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Abstract: Automated driving is a promising tool for reducing traffic accidents. While some companies
claim that many cutting-edge automated driving functions have been developed, how to evaluate
the safety of automated vehicles remains an open question, which has become a crucial bottleneck.
Scenario-based testing has been introduced to test automated vehicles, and much progress has been
achieved. While data-driven and knowledge-based approaches are hot research topics, this survey is
mainly about Data-Driven Scenario Generation (DDSG) for automated vehicle testing. Rather than
describe the contributions of every study respectively, in this survey, methodologies from various
studies are anatomized as solutions for several significant problems and compared with each other.
This way, scholars and engineers can quickly find state-of-the-art approaches to the issues they might
encounter. Furthermore, several critical challenges that might hinder DDSG are described, and
responding solutions are presented at the end of this survey.
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1. Introduction

Traffic accident reduction has always been a hot topic in industry and academia [1–3].
Automated Driving (AD) is a promising approach to reducing accidents [4]. The rapid
development of AD has been witnessed in the past decade. Some companies, such as Baidu,
Tesla, and Audi, claim that they have developed high-level automated vehicles (AVs) [5,6].
Before being accepted by the market, high-level AVs must be thoroughly validated and
evaluated to prove that they are safer than human driving, or at least as same [7]. However,
testing AVs is still challenging [8]. On the one hand, AVs are becoming increasingly more
complicated. For example, some Machine Learning (ML) technologies have been applied
to AD for tasks including object recognition and classification and have achieved good
results [9]. However, many of them, such as Convolutional Neural Networks (CNN),
and Reinforcement Learning (RL), are not fully interpretable, which makes it significantly
challenging to test AVs based on traditional methods, such as mileage-based testing [10,11].
On the other hand, there are many occasional scenarios in the physical world where AVs
are required to drive [12]. The number of scenarios an AV might encounter in natural
driving traffic is theoretically infinite. Ref. [13] indicates that millions of miles of road
testing may be required to prove the reliability of a driverless vehicle, which is unfeasible
and unaffordable.

Scenario-Based Testing (SBT) is a well-investigated and promising method for AV
testing. There are many projects and initiatives about the SBT of AVs, including Pegasus [14],
euroFOT [15], AdaptIVe [16], Sakura [17], StreetWise [18], and so on. SBT has already been
utilized in software engineering [19,20]. The purpose of SBT is to prove that the System
Under Test (SUT) can work as designed or at least safely without getting itself hurt or
jeopardizing the safety of other traffic participants in the whole Operational Design Domain
(ODD) [6].
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One of the cornerstones of SBT is the scenario database, including diverse and crit-
ical scenarios. There are two kinds of methods to obtain it, data-driven or knowledge-
based. The most significant difference between them is their reliance on expert knowledge.
Knowledge-based methods usually require substantial expertise to generate needed scenar-
ios, such as ontology-based methods [21,22]. On the contrary, data-driven methods generate
scenarios primarily by exploiting information contained in source data. It is worth noting
that “data-driven” does not mean expert knowledge is not needed in all relevant processes
of scenario generation. Actually, specialist knowledge is utilized in almost all data-driven
methods or as complementary to them, more or less [23,24]. While knowledge-based SBT
has been proven to be a practical approach in some circumstances [22], it is limited to
the domain designed by experts [25], and it cannot derive SUT performance in natural
traffic [15]. Therefore, this survey focuses on Data-Driven Scenario Generation (DDSG).

Data-driven scenario generation for AV testing has become a hot topic, and much
progress has been made. It would be helpful for researchers and engineers to read surveys
summarizing critical points of relevant studies, especially the ones published in the past
three years. A problem-oriented survey is provided to make it easier for researchers
and engineers to find solutions for their problems of data-driven scenario generation
quickly. Solutions for the same issues are grouped and compared. For example, dimension
reduction techniques, such as Principal Component Analysis (PCA), and t-distributed
Stochastic Neighbor Embedding (t-SNE), are employed in many studies. A comparison of
them could help scholars and engineers make the best choice. It is worth noting that while
this survey is mainly about data-driven approaches for scenario generation, some studies
taking advantage of expert knowledge to enhance data-driven scenario generation are also
considered in this survey.

There are already some reviews about SBT of AVs [12,26–28]. SBT of AVs is one of
the topics of [28], but the latest literature is not considered. The approaches for SBT are
taxonomized in [26] without some essential topics not discussed in detail, such as the
improvement of the original Accelerated Evaluation (AE) [29] and the construction of
metrics considering several aspects. In [27], methods for SBT are categorized into three
classes: coverage-oriented, unsafe-scenario-oriented, and indicator-estimation oriented.
And these methods are analyzed based on simulation results. However, most of these
reviews group related studies based on the overall methodologies rather than the specific
problems they try to solve.

The motivation of this paper is to introduce, analyze, and compare state-of-the-art
methodologies for Data-Driven Scenario Generation (DDSG) and solutions to related sub-
problems. Furthermore, pointing out some remaining problems in DDSG. Scholars and
engineers can make the best choice for AV testing among the existing methods or dig
deeper to tackle the remaining problems in scenario-based testing (SBT). Therefore, the
contributions of this survey include four parts:

1. State-of-the-art methodologies used for DDSG, such as Reinforcing Learning (RL),
Accelerated Evaluation (AE), and so on, are generally introduced. The generation
of customized scenarios for the VUT is also covered by this survey, which cannot be
found in existing reviews.

2. Solutions to sub-problems involved in these methodologies are described in detail.
These sub-problems include source data collection, scenario identification, and criti-
cality metrics used for scenario evaluation.

3. Some remaining problems are pointed out, and responding potential solutions
are provided.

2. Framework

Some crucial problems must be solved to generate needed scenarios, including collect-
ing authentic source data, identifying interested scenarios hidden in source data, generating
scenarios for AV testing, evaluating derived scenarios, and so on. Since methodologies for
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DDSG might diverge a lot from each other, based on these to-be-solved problems, a typical
framework of DDSG is obtained as shown in Figure 1, which includes mainly four steps:
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Step 1: Source Data Obtaining. DDSG mainly relies on information extracted from
data instead of expert knowledge. Therefore, source data is crucial to DDSG [26]. Source
data can be collected through physical or virtual approaches. The former includes collecting
Natural Driving Data (NDD) and accident data et al. Sometimes, data from the real world
is integrated into relevant laws, regulations, or standards, which can also be used as data
sources. With the developing of simulation techniques, the fidelity of the virtual world
used for AV testing is improving gradually, leading to the increasing importance of the
later ones [30,31].

Step 2: Scenario Identification. Scenario identification aims to identify or detect
scenarios that have already happened and are hidden in source data. Based on these
identified scenarios, parameter ranges and distributions of logical scenarios can be elicited.
On the other hand, some accident scenarios can be directly used for AV testing, such as
accident and near-collision scenarios [32].

Step 3: Scenario Generation. Many companies have collected a large amount of
NDD [28]. However, on the one hand, the number of scenarios existing in the real world is
theoretically infinite. It is almost an impossible mission to collect enough data in which all
possible parameter combinations in ODD can be directly identified [33]. Moreover, most
scenarios recorded by NDD are dull, and critical scenarios are rare [15]. As for accident
databases, the diversity of identified scenarios cannot be secured. Therefore, it is necessary
to generate scenarios that are rarely observed in the natural world but are critical for AVs.

Step 4: Scenario Evaluation. Based on pre-defined metrics, the quality of scenarios can
be measured, which will be employed to quantify SUT performance. This survey focuses
on the criticality of scenarios.

