this section, Fdata is used to test the performance of the proposed algorithm, and

the results of the proposed DIGWO are compared with those of recent studies AIA, EPSO,
MIIP and DOLGOA [31,55,67,68]. In order to eliminate randomness during the experi-
ment, the results of 20 independent runs are shown in Table 15. The LB in the third column
is from the literature [69]. As can be seen in Table 15, the proposed DIGWO obtained 10
lower bounds in 20 instances. It is worth noting that MILP is an exact method, which
means that the results obtained by the algorithm can be considered as the optimal solu-
tion. Compared with MILP, the proposed algorithm shows that the results of DIGWO in
Fdata are always better than or equal to MILP. The results in the last two columns of Table

Figure 23. Gantt chart of the best results for MK09 (makespan = 307).

5.5.3. Comparison Results in Fdata

In this section, Fdata is used to test the performance of the proposed algorithm, and
the results of the proposed DIGWO are compared with those of recent studies AIA, EPSO,
MIIP and DOLGOA [31,55,67,68]. In order to eliminate randomness during the experiment,
the results of 20 independent runs are shown in Table 15. The LB in the third column is
from the literature [69]. As can be seen in Table 15, the proposed DIGWO obtained 10 lower
bounds in 20 instances. It is worth noting that MILP is an exact method, which means that
the results obtained by the algorithm can be considered as the optimal solution. Compared
with MILP, the proposed algorithm shows that the results of DIGWO in Fdata are always
better than or equal to MILP. The results in the last two columns of Table 15 show that
the proposed DIGWO is superior to the other four algorithms both in terms of solution
accuracy and convergence speed.

Machines 2022, 10, 1100 32 of 38

Table 15. Comparison of DIGWO with other algorithms for Fdata.

Instance n ×m LB
AIA a EPSO b MIIP c DOLGOA d DIGWO

Best Tcpu Best Tcpu Best Tcpu Best Tcpu Best WL Avg Tcpu

SFJS01 2 × 2 66 66 0.03 66 0 66 0 66 3.75 66 66 66 1.72
SFJS02 2 × 2 107 107 0.03 107 0 107 0.01 107 3.59 107 107 107 1.72
SFJS03 3 × 2 221 221 0.04 221 0 221 0.05 221 4.23 221 221 221 1.75
SFJS04 3 × 2 355 355 0.04 355 0 355 0.02 355 4.19 355 355 355 1.78
SFJS05 3 × 2 119 119 0.04 119 0 119 0.04 119 4.21 119 119 119 1.82
SFJS06 3 × 3 320 320 0.04 320 0 320 0.01 320 5.02 320 320 320 2.01
SFJS07 3 × 5 397 397 0.04 397 0 397 0 397 5.31 397 270 397 2.01
SFJS08 3 × 4 253 253 0.05 253 0 253 0.04 253 5.13 253 223 253 2.06
SFJS09 3 × 3 210 210 0.05 210 0 210 0.01 210 5.08 210 185 210 2.04
SFJS10 4 × 5 516 516 0.06 516 0 516 0.02 533 5.78 516 466 516 2.36
MFJS01 5 × 6 396 468 9.23 468 18.18 468 0.26 481 6.89 468 383 468 2.72
MFJS02 5 × 7 396 448 9.35 446 12.63 446 0.87 456 6.54 446 320 446 2.78
MFJS03 6 × 7 396 468 10.06 466 17.68 466 1.66 491 7.18 466 454 466 3.00
MFJS04 7 × 7 496 554 10.54 554 11.69 554 27.63 653 7.75 554 472 556.5 3.31
MFJS05 7 × 7 414 523 10.61 514 24.15 514 4.55 593 7.82 514 481 514 3.22
MFJS06 8 × 7 469 635 22.18 634 35.18 634 52.48 643 8.55 634 540 634 3.56
MFJS07 8 × 7 619 879 24.82 879 42 879 1890 1093 10.31 879 825 879.5 4.14
MFJS08 9 × 7 619 884 26.94 884 42.81 884 3600 997 11.13 884 800 885.1 4.52
MFJS09 11 × 8 764 1088 30.76 1059 38.61 1137 3600 1263 12.68 1055 305 1143 5.13
MFJS10 12 × 8 944 1267 30.94 1205 27.65 1251 3600 1517 13.68 1205 1125 1248.1 5.50
T(AV) 9.2925 13.529 638.8825 6.941 2.86
MRE 0.1422 0.1353 0.1428 0.2198 0.1350

a CPU time on a 2.0 GHz processor in C++. b No system data provided by authors. c CPU time on a 2.83 GHz
Xeon E5440 processor with 2 GB RAM in IBMILOG CPLEX 12.1 solver. d The CPU time on an Intel 2.90 GHz Core
i5-9400F CPU in MATLAB 2019a.

5.6. Comparison Results in LSFJSP

In this section, 12 LSFJSP examples are used to further test the performance of the
proposed DIGWO. The details of these examples are presented in Table 9. In order to verify
the validity on LSFJSP of the proposed algorithm, the compared algorithms include WOA,
Jaya, MFO, SSA, IPSO, HGWO and SLGA [21,27,58,59,61,65,70]. The first four algorithms
are metaheuristics proposed in recent years, and the rest of the algorithms are studies about
FJSP. In order to ensure that the experimental environment does not have special features,
the algorithms listed above are run on the same device. The maximum number of iterations
is set to 200. Each algorithm was repeatedly executed 10 times during the experiment,
and makespan and critical machine load among them were recorded as evaluation criteria.
The results obtained from the experiments are shown in Tables 16 and 17, and the best
convergence curves of each instance are shown in Figures 24–27.