After analyzing hundreds of studies, this survey focusses on several hot topics, in-
cluding source data collection, scenario identification, diverse scenario generation, criti-
cal/challenging scenario generation, customized scenario generation, and criticality metrics
of scenarios. The remains of this survey are arranged as follows: Section 2 provides some
basic term definitions. Several source data collection methods are described in Section 3.
Sections 4 and 5 introduce essential procedures and methodologies for scenario identifi-
cation and generation, respectively. At the end of Sections 3–5, conclusions of relevant
sections are made. Finally, conclusions about existing methodologies for DDSG are made,
and several challenges are pointed out in Section 6.

3. Definitions
3.1. Scene, Scenario, and ODD

Although many studies about SBT of AVs exist, the definitions of scenario and scene
remain open [34]. Considering rationality and popularity, relative term definitions in
Pegasus [14] are adopted in this survey. In Pegasus, a scenario is a temporal sequence
of scenes. A scene is a snapshot of the environment, including dynamic entities such as
vehicles and pedestrians and static entities such as traffic signs and lights [35].

Based on the level of abstraction, scenarios can be classified into three categories,
functional, logical, and concrete scenarios [20]. Functional scenarios are described by
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natural languages, such as cut-in and car-following scenarios, and have the highest level of
abstraction. Parameter ranges and distributions can be found in logical scenarios, which
have less abstraction than functional scenarios. Each parameter has an exact value in
concrete scenarios, meaning concrete scenarios are less abstract than logical and functional
scenarios. Concrete scenarios selected to execute are called test cases [36]. If with no specific
notation, scenarios mentioned in the following refer to concrete scenarios.

ODD is the operational design domain where the SUT should work as designed [6]. For
a better description of ODD, a 5-layer model [22] is developed for highway scenarios, which
includes Road-level (Layer 1), Traffic Infrastructure (layer 2), Temporary Manipulation of L1
and L2 (layer 3), Objects (Layer 4), and Environment (Layer 5). Furthermore, [37] extends it
by adding the sixth layer, Digital Information. Furthermore, a modified 6-layer model is
presented in [38] to describe traffic scenarios in urban appropriately, which includes Road
Network and Traffic Guidance Objects (Layer 1), Roadside Structures (Layer 2), Temporary
Modification of L1 and L2 (Layer 3), Dynamic Objects (Layer 4). Environment Conditions
(Layer 5), Digital Information (Layer 6).

3.2. Critical, Challenging Scenarios

There are many terms used in different studies to describe scenarios with different
characteristics, including critical scenarios, challenging scenarios, boundary scenarios,
complex scenarios, corner cases, edge cases, etc. However, there are no standard definitions
for them now. While usually applied as synonyms [39–41], differences between these terms
can be found in some studies.

The term criticality can be found in many studies (see Section 7), but its definition in
SBT remains an open question. In [42], critical metrics are surrogate measures for analyzing
conflict potential or the severity of microscopic scenarios. In [43], criticality indicates the
temporal or spatial closeness to a potential collision in a driving scene/scenario, or the
magnitude of the dynamic driving reaction required to prevent an accident. Furthermore, a
critical metric quantifies the criticality of a scene or scenario. Since the definitions described
in [43] are more comprehensive, this survey adopts them. In terms of critical scenarios, the
definition provided by [44] is adopted: critical scenarios are scenarios in which the ego
vehicle leads or nearly leads to collisions. The criticality of a scenario can only be obtained
after scenario execution.

Challenging scenarios and complex scenarios are usually used as alternatives to each
other [44]. In [45,46], challenging and complex scenarios refer to significantly difficult
scenarios for ego vehicles to pass safely. They insist that how challenging or complex a
scenario is can be determined before scenario execution. Ref. [47] regards scenarios that are
very difficult to master as challenging scenarios and assumes that an increasing difficulty
of a scenario leads to a surge of failure possibility of the SUT. In this survey, challenging or
complex scenarios are the ones that are challenging for the SUT to pass without directly or
indirectly leading to a crash. It is worth noting that challenging or complex scenarios are
not always critical, which can only be determined after the execution.

In [28], boundary scenarios are those whose execution results are in the proximate area
around the boundary between safe and unsafe. Behavior mode boundaries are considered
guardians for searching critical scenarios in [48]. As for corner and edge cases, [49] believes
only corner cases with unusual or novel conditions can be considered edge scenarios. In this
survey, the definition presented by [27] is adopted, which is that boundary scenarios/cases
are the ones that exist around the performance boundaries of the SUT, around which a
small change to scenario parameters might lead to significantly different execution results,
such as leading to a collision or not. Corner and edge scenarios/cases are the ones that are
extremely rare in the real world. The slight difference between corner cases and edge cases
is ignored. For more term definitions used for SBT, [49,50] are advised.
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4. Source Data Collection

The authenticity and coverage of source data are crucial to the quality of a scenario
database. Data from the physical world, such as Natural Driving Data (NDD) and accident
datasets, are exploited in many studies. In the meantime, some studies use simulation-
based methods to acquire source data. This section introduces methods of obtaining NDD,
accident data, and virtual data, and some conclusions are given at the end of this section.

4.1. Natural Driving Data

Natural Driving Data (NDD) is traffic data collected in the physical world. There
are two main approaches for NDD collection: the floating vehicle-based and the fixed
sensor-based. Floating vehicles (FVs) are usually equipped with many sensors, such as
lidars, millimeter-wave radars, inertial navigation systems, global positioning systems, and
cameras. Theoretically, FVs can collect NDD at any place where FVs can go at any time. By
fusing data from different sensors, high-quality data can be collected. Some big companies
have gathered lots of NDD using FVs, including Baidu, Waymo, Volvo, and so on [51].
Well-founded projects such as Pegasus, SPMD project [52], et al. also have their own NDD
databases. However, it is costly to maintain a large fleet of FVs. Due to the tremendous
investment required, many related companies or institutes do not share/publicize the
source data, such as Pegasus and TNO [53].

In [54], floating vehicles equipped with two laser scanners, two front cameras, and
IMU/GUSS are used to collect traffic data in China, as shown in Figure 2. 3D-semantic
labels and 3D-bounding boxes in ApolloScape dataset make it a hot dataset for object
detection and orientation estimation algorithms. Since this dataset includes many urban
traffic scenes, it can also be used to generate scenarios for AV testing.
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Fixing sensors on roadside infrastructures or drones to collect NDD is a compara-
tively more affordable method. Drones equipped with cameras are mentioned in many
studies [55–58]. With the help of computer vision technology, trajectories of traffic par-
ticipants can be extracted precisely. In the highD dataset [55], mean errors of lateral and
longitudinal positions between computer-based and human-based methods are less than
0.03 m. However, compared with FV-based methods, the observed area and duration of the
fixed sensor-based method are pretty limited and are sensitive to harsh circumstances. For
example, if cameras are the only employed instruments, extreme weather, such as foggy or
rainy, could make it significantly challenging to extract accurate NDD from the recorded
videos. However, if several types of sensors are applied for data collection, the negative
influence of unfavorable weather can be mitigated.

In [59], to collect traffic data in an intersection in Aschaffenburg, Germany, 14 8-layer
lidars and eight cameras with different viewpoints are installed on traffic lights and lamp
posts more than 5 m above the ground.
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Traffic scenarios in NDD are naturally feasible, and SUT performance in natural traffic
can be derived from that in scenarios generated based on NDD (see Section 5). Since
the number of scenarios that might happen in natural driving traffic is almost infinite, an
enormous amount of NDD is needed for AV testing. However, it requires heavy investments
to collect NDD based on FVs, while fixed sensors can only monitor a specific area. While
many large-scale NDD datasets are not publicly available, some institutes share their NDD
data for non-commercial purposes. In [12], 25 public NDD datasets are compared in several
aspects, including bird’s-eye or first-person view, containing or not containing data in
different weather, notation types, etc. Ref. [60] summarizes 37 NDD datasets and 22 kinds
of commercial or simulation software for AV testing. For the completeness of this section,
27 traffic datasets are provided in Table 1, including the latest ones.

Table 1. 27 NDD dataset. “Trajectory” indicates if trajectories of all traffic agents are explicitly
available in the dataset.

Number Dataset OpenSource Method Sensor Trajectory

1 100-car [61] Yes FV-based Camera, GPS, radar No
2 A*3D [62] Yes FV-based Lidar, Camera No
3 ApolloScape [54] Yes FV-based Camera, Lidar, GPS/IMU No
4 Argoverse [63] Yes FV-based Lidar, Camera Yes
5 Bdd100k [64] Yes FV-based Camera, Lidar, GPS/IMU No
6 CamVid [65] Yes FV-based Lidar, Camera No
7 Cityscapes [66] Yes FV-based Camera No
8 CitySim [67] Yes Fixed sensor-based Camera Yes
9 Five Roundabouts [68] Yes Fixed sensor-based Lidar, Camera Yes

10 H3D [69] Yes FV-based Cameras, LiDAR and
GPS/IMU No

11 InD [56] Yes Fixed sensor-based Camera Yes
12 INTERACTION [70] Yes Fixed sensor-based Camera Yes
13 KAIST [71] Yes FV-based Camera, Lidar, GPS/IMU No
14 KITTI [72] Yes FV-based Camera, Lidar, GPS/IMU No
15 Ko-PER [73] Yes Fixed sensor-based Lidar, Camera Yes
16 Lyft Level 5 [59] Yes FV-based Lidar, Camera No

NGSIM [58] Yes Fixed sensor-based Camera Yes

17 nuScenes [59] Yes FV-based Radar, Lidar, Camera,
GPS/IMU No

18 Oxford RobotCar [74] Yes FV-based Camera, Lidar, GPS/IMU No
19 RondD [57] Yes Fixed sensor-based Camera Yes
20 SPMD [52] Yes FV-based VAD, ASD, RSD, et.al. No
21 Stanford Drone [75] Yes Fixed sensor-based Camera Yes
22 BDDDD [76] Yes Fixed sensor-based Camera Yes
23 TRAF [77] Yes FV-based Camera Yes
24 TDCDBD [78] Yes FV-based Camera No
25 TAF-BW [79] Yes FV-based Camera Yes
26 Udacity [80] Yes FV-based Camera No

27 Waymo Open [81] Yes FV-based Cameras, LiDAR and
GPS/IMU No

4.2. Accident Data

Each accident scenario identified in accident databases involves at least one crash,
which means accident scenarios are naturally challenging to AVs [82]. Theoretically, all
approaches of NDD collection can be applied to accident data gathering. In [83], many
accident data collection methods adopted in developed and developing countries are
introduced and compared. Considering the rarity of accidents and the affordability of
relevant instruments, accident reports and videos are most widely used for accident data
extraction [84,85]. However, accident reports or videos might ignore some essential details,
which means some remedies might be necessary [86]. Many countries have invested
a lot in accident data collection, resulting in many famous accident databases, such as
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CIDAS [87] and NAIS [88] from China, GIDAS [89] from German, GES [90] from the
US, ASSESS [91] from Europe, OTS [92] and STATS19 [92] from the UK. Several accident
datasets are analyzed in [93].

However, as shown in Table 2, some valuable accident datasets are not available for
most researchers, such as In-depth accident databases from German and China [89,94].
The Crash Investigation Sampling System (CISS) database of the National Highway Traffic
Safety Administration is the only in-depth accident database freely available to the pub-
lic [95]. Moreover, accident scenarios only fill a small part of ODD, indicating that they
cannot be leveraged to prove AV safety in the whole ODD.

Table 2. 14 Accident datasets. “In-Depth” indicates an in-depth accident dataset.

Number Dataset Open Source In-Depth Region Source of Raw Data

1 US-Accidents [96] Yes No USA MapQuest Traffic and
Microsoft Bing Map Traffic

3 CIDAS [97] No Yes China accident report
4 Dubai [98] No No Dubai accident report
5 GIDAS [99] No Yes German accident report
6 KIDAS [100] No Yes Korea accident report
7 Korean Freeway [101] No No Korea accident report
8 NAIS [88] No Yes China accident report
9 GES [67] Yes Yes USA accident report

10 OSM [102] Yes No Global accident report
11 SHUFO [103] No Yes Shanghai accident report
12 Singapore [104] No No Singapore accident report
13 UKIDAS [105] No Yes UK accident report
14 CADP [106] Yes No Global Video

4.3. Virtual Data

In the virtual world, the positions and behaviors of traffic participants can be ma-
nipulated as desired, and complex scenarios can be produced at a low cost. With the
advancement of simulation technology, it becomes possible to gather virtual but high-
fidelity data in simulation experiments.

Microscopic traffic simulation is an efficient method to quickly get a large amount of
virtual data for DDSG. In [31], accident scenario data is obtained by microscopic traffic
simulation on SUMO [107]. To create a more realistic traffic circumstance, a digital twin
of the natural static environment in a district is reconstructed on Unity in [108]. Then
virtual vehicles, pedestrians, and other traffic participants are added to the virtual world
to generate high-fidelity traffic scenarios. Reviews of traffic simulation technologies and
popular simulators can be found in [109,110].

The behavior models employed in microscopic traffic simulations are usually conser-
vative and lack complicated interactions among each other, which are significantly essential
for AVs [111]. To this end, it is an excellent option to replace the crucial virtual traffic
participants (such as drivers, pedestrians, et al.) with real ones while other elements remain
virtual. To investigate the interaction between human drivers and automated vehicles
in dilemma areas, [30] equips human drivers with Virtual Reality (V.R.) instruments to
immerse them in the virtual world. Similarly, in [112], Mixed Reality (M.R.) technology is
adopted to collect pedestrian-vehicle interaction data. Augmented Reality (AR) instruments
are integrated with a scenario generation methodology in [113] to simulate a natural traffic
environment. However, simulation efficiency is somewhat limited since not all elements in
these experiments are virtually and automatically generated.

There are several advantages of generating source data based on the simulation
environment. First, the generation of virtual traffic data is more time efficient. Different
from collecting traffic data in the real world, the number of virtual traffic data generated
within one second could be significant given sufficient computing resources. Second, it is
less labor-intensive. Third, semantic information is 100% right, which is of great value for
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the perception system test of an AV. However, there might always be a simulation-to-real
gap [114]. Rendering realistic traffic scenarios will be a hot research topic in the next decade.

4.4. Conclusions of Source Data Collection

This section introduces methods for collecting NDD, accident data, and virtual scenario
data. NDD is naturally feasible, and SUT performance in natural traffic can be derived
based on SUT performance in scenarios generated based on NDD (see Section 6). However,
it is not easy to gather enough NDD without heavy investment. Accident data can be used
to extract accident scenarios. Each of these accident scenarios involves at least one accident
and is challenging for AV testing. Considering the efforts needed for collecting scenario
data in the real world, it would significantly contribute to the community if big companies
share their traffic data, such as Alphabet, Tesla, Didi, and Baidu. It must be pointed out
that it is not possible or feasible to identify scenarios that cover all space of the ODD only
using data collected in the physical world.