To analyze the data more intuitively, the best solutions of each problem in Tables 16 and 17
are shown in bold font. From these data, it is evident that the proposed DIGWO obtains 11
optimal makespans out of 12 LSFJSP instances as well as the minimum critical machine
load. Comparing the convergence curves of the algorithm, in most cases, DIGWO con-
verges faster than other algorithms. Obviously, DIGWO is comparable to the makespan
obtained by the metaheuristic algorithms involved in the comparison at 200 generations
after updating to about 20 generations. The Friedman ranking of the compared algorithms
on all problems is given in Table 18, and the results show that DIGWO is the best algorithm
on all instances with p-value = 4.0349× 10−14 < 0.05. From the information of the generated
test examples, it is clear that the generated LSFJSP has not only low flexibility examples
(F = 0.2, F = 0.3), but also high flexibility (F = 0.5). However, DIGWO always gives better
results on these problems.

Machines 2022, 10, 1100 33 of 38

Table 16. Comparison of results in LSFJSP.

Instances
WOA Jaya MFO SSA IPSO HGWO SLGA DIGWO

Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg

YA01 1431 1505 1409 1502 1556 1599 1436 1490 997 1019 1156 1192 1210 1247 920 940
YA02 1473 1493 1474 1502 1534 1580 1741 1741 1016 1058 1205 1294 1230 1305 958 999
YA03 1740 1801 1732 1800 1910 1962 1672 1738 1154 1162 1451 1481 1324 1408 1052 1090
YA04 934 1105 986 1016 1054 1087 964 1007 672 690 761 780 825 864 642 659
YA05 1060 1113 1053 1093 1180 1225 1063 1113 737 758 911 945 856 893 666 687
YA06 1183 1216 1124 1205 1215 1250 1154 1204 781 821 961 975 851 900 660 693
YA07 1793 1884 1783 1838 1865 1951 1605 1700 1135 1152 1281 1306 1375 1423 1093 1133
YA08 1817 1931 1811 1872 2002 2073 1776 1818 1240 1261 1412 1469 1430 1484 1157 1179
YA09 1972 2054 1920 2049 2141 2233 1877 1944 1334 1352 1569 1631 1430 1481 1152 1198
YA10 2013 2093 2065 2117 2141 2212 1857 1919 1283 1313 1469 1530 1590 1613 1305 1346
YA11 2232 2336 2221 2276 2139 2241 1965 2057 1512 1530 1682 1731 1571 1624 1336 1374
YA12 2390 2549 2476 2557 2375 2466 2224 2312 1596 1644 1729 1758 1663 1708 1386 1426

Table 17. Comparison results of critical machine loads for the algorithm.

WOA SSA MFO JAYA IPSO HGWO SLGA HIGWO

YA01 1112 1112 1104 1013 833 953 942 816
YA02 1139 1372 1282 1161 887 1073 1066 808
YA03 1330 1366 1421 1270 1028 1393 1204 904
YA04 610 618 558 650 483 638 578 442
YA05 740 704 902 782 513 694 616 540
YA06 885 613 709 843 660 643 670 464
YA07 1308 1092 1137 1297 1018 1200 1168 947
YA08 1476 1449 1457 1472 1144 1403 1243 988
YA09 1490 1597 1685 1590 1210 1428 1267 976
YA10 1602 1613 1614 1443 1203 1399 1508 1136
YA11 1880 1694 1724 1838 1432 1654 1372 1174
YA12 2024 1461 1500 1980 1295 1470 1374 1158

Machines 2022, 10, x FOR PEER REVIEW 35 of 40

is the best algorithm on all instances with p-value = 4.0349 × 10−14 < 0.05. From the infor-
mation of the generated test examples, it is clear that the generated LSFJSP has not only
low flexibility examples (F = 0.2, F = 0.3), but also high flexibility (F = 0.5). However,
DIGWO always gives better results on these problems.

Figure 28 shows the optimal makespan Gantt chart obtained by the proposed
DIGWO in YA01. The operations are denoted by “Job-operation”, and because of the large
number of machines, the vertical coordinates are not annotated machine sequentially, and
the horizontal coordinates in the figure indicate the processing time period of the opera-
tion. From the graph, it can be observed that the majority of machines were started for
processing at the moment 0. In addition, no machine is found to be idle for a long time or
overused, which is in line with the concept of smart manufacturing and effectively saving
process time costs.

By the above comparison, the characteristics of FJSP and the idea of GWO are com-
bined, and the discrete update mechanism of DIGWO algorithm is designed, so that each
grey wolf individual of GWO has simple intelligence. The success of the DIGWO design
lies in the effective initialization strategy as well as the DGUO strategy, which not only
ensures the quality of the initial population, but also enhances the efficiency of the search
in the process of iterative update. For FJSP, the proposed algorithm has better convergence
compared to the original GWO. In conclusion, DIGWO has the inherent ability to solve
LSFJSP, and the proposed DIGWO is generalizable and can be applied to FJSPs of different
scales.

(a) YA01 (b) YA02 (c) YA03

Figure 24. The best convergence curves obtained by the comparison algorithm in YA01-YA03. (a)
YA01 convergence curve; (b) YA02 convergence curve; (c) YA03 convergence curve.

Table 16. Comparison of results in LSFJSP.

In-
stances

WOA Jaya MFO SSA IPSO HGWO SLGA DIGWO
Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg

YA01 1431 1505 1409 1502 1556 1599 1436 1490 997 1019 1156 1192 1210 1247 920 940
YA02 1473 1493 1474 1502 1534 1580 1741 1741 1016 1058 1205 1294 1230 1305 958 999
YA03 1740 1801 1732 1800 1910 1962 1672 1738 1154 1162 1451 1481 1324 1408 1052 1090
YA04 934 1105 986 1016 1054 1087 964 1007 672 690 761 780 825 864 642 659
YA05 1060 1113 1053 1093 1180 1225 1063 1113 737 758 911 945 856 893 666 687
YA06 1183 1216 1124 1205 1215 1250 1154 1204 781 821 961 975 851 900 660 693
YA07 1793 1884 1783 1838 1865 1951 1605 1700 1135 1152 1281 1306 1375 1423 1093 1133
YA08 1817 1931 1811 1872 2002 2073 1776 1818 1240 1261 1412 1469 1430 1484 1157 1179
YA09 1972 2054 1920 2049 2141 2233 1877 1944 1334 1352 1569 1631 1430 1481 1152 1198
YA10 2013 2093 2065 2117 2141 2212 1857 1919 1283 1313 1469 1530 1590 1613 1305 1346
YA11 2232 2336 2221 2276 2139 2241 1965 2057 1512 1530 1682 1731 1571 1624 1336 1374
YA12 2390 2549 2476 2557 2375 2466 2224 2312 1596 1644 1729 1758 1663 1708 1386 1426

Figure 24. The best convergence curves obtained by the comparison algorithm in YA01–YA03.
(a) YA01 convergence curve; (b) YA02 convergence curve; (c) YA03 convergence curve.

Machines 2022, 10, 1100 34 of 38Machines 2022, 10, x FOR PEER REVIEW 36 of 40

(a) YA04 (b) YA05 (c) YA06

Figure 25. The best convergence curves obtained by the comparison algorithm in YA04-YA06. (a)
YA04 convergence curve; (b) YA05 convergence curve; (c) YA06 convergence curve.

(a) YA07 (b) YA08 (c) YA09

Figure 26. The best convergence curves obtained by the comparison algorithm in YA07-YA09. (a)
YA07 convergence curve; (b) YA08 convergence curve; (c) YA09 convergence curve.

(a) YA10 (b) YA11 (c) YA12

Figure 27. The best convergence curves obtained by the comparison algorithm in YA10-YA12. (a)
YA10 convergence curve; (b) YA11 convergence curve; (c) YA12 convergence curve.

Table 17. Comparison results of critical machine loads for the algorithm.

 WOA SSA MFO JAYA IPSO HGWO SLGA HIGWO
YA01 1112 1112 1104 1013 833 953 942 816
YA02 1139 1372 1282 1161 887 1073 1066 808
YA03 1330 1366 1421 1270 1028 1393 1204 904
YA04 610 618 558 650 483 638 578 442
YA05 740 704 902 782 513 694 616 540
YA06 885 613 709 843 660 643 670 464
YA07 1308 1092 1137 1297 1018 1200 1168 947
YA08 1476 1449 1457 1472 1144 1403 1243 988
YA09 1490 1597 1685 1590 1210 1428 1267 976
YA10 1602 1613 1614 1443 1203 1399 1508 1136
YA11 1880 1694 1724 1838 1432 1654 1372 1174
YA12 2024 1461 1500 1980 1295 1470 1374 1158

Figure 25. The best convergence curves obtained by the comparison algorithm in YA04–YA06.
(a) YA04 convergence curve; (b) YA05 convergence curve; (c) YA06 convergence curve.

Machines 2022, 10, x FOR PEER REVIEW 36 of 40

(a) YA04 (b) YA05 (c) YA06

Figure 25. The best convergence curves obtained by the comparison algorithm in YA04-YA06. (a)
YA04 convergence curve; (b) YA05 convergence curve; (c) YA06 convergence curve.

(a) YA07 (b) YA08 (c) YA09

Figure 26. The best convergence curves obtained by the comparison algorithm in YA07-YA09. (a)
YA07 convergence curve; (b) YA08 convergence curve; (c) YA09 convergence curve.

(a) YA10 (b) YA11 (c) YA12

Figure 27. The best convergence curves obtained by the comparison algorithm in YA10-YA12. (a)
YA10 convergence curve; (b) YA11 convergence curve; (c) YA12 convergence curve.

Table 17. Comparison results of critical machine loads for the algorithm.

 WOA SSA MFO JAYA IPSO HGWO SLGA HIGWO
YA01 1112 1112 1104 1013 833 953 942 816
YA02 1139 1372 1282 1161 887 1073 1066 808
YA03 1330 1366 1421 1270 1028 1393 1204 904
YA04 610 618 558 650 483 638 578 442
YA05 740 704 902 782 513 694 616 540
YA06 885 613 709 843 660 643 670 464
YA07 1308 1092 1137 1297 1018 1200 1168 947
YA08 1476 1449 1457 1472 1144 1403 1243 988
YA09 1490 1597 1685 1590 1210 1428 1267 976
YA10 1602 1613 1614 1443 1203 1399 1508 1136
YA11 1880 1694 1724 1838 1432 1654 1372 1174
YA12 2024 1461 1500 1980 1295 1470 1374 1158

Figure 26. The best convergence curves obtained by the comparison algorithm in YA07–YA09.
(a) YA07 convergence curve; (b) YA08 convergence curve; (c) YA09 convergence curve.

Machines 2022, 10, x FOR PEER REVIEW 36 of 40

(a) YA04 (b) YA05 (c) YA06

Figure 25. The best convergence curves obtained by the comparison algorithm in YA04-YA06. (a)
YA04 convergence curve; (b) YA05 convergence curve; (c) YA06 convergence curve.