In the virtual world, almost all elements needed for a scenario, including behaviors
of all traffic participants, weather, roadside buildings, and so on, can be simulated and
manipulated. With the development of simulation technologies, the efficiency of generating
high-fidelity scenario data is increasing continually. It is reasonable to believe that virtually
generated data would play an increasingly significant role in DDSG.

5. Scenario Identification

Scenarios identified in source data can be applied to derive ranges and distributions of
scenario parameters. The critical ones among them can be directly used for the SBT of AVs.
For example, critical scenarios generated by adding noise to accident scenarios are utilized
by Waymo to test AVs [32]. Highly efficient scenario identification methods are needed
to mind a large amount of source data. This section summarizes studies about scenario
identification, and a comparison of different approaches is made at the end of this section. It
is worth noting that while the topic of this survey is DDSG, considering rule-based methods
can be used to label data for scenario identification based on Unsupervised Machine
Learning (UML), studies about rule-based methods are also considered in the section.

5.1. Region of Interest

Before scenario identification, spatial and temporal ranges of engaging scenarios
should be determined to ignore factors having almost no influence on ego and eliminate
unnecessary data. However, a scenario’s duration and Region Of Interest (ROI) are still
open to discussion. Ref. [26] suggests that a duration of about 10 seconds is enough for
most scenarios.

For the ROI of highway scenarios, an eight-vehicle model, as shown in Figure 3, is
proposed only to consider vehicles near ego [115]. For specific values of L f and Lb, 60 m is
advised in [115]. Ref. [116] argues that ROI should be relative to the longitudinal velocity of
ego, and an ROI considering safety distance is presented, as shown in Figure 4. A time gap
of 1.8 s is suggested in [45,117]. Ref. [118] holds similar opinions and argues that remaining
lateral distance should also be considered.
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5.2. Feature Dimension Reduction

For different scenarios number of parameters may vary a lot. To evaluate the perfor-
mance of AVs in the whole ODD, complicated scenarios involving multiple parameters are
necessary. Dimension reduction is essential to overcome dimension explosion and make it
more feasible to identify or generate scenarios based on features in the latent space in the
following steps. While there are many techniques for DR [115], three of them are frequently
used for DDSG, including Principal Component Analysis (PCA) [119], Singular Value
Decomposition (SVD) [120], t-Distributed Stochastic Neighbor Embedding (t-SNE) [121].

PCA is a linear analysis technique that transfers original parameters to independent
principal components by mapping parameters from the original to a latent space without
losing too much variance [115]. PCA is widely adopted because it is robust and costs a
low level of computational power [122]. Inspired by PCA, [123] proposes Principal Feature
Analysis (PFA) which maps the most important features rather than all features to the
latent space. In [124], PCA is applied to transform high-dimensional trajectories to low-
dimensional feather vectors, and then the noise is added to the feather vectors to generate
critical scenarios. However, since PCA works based on the contribution of parameters to
the variance of the result, it belongs to a statistical method. This usually makes the feather
vector not physically interpretable [125].

While SVD is one of the key parts of PCA, SVD itself can also be applied for dimension
reduction. To reduce dimensions for scenario description, SVD is adopted in [126] to
map the original scenario parameters to a space with fewer dimensions. Furthermore, the
Possibility Density Function (PDF) of the resulting low-dimension parameters is estimated
by Kernel Density Estimation (KDE) and sampled to generate new scenarios. Although
PCA and SVD are both linear analysis techniques without supervision, there is a significant
difference between them [127]. The goal of PCA is to maximize the variance of the original
parameters, while SVD aims to minimize reconstruction error. Furthermore, PCA needs no
iteration, while SVD does.

t-SNE is a visualization and dimension reduction tool based on possibility differ-
ences [128]. High-dimension parameters are mapped to a lower-dimension (usually 2 or 3)
space by t-SNE without losing significant structure in the original data. In other words,
adjacent points in the original space are still near each other with a high possibility in the
new space, which PCA cannot achieve. To cluster trajectories in different scenarios, [129]
combined Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [130]
with PCA, SVD, and t-SNE, respectively. Simulation results show t-SNE based DBSCAN
outperforms the others. However, every DR method has its edges. For more details about
dimension reduction, [131] are suggested.

5.3. Rule-Based Methods

Rule-based methods identify scenarios mainly based on pre-defined constraints or
rules, such as thresholds, parameter ranges, etc. For simple scenarios that involve no
complicated maneuvers or many participants, several thresholds or rules defined by ex-
perts might be enough for scenario identification. Based on pre-defined thresholds of
decelerations, the lateral distance between ego and lane lines, or the time before or after the
maneuver, braking, turning, lane-change, and cut-in scenarios are identified in [23,132,133].
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In Rule-based approaches designed to identify complicated scenarios, scenarios are
usually interpreted as combinations of elementary blocks, which could be states, events,
activities, or maneuvers. Different temporal sequences of these building blocks belong to
different function scenarios [134–136].

In [137], activities are the elementary blocks of scenarios. There are three lateral
activities (acceleration, cruising, and deceleration) and three longitudinal activities (lane
following, turn left, and turn right). Every trajectory can be regarded as a combination
of these activities. Rules-based scenario templates are designed by experts and include
the relative locations of traffic participants and their activities and speed. Gap-closing and
cut-in scenarios in NDD are detected. The authors of [137] claim that this approach can
identify all scenarios in NDD. But no example involving complex maneuvers is provided.

In [138], a maneuver is defined as the intentional transfer between different states of a
participant. A layered maneuver model for urban scenario identification is designed, which
includes vehicle state maneuvers, infrastructure maneuvers, and object-related maneuvers.
Vehicle state maneuvers include acceleration, keeping velocity, deceleration, and reversing.
Infrastructure maneuvers include following lanes, lane-change, approaching a junction,
and so on. Object-relate maneuvers include the following and approaching objects, et al.
Different combination patterns of these maneuvers are categorized into different functional
scenarios. A field experiment of left turning in a junction is presented to validate this
methodology. Then random sampling is used to generate scenarios based on the scenario
parameter ranges extracted from the field data. However, it is difficult for this method to
detect scenarios involving maneuvers not considered in the pre-defined maneuver model.

Rule-based models are enhanced by an unsupervised clustering technique in [45].
First, data in highD is clustered by a Hierarchical Clustering Algorithm (HCA) to identify
scenarios that include at least one challenger. Second, the maneuvers of challengers are
classified by a rule-based decision tree. Third, based on trajectories, the maneuvers of
challengers are classified into one of the six functional scenarios in the PEGASUS Project.
This method is scenarios in highD dataset, and 67,455 concrete scenarios belonging to the
pre-defined six functional scenarios are extracted.

The studies mentioned above have shown that the rule-based method can effectively
identify scenarios in source data. However, the rules designed by different experts might
vary, and it demands a lot of expertise, and complicated scenarios are still challenging for
rule designers. Moreover, it is difficult for rule-based methods to identify scenarios that are
unknown to experts, which, to some extent, limits the diversity of the resulting scenarios.

5.4. Unsupervised Machine Learning

Rule-based methods are quite effective in detecting known scenarios with pre-defined
rules. However, more powerful tools are needed to search for scenarios that have unknown
patterns or are too complicated to be described by rule-based models. Machine learning is
an effective tool for pattern recognition and has been applied in many fields [139]. Unsuper-
vised Machine Learning (UML) identifies patterns without expert knowledge. The methods
frequently used for scenario identification are unsupervised clustering techniques, such
as K-Means, K-Medoids, and Hierarchical Clustering Algorithms (HCA) [45,115,140,141].
There are two major problems with detecting scenarios using UML. First, the durations of
scenarios from the same function or logical scenario might vary. Second, some important
features might hide in a latent instead of explicit space.

For the first problem, techniques that can transfer time series to feature vectors are
advised, such as Dynamic Time Warping [115] and Variational Autoencoder [142]. Ref. [142]
maps four parameters of car-following scenarios, including the speed of the ego and
the following vehicle, car-following distance, and ego acceleration, to a 2-dimensional
latent space by Variational Autoencoder (VAE), which can process temporal sequences.
Furthermore, the distribution of one of the two latent variables, named z, is analyzed
based on NGSIM and highD, respectively. Results of numerical experiments indicate that z
contains enough information for scenario identification.
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The first problem can also be solved by decomposing the scenario as a combination
of states and actions. In [53], signals are sliced to search event or activity indicators
such as extrema, inflections, or saddle points. Then, signal slices are clustered by an
agglomerative HCA. This method can be used for data labeling. A similar approach can
also be found in [141].

For the second problem, source data are usually mapped to a latent space and then
processed by UML to extract information in the latent space. The combination of a di-
mension reduction algorithm and a clustering algorithm can be found in [115,143–145].
In [145], PCA and K-Means are used to identify representative traffic scenarios in 72,336-h
urban-motorway NDD. First, all source data are divided into two datasets based on the
driving direction. Then, each dataset is processed by PCA, and two principle components
accounting for more than 90% variance of all eigenvalues for each dataset are obtained.
Finally, K-Means is applied to cluster similar scenarios in the latent space generated by
PCA. Four representative scenarios are identified.

The introduction and analysis above show that, based on UML techniques, espe-
cially clustering techniques, implicit and explicit patterns of scenarios can be automati-
cally extracted for scenario identification. Unlike rule-based methods, UML-based ones
could obtain unknown scenarios, contributing to the coverage of the resulting scenar-
ios. However, some patterns identified by UML might be uninterpretable, resulting in
unreasonable results.

5.5. Supervised Machine Learning

Supervised Machine Learning (SML) techniques, such as Support Vector Machine
(SVM), Recurrent Neural Networks (RNN), can identify scenario patterns based on labeled
source data. In [25], scenarios are represented as state sequences. Rules are designed
to label data with state tags. Different tag sequences represent different scenarios. Tag
sequences can be used as scenario templates to identify scenarios in source data. The
supervised classifier trained by a small amount of labeled data could label other unlabeled
data automatically. In [146], A rule-based method is applied to tag source data with state
labels, and logical scenarios are described as label sequences. An RNN model is trained
by these labeled scenario data and then exploited to detect scenarios in unlabeled source
data. This methodology is evaluated by a case of detecting lane-change scenarios in an
NDD dataset [146].

Unlike rule-based and UML-based methods, SML combines expert knowledge with
machine learning techniques, achieving high efficiency in scenario identification without
losing too much interpretability. It is worth noting that with inappropriate labels, SML
cannot obtain reasonable scenarios, like UML methods.

5.6. Conclusions of Scenario Identification

This section introduces solutions to three problems: filtering out unnecessary scenario
data, reducing feature dimensions, and identifying scenarios recorded in source data.
Limiting the spatial and temporal ranges allows scenario data of interest to be extracted
from the source data. After that, three widely used dimension-reducing techniques are
introduced and compared for high-dimensional scenarios. Finally, Rule-based, UL-based,
and SL-based methods are introduced.

Rule-based, UML, and ML techniques are described for the last problem. Rule-based
methods identify scenarios relying on rules designed by experts, which means that the
performance of rule-based methods highly depends on experts. It would be pretty tricky
to achieve good results for complex scenarios without time for adjusting the rules. UML
techniques can identify previously unknown scenarios with no expert knowledge. However,
the results obtained by UML might be uninterpretable or even feasible. SML-based methods
can be regarded as a tradeoff between rule-based and UML-based methods. The training
data for SML must be labeled, which can be achieved with or without expert knowledge.
And implicit patterns in the training data can be extracted by SML. But UML-based methods
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also have similar disadvantages compared with rule-based and UML-based ones. Experts
may be needed for data labeling, and the resulting scenarios may be unreasonable.

To make good use of source data, it will be a trend to apply a rule-based method
to identify known scenarios and exploit UML to find unknown scenarios. After that, a
feasibility analysis is needed to filter out unreasonable scenarios. Furthermore, based on
all identified scenarios, some labels, such as maneuver types, road topologies, weathers,
et al., could be tagged to a certain amount of the source data. Finally, A high-performance
scenario detector is trained based on the labeled data and applied to detect all other known
or unknown scenarios.

6. Scenario Generation
6.1. Diverse Scenario Generation

Coverage and criticality of scenarios are essential to prove AVs’ safety in ODD. Scenar-
ios covering large spaces in ODD can be used to test AVs in various circumstances. Critical
scenarios can quickly find faults in the SUT, helping developers and engineers improve
AVs’ safety. Almost all scenarios detected in accident databases are challenging, but their
diversity is limited. Therefore, it is necessary to generate diverse, critical, and customized
scenarios for the SBT of AVs.

6.1.1. Random Sampling

Random sampling can generate concrete scenarios based on parameter ranges and
distributions in logical scenarios. Monte Carlo might be the most popular random sampling
technique applied for DDSG. Theoretically, random sampling can be used to produce all
possible concrete scenarios in ODD if logical scenarios are available.

A 60-hour traffic video is recorded in [15] to generate car-following scenarios. Based
on car-following scenarios identified from the recorded video, parameter distributions are
fitted using Kernel Density Estimation (KDE). These parameters are velocity reduction,
total braking time, and end velocity. Ten thousand concrete scenarios are generated by
random sampling on parameter distributions.

The most significant advantage of DDSG based on NDD using random sampling is
that performance of the SUT in natural traffic can be derived based on SUT performance
in the generated scenarios, if the distributions of scenario parameters are given [147].
However, it is significantly inefficient to execute numerous scenarios while only a small
proportion of them is critical [148]. For this reason, many studies use random sampling as
a baseline to show the superiority of other methodologies, such as Reinforce Learning and
Accelerated Evaluation [29,147,148].

6.1.2. Combinatorial Testing

Combinatorial Testing (CT), also named N-wise testing, is a widely used tool in
software testing in which different value combinations of inputs are regarded as different
scenarios [149]. CT is proposed based on the hypothesis that most errors in a system
happen because of the interaction of influencing factors [150]. Kuhn and Reilly analyzed
test reports and found that 70% of errors of Mozilla are caused by the interaction of two
factors and 90% by the interaction of three factors [151]. While CT can be implemented for
knowledge-based or data-driven scenario generation [21,84,152–154], The latter is the topic
of this section.

CT is utilized in [153] to find errors in the Lane Deviation Warning (LDW) system.
First, influencing factors are parameterized, and all continuous parameters are discretized.
Second, scenarios are generated based on CT with the different significance of parameters
being considered. A metric named “complex index” is defined to measure the complexity
of each scenario. Third, concrete scenarios generated by CT are clustered by an HCA based
on weighted distance. Scenarios in each cluster are stitched together, deriving several
continuous scenarios. Finally, the continuous scenarios are executed on a virtual test
platform. Simulation results show that the more complex a scenario is, the more possible
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errors of the SUT are found, and for a scenario with a complexity of 0.3, there is more than
a 70% chance of making the LDW system fail.