(a) YA07 (b) YA08 (c) YA09

Figure 26. The best convergence curves obtained by the comparison algorithm in YA07-YA09. (a)
YA07 convergence curve; (b) YA08 convergence curve; (c) YA09 convergence curve.

(a) YA10 (b) YA11 (c) YA12

Figure 27. The best convergence curves obtained by the comparison algorithm in YA10-YA12. (a)
YA10 convergence curve; (b) YA11 convergence curve; (c) YA12 convergence curve.

Table 17. Comparison results of critical machine loads for the algorithm.

 WOA SSA MFO JAYA IPSO HGWO SLGA HIGWO
YA01 1112 1112 1104 1013 833 953 942 816
YA02 1139 1372 1282 1161 887 1073 1066 808
YA03 1330 1366 1421 1270 1028 1393 1204 904
YA04 610 618 558 650 483 638 578 442
YA05 740 704 902 782 513 694 616 540
YA06 885 613 709 843 660 643 670 464
YA07 1308 1092 1137 1297 1018 1200 1168 947
YA08 1476 1449 1457 1472 1144 1403 1243 988
YA09 1490 1597 1685 1590 1210 1428 1267 976
YA10 1602 1613 1614 1443 1203 1399 1508 1136
YA11 1880 1694 1724 1838 1432 1654 1372 1174
YA12 2024 1461 1500 1980 1295 1470 1374 1158

Figure 27. The best convergence curves obtained by the comparison algorithm in YA10–YA12.
(a) YA10 convergence curve; (b) YA11 convergence curve; (c) YA12 convergence curve.

Table 18. Average ranking of the comparison algorithm (Friedman), the level of significant α = 0.05.

Algorithm Ranking Final Priority

WOA 6.8333 7
Jaya 6.2500 6
MFO 7.5000 8
SSA 5.4167 5
IPSO 1.9167 2

HGWO 3.5000 3
SLGA 3.5000 3

DIGWO 1.0833 1
Test statistics Friedman

p-value 4.0349 × 10−14

Figure 28 shows the optimal makespan Gantt chart obtained by the proposed DIGWO
in YA01. The operations are denoted by “Job-operation”, and because of the large number

Machines 2022, 10, 1100 35 of 38

of machines, the vertical coordinates are not annotated machine sequentially, and the
horizontal coordinates in the figure indicate the processing time period of the operation.
From the graph, it can be observed that the majority of machines were started for processing
at the moment 0. In addition, no machine is found to be idle for a long time or overused,
which is in line with the concept of smart manufacturing and effectively saving process
time costs.

Machines 2022, 10, x FOR PEER REVIEW 37 of 40

Table 18. Average ranking of the comparison algorithm (Friedman), the level of significant α =
0.05.

Algorithm Ranking Final Priority
WOA 6.8333 7
Jaya 6.2500 6
MFO 7.5000 8
SSA 5.4167 5
IPSO 1.9167 2

HGWO 3.5000 3
SLGA 3.5000 3

DIGWO 1.0833 1
Test statistics Friedman

p-value 4.0349 × 10−14

Figure 28. Gantt chart of problem YA01.

6. Conclusions
We propose a discretized improved grey wolf optimization algorithm to solve FJSP

with the objectives of minimizing makespan and critical machine load. The GWO algo-
rithm has the advantage of few parameters and easy implementation; however, it may
converge prematurely. For this purpose, several improvement strategies are designed to
enhance the search capability of the algorithm for FJSP. The effectiveness of the algorithm
is verified through extensive comparison experiments with the algorithms proposed in
the literature published in recent years. The experimental and comparative results show
that the algorithm can obtain the most well-known solutions to most problems. The main
advantages of the DIGWO algorithm proposed in this paper are as follows. (1) The pro-
posed initialization strategy is introduced to improve the quality of the solution. (2) The
discrete update mechanism is designed to ensure that the algorithm can be effectively
applied to solve the problem, while being more competitive compared to recent research
on FJSP by GWO. (3) The proposed adaptive convergence factor enhances the global
search capability of the algorithm.

Figure 28. Gantt chart of problem YA01.

By the above comparison, the characteristics of FJSP and the idea of GWO are com-
bined, and the discrete update mechanism of DIGWO algorithm is designed, so that each
grey wolf individual of GWO has simple intelligence. The success of the DIGWO design
lies in the effective initialization strategy as well as the DGUO strategy, which not only
ensures the quality of the initial population, but also enhances the efficiency of the search
in the process of iterative update. For FJSP, the proposed algorithm has better conver-
gence compared to the original GWO. In conclusion, DIGWO has the inherent ability to
solve LSFJSP, and the proposed DIGWO is generalizable and can be applied to FJSPs of
different scales.

6. Conclusions

We propose a discretized improved grey wolf optimization algorithm to solve FJSP
with the objectives of minimizing makespan and critical machine load. The GWO algo-
rithm has the advantage of few parameters and easy implementation; however, it may
converge prematurely. For this purpose, several improvement strategies are designed to
enhance the search capability of the algorithm for FJSP. The effectiveness of the algorithm
is verified through extensive comparison experiments with the algorithms proposed in the
literature published in recent years. The experimental and comparative results show that
the algorithm can obtain the most well-known solutions to most problems. The main ad-
vantages of the DIGWO algorithm proposed in this paper are as follows. (1) The proposed
initialization strategy is introduced to improve the quality of the solution. (2) The discrete
update mechanism is designed to ensure that the algorithm can be effectively applied to
solve the problem, while being more competitive compared to recent research on FJSP by

Machines 2022, 10, 1100 36 of 38

GWO. (3) The proposed adaptive convergence factor enhances the global search capability
of the algorithm.

In recent years, carbon emissions and energy consumption have been hot topics in
modern manufacturing, and will therefore be considered for future research directions.
Additionally, some uncertainties such as machine failures and workpiece insertion are also
the focus of our research.

Author Contributions: Conceptualization, X.K.; methodology, W.Y.; validation, Y.Y.; investigation,
J.S.; writing—original draft preparation, Y.Y.; writing—review and editing, X.K.; visualization,
Z.Y.; project administration, X.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Key Research and Development Project of China
(2018YFB1700500) and the Scientific and Technological Project of Henan Province (202102110281,
222102110095).

Data Availability Statement: Reasonable requests to access the datasets should be directed to
nancykong@hist.edu.cn.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fan, J.X.; Shen, W.M.; Gao, L.; Zhang, C.J.; Zhang, Z. A hybrid Jaya algorithm for solving flexible job shop scheduling problem

considering multiple critical paths. J. Manuf. Syst. 2021, 60, 298–311. [CrossRef]
2. Liaqait, R.A.; Hamid, S.; Warsi, S.S.; Khalid, A. A Critical Analysis of Job Shop Scheduling in Context of Industry 4.0. Sustainability

2021, 13, 19. [CrossRef]
3. Li, R.; Gong, W.-Y. An improved multi-objective evolutionary algorithm based on decomposition for bi-objective fuzzy flexible

job-shop scheduling problem. Kongzhi Lilun Yu Yingyong/Control. Theory Appl. 2022, 39, 31–40.
4. Lenko, V.; Pasichnyk, V.; Kunanets, N.; Shcherbyna, Y. Knowledge representation and formal reasoning in ontologies with coq. In

Proceedings of the International Conference on Computer Science, Engineering and Education Applications, Hohhot, China,
22–24 October 2018; pp. 759–770.

5. Meng, L.L.; Zhang, C.Y.; Shao, X.Y.; Ren, Y.P. MILP models for energy-aware flexible job shop scheduling problem. J. Clean. Prod.
2019, 210, 710–723. [CrossRef]

6. Gong, X.; Deng, Q.; Gong, G.; Liu, W.; Ren, Q. A memetic algorithm for multi-objective flexible job-shop problem with worker
flexibility. Int. J. Prod. Res. 2018, 56, 2506–2522. [CrossRef]

7. Lin, J. Backtracking search based hyper-heuristic for the flexible job-shop scheduling problem with fuzzy processing time.
Eng. Appl. Artif. Intell. 2019, 77, 186–196. [CrossRef]

8. Zhou, B.H.; Liao, X.M. Particle filter and Levy flight-based decomposed multi-objective evolution hybridized particle swarm for
flexible job shop greening scheduling with crane transportation. Appl. Soft Comput. 2020, 91, 18. [CrossRef]

9. Wen, X.Y.; Wang, K.H.; Li, H.; Sun, H.Q.; Wang, H.Q.; Jin, L.L. A two-stage solution method based on NSGA-II for Green
Multi-Objective integrated process planning and scheduling in a battery packaging machinery workshop. Swarm Evol. Comput.
2021, 61, 18. [CrossRef]

10. Lunardi, W.T.; Birgin, E.G.; Laborie, P.; Ronconi, D.P.; Voos, H. Mixed Integer linear programming and constraint programming
models for the online printing shop scheduling problem. Comput. Oper. Res. 2020, 123, 20. [CrossRef]

11. Brucker, P.; Schlie, R. Job-shop scheduling with multi-purpose machines. Computing 1990, 45, 369–375. [CrossRef]
12. Pang, X.F.; Gao, L.; Pan, Q.K.; Tian, W.H.; Yu, S.P. A novel Lagrangian relaxation level approach for scheduling steelmaking-

refining-continuous casting production. J. Cent. South Univ. 2017, 24, 467–477. [CrossRef]
13. Hansmann, R.S.; Rieger, T.; Zimmermann, U.T. Flexible job shop scheduling with blockages. Math. Methods Oper. Res. 2014, 79,

135–161. [CrossRef]
14. Ozguven, C.; Ozbakir, L.; Yavuz, Y. Mathematical models for job-shop scheduling problems with routing and process plan

flexibility. Appl. Math. Model. 2010, 34, 1539–1548. [CrossRef]
15. Brandimarte, P. Routing and scheduling in a flexible job shop by tabu search. Ann. Oper. Res. 1993, 41, 157–183. [CrossRef]
16. Najid, N.M.; Dauzere-Peres, S.; Zaidat, A. A modified simulated annealing method for flexible job shop scheduling problem. In

Proceedings of the 2002 IEEE International Conference on Systems, Man and Cybernetics, Yasmine Hammamet, Tunisia, 6–9
October 2002; pp. 89–94.