CT can generate complex scenarios given parameter ranges, and the N-wise coverage
metric can be applied to measure the coverage of the obtained scenario database. However,
CT can only generate scenarios based on discrete values, which means parameters with
continuous ranges must be discretized. For high-dimension scenarios, this might lead
to a dimension explosion. Therefore, CT is mainly adopted to generate scenarios for
low-level AVs.

6.1.3. Mutation Testing

Mutation Testing (MT) is a method for evaluating the quality of test sets. In MT,
mutants of original test cases are generated based on pre-defined mutation operators. One
original test case can derive one or more mutants. If SUT performance in a mutant scenario
differs significantly from that in the original test case, the mutant will be killed. If not, the
mutant stays alive. The smaller the proportion of the killed mutants among all mutants is,
the better the original test set is.

Ref. [155] is a typical study of generating scenarios based on MT and Feature-Interaction-
Coverage-Sampling (FIC-Sampling), as shown in Figure 5. The methodology in [155] can be
divided into eight steps. In step 1, scenario templates named feature models are designed. Test
cases can be obtained by modifying parameters in scenario templates. In step 2, FIC-Sampling
is adopted to select parameters for concrete scenarios. FIC-Sampling is a technique similar
to CT. For convenience, scenarios generated in the second step are called father scenarios. In
step 3, mutants of scenarios generated in the second step are generated by pre-defined mutant
operators and are called son scenarios. In step 4, father and son scenarios are all executed, and
SUT performance in these scenarios is recorded. In step 5, if the performance in a son scenario
is quite different from the performance in the corresponding father scenario, the son scenario
will be killed and, if not, saved. The mutant metric is the ratio of the number of killed and
saved son scenarios. In step 6, if the pre-defined stop conditions are meted, iteration stops,
and the son scenarios generated in the last iteration are regarded as the most diverse scenarios.
If not, son scenarios become parent scenarios and iterate steps 3 to 6. Two high-performance
AEB systems are tested in [155], resulting in 11,145 scenarios from 30 high-quality scenario
sets, better than random sampling and experts. Since FIC-Sampling can be regarded as a
variant of CT, the methodology described in [155] can be considered a combination of MT
and CT. The performance of this methodology highly depends on the pre-designed scenario
templates, which can not only effectively avoid generating unreasonable scenarios but also
stop the generation of unknown but valuable scenarios simultaneously.

MT can also be used to obtain diverse path planners. For a path planner, the weight
combinations in the cost function determine its style, which may consider several aspects,
such as safety, comfort, energy efficiency, etc. Different weight combinations lead to
different driving styles. In [156], MT mutates the weights of cost functions, which guide the
path planners to find the optimal trajectories for AVs. In the experiment, 42 path planners
with different weight combinations are generated, which can be used to obtain more diverse
maneuvers of vehicles around the VUT. Inspired by the Genetic Algorithm (GA), a variant
of MT, SceGene, is proposed by [111]. In SceGene, scenario features are encoded as genes on
chromosomes. Iteration processes, such as crossover, mutation, and selection, are activated
to generate new scenarios based on initial scenarios. A microscopic driving model is
adopted to repair scenarios that are not valid. This methodology is exploited to generate
1000 diverse merging scenarios in simulation experiments. The authors of [111] claim that
SceGene can automatically generate diverse and realistic traffic scenarios. However, the
repair rate of the merging scenario is 34.4%, indicating the unstable performance of this
method. The repair rate is calculated by (repaired number)/(total number).

Similar to CT, the boosting number of scenario parameters is catastrophic for MT
because many iterations would be needed to achieve an excellent mutant score. The
iterative processes in MT require many computation resources, and with no guiding
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processes for critical scenario generation, many of the resulting scenario are not critical for
the VUT.
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6.2. Critical Scenario Generation
6.2.1. Accelerated Evaluation

Considering most scenarios generated by random sampling are not safety critical, an
original Accelerated Evaluation (AE) based on statistical sampling is proposed by [29].
In [29], unusual behavior models of the other primary vehicles are obtained by sampling
from an accelerated distribution f ∗(x), which is obtained by skewing the original distribu-
tion f (x) in NDD by Importance Sampling (IS). Simulation results show that the efficiency
of AE is 300 to 100,000 times better than road testing in generating critical traffic scenarios.
Therefore, AE can be divided into the following six steps.

1. Collect a large amount of NDD.
2. Identify target scenarios.
3. Fit the original Probability Density Function (PDF) f (x) of each scenario parameter.
4. Skew the original PDF, deriving a modified PDF f ∗(x), which will lead to more radical

behaviors of traffic agents or rare scenarios.
5. Random sampling is conducted based on the modified PDF f ∗(x) to generate acceler-

ated scenarios, and then applied to test the VUT.
6. The accelerated scenarios are statistically skewed back to obtain the performance of

the VUT in natural traffic.
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In step 3, the original PDF f (x) can be fitted by Piecewise mixture distribution
models [157] or KDE [147,158] to reduce the gap between the real one and the statisti-
cal one. In step 4, Importance Sampling (IS) is innovatively used in [29] to make step 6
feasible. The hyperparameters needed for IS can be obtained based on random searching
or other search algorithms, such as the cross-entropy method [159] and GA [160].

In [159], the lane-change scenario, as shown in Figure 6, is described by three pa-
rameters, v(tLC), vL(tLC), RL(tLC). tLC is the time when the lane marker is crossed by the
center line of the Lane-Change Vehicle (LCV). vL and v are the velocities of LCV and the
VUT, respectively. RL is the distance gap between the LCV and the LKV. Time to collision
TTCL = RL.

RL
is used as the criticality metric of the lane-change scenario. Since v = vL −

.
RL,

then a lane-change scenario can be described by a vector x =
[
vL TTC−1

L R−1
L
]
. The

distribution of vL in NDD is adopted. The function of IS is to skew the Probability Density
Function (PDF) of TTC−1

L and R−1
L , which are fTTC−1

L
and fR−1

L
, resulting in two modified

PDFs of them f ∗
TTC−1

L
and f ∗

R−1
L

. The similarity between the original PDF f and its modified

PDF f is measured by the likelihood in Equation (1). Then, aiming for the best L close to
1, The cross-entropy method is used to search for the appropriate hyperparameters of IS,
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It should be noted that the core of AE is obtaining the accelerated f ∗(x), which means
that all approaches that can obtain the accelerated f ∗(x) can be used for AE [148,161,162].
An AE strategy based on kernel methods is proposed by [148]. The function of kernel
methods is mapping scenario parameters to a latent space. This strategy includes six steps.
First, some initial scenarios are generated by random sampling and executed, resulting in
the initial training set in the original space {(Xi, Yi)}n

i=1, where X is the scenario parameter
set, and Y is a binary set that indicates if the responding scenarios are critical or not. Second,
the training set is mapped by a kernel function φ(x) to a latent space, resulting scenario
in the latent space, {(φ(Xi), Yi)}n

i=1. Third, a Support Vector Machines (SVM) classifier is
trained by latent scenarios to find the linear boundary between critical and non-critical
scenarios in the latent space. Forth, another set of random scenarios

{(
φ
(
Xj
))}m

j=1 are

generated and mapped by φ(x). Fifth, GMM is used to approximate the PDF of φ(Xi), and
leads to an approximation model f̃ (φ(Xi)), from which the modified distribution of φ(Xi),
f̃ ∗(φ(Xi), is derived. Sixth, f ∗(Xi) is acquired by adjusting the marginal distribution of
f̃ ∗(φ(Xi) to make it closer to the area dominated by critical latent scenarios. The SVM
classifier identifies these critical latent scenarios, and its accuracy needs to be improved
by iterations. Simulation experiments about cut-in scenarios are carried out to validate
and evaluate this strategy. Simulation results imply kernel model-based AE is 60,000 times
better than random sampling. The biggest disadvantage of this method is that many
iterations are needed to train the SVM classifier with random latent scenarios, which
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consumes a lot of computing resources. Therefore, this strategy can be improved further by
detecting the performance boundary in the latent space based on fewer scenario executions.