17. Mastrolilli, M.; Gambardella, L.M. Effective neighbourhood functions for the flexible job shop problem. J. Sched. 2000, 3, 3–20.
[CrossRef]

18. Zhao, S. Hybrid algorithm based on improved neighborhood structure for flexible job shop scheduling. Jisuanji Jicheng Zhizao
Xitong/Comput. Integr. Manuf. Syst. CIMS 2018, 24, 3060–3072.

http://doi.org/10.1016/j.jmsy.2021.05.018
http://doi.org/10.3390/su13147684
http://doi.org/10.1016/j.jclepro.2018.11.021
http://doi.org/10.1080/00207543.2017.1388933
http://doi.org/10.1016/j.engappai.2018.10.008
http://doi.org/10.1016/j.asoc.2020.106217
http://doi.org/10.1016/j.swevo.2020.100820
http://doi.org/10.1016/j.cor.2020.105020
http://doi.org/10.1007/BF02238804
http://doi.org/10.1007/s11771-017-3449-1
http://doi.org/10.1007/s00186-013-0456-3
http://doi.org/10.1016/j.apm.2009.09.002
http://doi.org/10.1007/BF02023073
http://doi.org/10.1002/(SICI)1099-1425(200001/02)3:1<3::AID-JOS32>3.0.CO;2-Y

Machines 2022, 10, 1100 37 of 38

19. Li, X.Y.; Gao, L. An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem. Int. J. Prod. Econ.
2016, 174, 93–110. [CrossRef]

20. Chang, H.C.; Liu, T.K. Optimisation of distributed manufacturing flexible job shop scheduling by using hybrid genetic algorithms.
J. Intell. Manuf. 2017, 28, 1973–1986. [CrossRef]

21. Chen, R.H.; Yang, B.; Li, S.; Wang, S.L. A self-learning genetic algorithm based on reinforcement learning for flexible job-shop
scheduling problem. Comput. Ind. Eng. 2020, 149, 12. [CrossRef]

22. Wu, M.L.; Yang, D.S.; Zhou, B.W.; Yang, Z.L.; Liu, T.Y.; Li, L.G.; Wang, Z.F.; Hu, K.Y. Adaptive Population NSGA-III with Dual
Control Strategy for Flexible Job Shop Scheduling Problem with the Consideration of Energy Consumption and Weight. Machines
2021, 9, 24. [CrossRef]

23. Wu, J.; Wu, G.; Wang, J. Flexible job-shop scheduling problem based on hybrid ACO algorithm. Int. J. Simul. Model. 2017, 16,
497–505. [CrossRef]

24. Wang, L.; Cai, J.C.; Li, M.; Liu, Z.H. Flexible Job Shop Scheduling Problem Using an Improved Ant Colony Optimization.
Sci. Program. 2017, 2017, 11. [CrossRef]

25. Zhang, S.C.; Wong, T.N. Flexible job-shop scheduling/rescheduling in dynamic environment: A hybrid MAS/ACO approach.
Int. J. Prod. Res. 2017, 55, 3173–3196. [CrossRef]

26. Tian, S.; Wang, T.; Zhang, L.; Wu, X. An energy-efficient scheduling approach for flexible job shop problem in an internet of
manufacturing things environment. IEEE Access 2019, 7, 62695–62704. [CrossRef]

27. Ding, H.J.; Gu, X.S. Improved particle swarm optimization algorithm based novel encoding and decoding schemes for flexible job
shop scheduling problem. Comput. Oper. Res. 2020, 121, 104951. [CrossRef]

28. Fattahi, P.; Rad, N.B.; Daneshamooz, F.; Ahmadi, S. A new hybrid particle swarm optimization and parallel variable neighborhood
search algorithm for flexible job shop scheduling with assembly process. Assem. Autom. 2020, 40, 419–432. [CrossRef]

29. Nouiri, M.; Bekrar, A.; Jemai, A.; Trentesaux, D.; Ammari, A.C.; Niar, S. Two stage particle swarm optimization to solve the
flexible job shop predictive scheduling problem considering possible machine breakdowns. Comput. Ind. Eng. 2017, 112, 595–606.
[CrossRef]

30. Gao, K.Z.; Suganthan, P.N.; Pan, Q.K.; Chua, T.J.; Cai, T.X.; Chong, C.S. Discrete harmony search algorithm for flexible job shop
scheduling problem with multiple objectives. J. Intell. Manuf. 2016, 27, 363–374. [CrossRef]

31. Feng, Y.; Liu, M.R.; Zhang, Y.Q.; Wang, J.L. A Dynamic Opposite Learning Assisted Grasshopper Optimization Algorithm for the
Flexible JobScheduling Problem. Complexity 2020, 2020, 19. [CrossRef]

32. Li, M.; Lei, D.M.; Xiong, H.J. An Imperialist Competitive Algorithm With the Diversified Operators for Many-Objective Scheduling
in Flexible Job Shop. IEEE Access 2019, 7, 29553–29562. [CrossRef]

33. Yuan, Y.; Xu, H. Flexible job shop scheduling using hybrid differential evolution algorithms. Comput. Ind. Eng. 2013, 65, 246–260.
[CrossRef]

34. Li, Y.B.; Huang, W.X.; Wu, R.; Guo, K. An improved artificial bee colony algorithm for solving multi-objective low-carbon flexible
job shop scheduling problem. Appl. Soft Comput. 2020, 95, 14. [CrossRef]

35. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
36. Jiang, W.; Lyu, Y.X.; Li, Y.F.; Guo, Y.C.; Zhang, W.G. UAV path planning and collision avoidance in 3D environments based on

POMPD and improved grey wolf optimizer. Aerosp. Sci. Technol. 2022, 121, 11. [CrossRef]
37. Mao, M.; Yang, H.; Xu, F.Y.; Ni, P.B.; Wu, H.S. Development of geosteering system based on GWO-SVM model. Neural Comput.

Appl. 2022, 12, 12479–12490. [CrossRef]
38. Daniel, E.; Anitha, J.; Kamaleshwaran, K.K.; Rani, I. Optimum spectrum mask based medical image fusion using Gray Wolf

Optimization. Biomed. Signal Process. Control 2017, 34, 36–43. [CrossRef]
39. Naz, M.; Iqbal, Z.; Javaid, N.; Khan, Z.A.; Abdul, W.; Almogren, A.; Alamri, A. Efficient Power Scheduling in Smart Homes Using

Hybrid Grey Wolf Differential Evolution Optimization Technique with Real Time and Critical Peak Pricing Schemes. Energies
2018, 11, 25. [CrossRef]

40. Nagal, R.; Kumar, P.; Bansal, P.; IEEE. Optimization of Adaptive Noise Canceller with Grey Wolf Optimizer for EEG/ERP Signal
Noise Cancellation. In Proceedings of the 6th International Conference on Signal Processing and Integrated Networks (SPIN),
Noida, India, 7–8 March 2019; pp. 670–675.

41. Luan, F.; Cai, Z.Y.; Wu, S.Q.; Jiang, T.H.; Li, F.K.; Yang, J. Improved Whale Algorithm for Solving the Flexible Job Shop Scheduling
Problem. Mathematics 2019, 7, 14. [CrossRef]

42. Yuan, Y.; Xu, H.; Yang, J.D. A hybrid harmony search algorithm for the flexible job shop scheduling problem. Appl. Soft Comput.
2013, 13, 3259–3272. [CrossRef]

43. Luo, S.; Zhang, L.X.; Fan, Y.S. Energy-efficient scheduling for multi-objective flexible job shops with variable processing speeds
by grey wolf optimization. J. Clean. Prod. 2019, 234, 1365–1384. [CrossRef]

44. Liu, C.P.; Yao, Y.Y.; Zhu, H.B. Hybrid Salp Swarm Algorithm for Solving the Green Scheduling Problem in a Double-Flexible Job
Shop. Appl. Sci. 2022, 12, 205. [CrossRef]

45. Karthikeyan, S.; Asokan, P.; Nickolas, S.; Page, T. A hybrid discrete firefly algorithm for solving multi-objective flexible job shop
scheduling problems. Int. J. Bio-Inspired Comput. 2015, 7, 386–401. [CrossRef]

46. Gu, X.L.; Huang, M.; Liang, X. A Discrete Particle Swarm Optimization Algorithm With Adaptive Inertia Weight for Solving
Multiobjective Flexible Job-shop Scheduling Problem. IEEE Access 2020, 8, 33125–33136. [CrossRef]

http://doi.org/10.1016/j.ijpe.2016.01.016
http://doi.org/10.1007/s10845-015-1084-y
http://doi.org/10.1016/j.cie.2020.106778
http://doi.org/10.3390/machines9120344
http://doi.org/10.2507/IJSIMM16(3)CO11
http://doi.org/10.1155/2017/9016303
http://doi.org/10.1080/00207543.2016.1267414
http://doi.org/10.1109/ACCESS.2019.2915948
http://doi.org/10.1016/j.cor.2020.104951
http://doi.org/10.1108/AA-11-2018-0178
http://doi.org/10.1016/j.cie.2017.03.006
http://doi.org/10.1007/s10845-014-0869-8
http://doi.org/10.1155/2020/8870783
http://doi.org/10.1109/ACCESS.2019.2895348
http://doi.org/10.1016/j.cie.2013.02.022
http://doi.org/10.1016/j.asoc.2020.106544
http://doi.org/10.1016/j.advengsoft.2013.12.007
http://doi.org/10.1016/j.ast.2021.107314
http://doi.org/10.1007/s00521-021-06583-6
http://doi.org/10.1016/j.bspc.2017.01.003
http://doi.org/10.3390/en11020384
http://doi.org/10.3390/math7050384
http://doi.org/10.1016/j.asoc.2013.02.013
http://doi.org/10.1016/j.jclepro.2019.06.151
http://doi.org/10.3390/app12010205
http://doi.org/10.1504/IJBIC.2015.073165
http://doi.org/10.1109/ACCESS.2020.2974014

Machines 2022, 10, 1100 38 of 38

47. Gao, K.Z.; Yang, F.J.; Zhou, M.C.; Pan, Q.K.; Suganthan, P.N. Flexible Job-Shop Rescheduling for New Job Insertion by Using
Discrete Jaya Algorithm. IEEE Trans. Cybern. 2019, 49, 1944–1955. [CrossRef]

48. Xiao, H.; Chai, Z.; Zhang, C.; Meng, L.; Ren, Y.; Mei, H. Hybrid chemical-reaction optimization and tabu search for flexible job
shop scheduling problem. Jisuanji Jicheng Zhizao Xitong Comput. Integr. Manuf. Syst. CIMS 2018, 24, 2234–2245.

49. Jiang, T.H.; Deng, G.L. Optimizing the Low-Carbon Flexible Job Shop Scheduling Problem Considering Energy Consumption.
IEEE Access 2018, 6, 46346–46355. [CrossRef]

50. Lu, Y.; Lu, J.C.; Jiang, T.H. Energy-Conscious Scheduling Problem in a Flexible Job Shop Using a Discrete Water Wave Optimization
Algorithm. IEEE Access 2019, 7, 101561–101574. [CrossRef]

51. Jiang, T.H.; Zhang, C. Application of Grey Wolf Optimization for Solving Combinatorial Problems: Job Shop and Flexible Job
Shop Scheduling Cases. IEEE Access 2018, 6, 26231–26240. [CrossRef]

52. Liu, H.; Abraham, A.; Grosan, C. A novel variable neighborhood particle swarm optimization for multi-objective flexible job-shop
scheduling problems. In Proceedings of the 2007 2nd International conference on digital information management, Lyon, France,
28–31 October 2007; pp. 138–145.