Since the accelerated distribution function f ∗(x) is the unbiased estimation of the
original estimation f (x), the VUT performance in the generated scenarios can be skewed
back to that in natural traffic. However, obtaining high-accuracy f (x) usually requires lots
of effort for data collection. Moreover, the generated scenarios based on AE are not always
feasible, although feasibility analysis can eliminate this problem [127].

6.2.2. Search Algorithms

Finding the most critical scenarios is a Worst Case Searching (WCS) problem, which
can also be regarded as an optimization problem. Many search algorithms have been
used for WCS, including Genetic Algorithm (GA) [163], Particle Swarm Optimization
(PSO) [164], multi-arm searching [165], Bayesian optimization algorithm [166], Rapidly-
exploring random trees [167], Differential Evolution Algorithm (DEA) [168], and so on.
A toolchain for critical scenario generation based on search algorithms is introduced
in [44]. There are three keys for scenario generation based on search algorithms: define
an appropriate fitness function, find a balance between exploration and exploitation, and
reduce the search space as much as possible.

Fitness functions are crucial to searching algorithm-based WCS [168]. Based on pre-
defined fitness functions, search algorithms can adaptively search for the worst case/scenario.
Drivable area minimization is an efficient method to generate critical scenarios for motion
planners. The drivable area indicates the solution space where the VUT operates appropri-
ately without leading to any collision. Therefore, the drivable area is not relevant to the
performance of the VUT. In [169], drivable areas are minimized by adjusting the initial state
parameters of traffic participants using Evolutionary Algorithms (EA), such as DE and
PSO. Simulation experiments involving multiple vehicles are carried out to generate critical
highway and intersection scenarios. Experiment results show that by iteratively adjusting
maneuvers of more than 10 traffic agents, both DE and PSO can find scenarios with little
drivable space for the ego in both highway or intersection areas, and collisions are found in
several highway scenarios. In contrast, no collision is produced in the intersection scenario,
although several scenarios with small drivable areas are generated.

To our knowledge, no general metric can comprehensively quantify all properties of
all scenarios. For example, Time-To-Collision (TTC) might be enough to measure the safety
of car-following scenarios, but it is not suitable for intersection scenarios. A fitness function
may consider several aspects by including several metrics. Combining metrics concerning
different aspects of different aspects might be a good option to find scenarios with various
characteristics (see Section 7).

How to obtain the best fitness function is still an open question [170]. Several templates
for designing fitness functions are provided in [171]. However, given a suitable fitness
function, it might still be challenging for search algorithms to find the most critical scenarios
because of the high-dimension ODD and the increasingly complicated AVs. Therefore, a
search strategy must balance exploration and exploitation, and the search space should be
reduced as much as possible to find the best target more efficiently [163,172].

To enhance local searching ability, [163] combines a GA with a local fuzzer to generate
the most critical trajectories of Non-Player Characters (NPCs) to minimize the safety of the
SUT, and some faults of Baidu Apollo are found in a simulation experiment. A two-stage
method is proposed in [173]. In the first stage, the optimization algorithm obtains diverse
collision scenarios. In stage two, the purpose is to find the best parameter combination
for path planners to avoid collision in the most critical scenarios found in stage one. A
five-module method is proposed in [165]. These five modules include the Exploration
and Exploitation Module based on the multi-arm bandit method, the Parameter Moving
Probability Determination Module for ensuring the change of influencing factors, the
Step Size Determination Module for searching size controlling, and the Memory Function
Module for avoiding repeat searching. Simulation experiments are carried out to generate
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critical car-following scenarios. Experiment results show that 174 critical scenarios are
generated based on the methodology proposed in [165] with 1251 scenarios executed.

Performance boundaries are the ones near which scenarios tend to lead to apparent
changes in AV behaviors. Boundary scenarios near performance boundaries are valuable
for AVs, and they can guide the generation of critical scenarios by reducing the search
space [167,174–176]. In [174], decision tree classification and multi-objective population-
based search algorithms are combined to find performance boundaries of critical regions.
The critical scenarios found by the search algorithm can increase classification accuracy.
Simultaneously, critical regions identified by the classifier can enhance the efficiency of
critical scenario searching. An experiment testing an AEB system shows that 731 distinct,
critical scenarios are found within 24 h.

To generate scenarios with realism, severity, and exposure considered, a heuristic algo-
rithm is applied in [40]. First, scenarios in NDD are identified and classified into two sets,
the critical and normal sets. After that, parameter distributions are fitted, and dependencies
between parameters are obtained by regression analysis. Then, heuristic algorithms are
applied to find the critical and high-coverage scenarios in the normal and high-coverage
sets. The risk potential field and the diversity of parameter combinations are utilized to
measure the criticality and exposure of scenarios, respectively. A new metric quantifying
the difference between two scenarios is proposed to eliminate duplicate scenarios. This
method is applied to an unpublished dataset, and 229 critical and 2065 high-coverage
scenarios are found based on the critical and high-coverage datasets, respectively.

Although search algorithm-based approaches have been proven effective in some
studies [111,167,174–176], numerous iterations are unavoidable and consume a lot of com-
putation resources, especially for high-dimensional critical scenario generation.

6.2.3. Reinforcement Learning

Similar to the search algorithm-based method, guided by a pre-defined reward func-
tion, Reinforcement Learning (RL) searches for critical scenarios adaptively without prior
knowledge about the SUT [11], as shown in Figure 7. A DDSG methodology based on
Neural Architecture Search is proposed in [177]. A policy-gradient RL algorithm is applied
in Neural Architecture Search. The longitudinal safe distance based on Responsibility
Sensitive Safety (RSS) method is used to quantify the criticality of the situation in which ego
should be responsible for the possible accident. A reward function is specifically designed,
which gives a bonus to parameter combinations leading to a crash.

Machines 2022, 10, x FOR PEER REVIEW 18 of 33 
 

 

Although search algorithm-based approaches have been proven effective in some 
studies [111,167,174–176], numerous iterations are unavoidable and consume a lot of 
computation resources, especially for high-dimensional critical scenario generation. 
6.2.3. Reinforcement Learning 

Similar to the search algorithm-based method, guided by a pre-defined reward 
function, Reinforcement Learning (RL) searches for critical scenarios adaptively without 
prior knowledge about the SUT [11], as shown in Figure 7. A DDSG methodology based 
on Neural Architecture Search is proposed in [177]. A policy-gradient RL algorithm is 
applied in Neural Architecture Search. The longitudinal safe distance based on 
Responsibility Sensitive Safety (RSS) method is used to quantify the criticality of the 
situation in which ego should be responsible for the possible accident. A reward function 
is specifically designed, which gives a bonus to parameter combinations leading to a 
crash. 