53. Ding, H.J.; Gu, X.S. Hybrid of human learning optimization algorithm and particle swarm optimization algorithm with scheduling
strategies for the flexible job-shop scheduling problem. Neurocomputing 2020, 414, 313–332. [CrossRef]

54. Zhang, N.; Zhao, Z.-D.; Bao, X.-A.; Qian, J.-Y.; Wu, B. Gravitational search algorithm based on improved Tent chaos. Tent. Kongzhi
Yu Juece Control. Decis. 2020, 35, 893–900.

55. Bagheri, A.; Zandieh, M.; Mahdavi, I.; Yazdani, M. An artificial immune algorithm for the flexible job-shop scheduling problem.
Future Gener. Comput. Syst. 2010, 26, 533–541. [CrossRef]

56. Gao, K.Z.; Suganthan, P.N.; Pan, Q.K.; Chua, T.J.; Chong, C.S.; Cai, T.X. An improved artificial bee colony algorithm for flexible
job-shop scheduling problem with fuzzy processing time. Expert Syst. Appl. 2016, 65, 52–67. [CrossRef]

57. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the Proceedings of ICNN’95-international conference on
neural networks, Perth, WA, Australia, 27 November 1995; pp. 1942–1948.

58. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 2015, 89, 228–249.
[CrossRef]

59. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer
for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]

60. Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96, 120–133. [CrossRef]
61. Rao, R. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J.

Ind. Eng. Comput. 2016, 7, 19–34.
62. Kacem, I.; Hammadi, S.; Borne, P. Approach by localization and multiobjective evolutionary optimization for flexible job-shop

scheduling problems. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2002, 32, 331–342. [CrossRef]
63. Fattahi, P.; Saidi Mehrabad, M.; Jolai, F. Mathematical modeling and heuristic approaches to flexible job shop scheduling problems.

J. Intell. Manuf. 2007, 18, 331–342. [CrossRef]
64. Nouri, H.E.; Belkahla Driss, O.; Ghédira, K. Solving the flexible job shop problem by hybrid metaheuristics-based multiagent

model. J. Ind. Eng. Int. 2018, 14, 1–14. [CrossRef]
65. Jiang, T.-H. Flexible job shop scheduling problem with hybrid grey wolf optimization algorithm. Kongzhi Yu Juece/Control. Decis.

2018, 33, 503–508.
66. Gao, K.Z.; Suganthan, P.N.; Pan, Q.K.; Chua, T.J.; Cai, T.X.; Chong, C.S. Pareto-based grouping discrete harmony search algorithm

for multi-objective flexible job shop scheduling. Inf. Sci. 2014, 289, 76–90. [CrossRef]
67. Teekeng, W.; Thammano, A.; Unkaw, P.; Kiatwuthiamorn, J. A new algorithm for flexible job-shop scheduling problem based on

particle swarm optimization. Artif. Life Robot. 2016, 21, 18–23. [CrossRef]
68. Birgin, E.G.; Feofiloff, P.; Fernandes, C.G.; De Melo, E.L.; Oshiro, M.T.; Ronconi, D.P. A MILP model for an extended version of

the flexible job shop problem. Optim. Lett. 2014, 8, 1417–1431. [CrossRef]
69. Liu, Z.F.; Wang, J.L.; Zhang, C.X.; Chu, H.Y.; Ding, G.Z.; Zhang, L. A hybrid genetic-particle swarm algorithm based on multilevel

neighbourhood structure for flexible job shop scheduling problem. Comput. Oper. Res. 2021, 135, 19. [CrossRef]
70. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]

http://doi.org/10.1109/TCYB.2018.2817240
http://doi.org/10.1109/ACCESS.2018.2866133
http://doi.org/10.1109/ACCESS.2019.2930281
http://doi.org/10.1109/ACCESS.2018.2833552
http://doi.org/10.1016/j.neucom.2020.07.004
http://doi.org/10.1016/j.future.2009.10.004
http://doi.org/10.1016/j.eswa.2016.07.046
http://doi.org/10.1016/j.knosys.2015.07.006
http://doi.org/10.1016/j.advengsoft.2017.07.002
http://doi.org/10.1016/j.knosys.2015.12.022
http://doi.org/10.1109/TSMCC.2002.1009117
http://doi.org/10.1007/s10845-007-0026-8
http://doi.org/10.1007/s40092-017-0204-z
http://doi.org/10.1016/j.ins.2014.07.039
http://doi.org/10.1007/s10015-015-0259-0
http://doi.org/10.1007/s11590-013-0669-7
http://doi.org/10.1016/j.cor.2021.105431
http://doi.org/10.1016/j.advengsoft.2016.01.008

	Introduction
	Mathematical Models of FJSP
	Problem Description
	Model of FJSP
	Basic GWO Algorithm
	Encircling Prey
	Hunting
	Attacking Prey and Search for Prey

	Proposed Discrete Improved Grey Wolf Optimization Algorithm
	The Framework of the Proposed DIGWO
	Solution Representation
	Population Initialization
	Nonlinear Convergence Factor
	Discrete Grey Wolf Update Operator (DGUO)
	Update Approach Based on Leader Wolf
	Update Approach Based on Ordinary Wolf
	Acceptance Criteria

	Numerical Analysis
	Simulation of FJSP Based on DIGWO
	Notation
	Description of Test Examples
	Parameter Analysis
	Analysis of the Effectiveness of the Proposed Strategy
	Validation of the DGUO Strategy
	Validation of Initialization Strategy

	Comparison with Other Algorithms
	Comparison Results in KCdata
	Comparison Results in BRdata
	Comparison Results in Fdata

	Comparison Results in LSFJSP

	Conclusions
	References