 
Figure 7. A flowchart of critical scenario generation based on RL [11]. 

Q-learning is applied in [178] to search for critical scenarios. The reward function is 
a criticality metric that considers distance headway, Time-To-Collision (TTC), and the 
longitudinal acceleration required for collision avoidance. The numerical experiment 
shows that the proportion of critical scenarios is 37.13 % more than that of randomly 
generated scenarios. RL-based on Long and Short-Term Memory (LSTM) architecture is 
applied in [179] to find the worst perception scenario. This method is evaluated by several 
experiments utilizing three datasets, EVB, KITTI, and BDD100K. 

Adaptive Stress Testing (AST) based on deep RL is proposed by [180] to test decision-
making systems. AST searches for the worst scenarios by adaptively changing the 
behaviors of the agents around the VUT to maximize the pre-defined reward. Simulation 
results indicate that deep RL is more efficient than a Monte Carlo Tree Search (MCTS) 
algorithm. However, iterations involved in AST require many high-fidelity simulations, 
which is costly and time-consuming. A methodology combining AST and the backward 
searching algorithm is proposed to tackle this problem [181]. First, critical scenarios in the 
low-fidelity simulation environment are generated by AST. Then these critical scenarios 
are utilized as expert demonstrations of the backward searching algorithm to find critical 
scenarios in the high-fidelity simulation environment. Simulation results show that the 
percentage of high-fidelity simulations is reduced to 4.7% without losing many rewards. 

Like search algorithm-based methods, RL-based methods also belong to the 
falsification approach. If the VUT fails in a scenario, a conclusion that the VUT is not safe 
enough can be made. However, if no critical scenarios are found, it is not reasonable to 
claim that the VUT is safe. Furthermore, RL-based methods usually need many high-
fidelity simulations, which needs sufficient computing efforts. 
6.2.4 Others 

A model-driven adversarial testing strategy is presented by [182], in which 
adversarial trajectories for NPCs are continuously generated based on a pre-defined 
anchor-template hierarchy structure, and a lower-level controller is designed to track 
these trajectories. Unlike other iteration-based methods, the VUT is tested continuously 
in one scenario. However, the duration of searching critical scenarios based on this 
method would cost much more time than one iteration of other methods, such as RL-based 
testing. Experiments involving highway scenarios, including several traffic agents and 
one VUT, are carried out to prove the effectiveness of this strategy. The simulation results 

Figure 7. A flowchart of critical scenario generation based on RL [11].

Q-learning is applied in [178] to search for critical scenarios. The reward function
is a criticality metric that considers distance headway, Time-To-Collision (TTC), and the
longitudinal acceleration required for collision avoidance. The numerical experiment
shows that the proportion of critical scenarios is 37.13% more than that of randomly
generated scenarios. RL-based on Long and Short-Term Memory (LSTM) architecture is
applied in [179] to find the worst perception scenario. This method is evaluated by several
experiments utilizing three datasets, EVB, KITTI, and BDD100K.

Adaptive Stress Testing (AST) based on deep RL is proposed by [180] to test decision-
making systems. AST searches for the worst scenarios by adaptively changing the behaviors
of the agents around the VUT to maximize the pre-defined reward. Simulation results



Machines 2022, 10, 1101 18 of 32

indicate that deep RL is more efficient than a Monte Carlo Tree Search (MCTS) algorithm.
However, iterations involved in AST require many high-fidelity simulations, which is
costly and time-consuming. A methodology combining AST and the backward searching
algorithm is proposed to tackle this problem [181]. First, critical scenarios in the low-fidelity
simulation environment are generated by AST. Then these critical scenarios are utilized
as expert demonstrations of the backward searching algorithm to find critical scenarios in
the high-fidelity simulation environment. Simulation results show that the percentage of
high-fidelity simulations is reduced to 4.7% without losing many rewards.

Like search algorithm-based methods, RL-based methods also belong to the falsifica-
tion approach. If the VUT fails in a scenario, a conclusion that the VUT is not safe enough
can be made. However, if no critical scenarios are found, it is not reasonable to claim
that the VUT is safe. Furthermore, RL-based methods usually need many high-fidelity
simulations, which needs sufficient computing efforts.

6.2.4. Others

A model-driven adversarial testing strategy is presented by [182], in which adversarial
trajectories for NPCs are continuously generated based on a pre-defined anchor-template
hierarchy structure, and a lower-level controller is designed to track these trajectories.
Unlike other iteration-based methods, the VUT is tested continuously in one scenario.
However, the duration of searching critical scenarios based on this method would cost
much more time than one iteration of other methods, such as RL-based testing. Experiments
involving highway scenarios, including several traffic agents and one VUT, are carried out
to prove the effectiveness of this strategy. The simulation results show that the strategy
proposed by [182] can find critical scenarios within 15 seconds. But no baseline is provided
to measure the efficiency of this strategy.

6.3. Customized Scenario Generation

If the VUT is unavailable, a surrogate model of the VUT is usually utilized to generate
critical scenarios. Five SMs are utilized and compared in [183], including RBF, Kriging,
QP, IDW, XGB, and SVR. In simulation experiments, a modified IDM is used as the VUT.
Simulation results indicate that different SMs lead to scenarios with different character-
istics, and IDW-based SM is the best. It generates a large percentage of critical scenarios
while exploiting only 2.5% of the test resource used by random searching. A multi-start
optimization approach assisted by a seed-filling technique is described in [184] and applied
in [185] for critical scenario searching based on a GPC-based SM. First, a lot of random
scenarios are generated and simulated. Then these initial scenarios are labeled with crit-
ical or non-critical tags. Then they are used as the training data set for GPC. Simulation
experiments of the car-following scenario are presented to evaluate this method, which is
described by three parameters, including the speed of the ego car, the speed of the leading
car, and the aperture angle of the radar sensor of the ego car. Simulation results show that
the boundary between critical and non-critical scenarios is successfully found. However, it
will need a large number of random samples for high-dimension scenarios. Therefore, it is
necessary to find a method that can derive a high-performance SM without consuming too
many computational resources.

There are some studies proposing methodologies for SM optimization. Most of them
follow the process depicted in Figure 8. The method mentioned in [184] is further improved
by an adaptively enhanced GPR-based surrogate model [166]. Ref. [166] presents an
Adaptive Testing Scenario Library Generation (ATSLG) methodology using a Bayesian
optimization scheme. Gaussian Process (GP) plays a crucial part in this methodology.
There are two roles for GP in [166]. Gaussian Process Regression (GPR) estimates the
dissimilarity between the surrogate model and the VUT. Gaussian Process Classification
(GPC) estimates observations of unexecuted scenarios. GPR is applied to classify the
parameter space into two sets, suboptimal scenarios and optima scenarios. The unexecuted
scenarios whose observation GPR models cannot estimate accurately with high possibility
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are called informative scenarios. In each iteration, informative scenarios are selected and
executed to provide information to improve GPR models and GPC models. This method
is applied to enhance the AE method in [185] by adaptively find the most informative
scenarios based on an optimized SM. Simulation results show that 18 times more critical
cut-in scenarios are generated. Similar techniques can also be found in [183,186,187].
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In [188], a surrogate model based on Artificial Neural Networks (ANN) is itera-
tively improved by iteratively generating diverse samples. Experiments of generating
car-following scenarios involving three vehicles are described, and TTC is adopted as the
criticality metric. Simulation results show that after 2560 scenario executions, the MSE
between the results estimated by the ANN and the real ones is 0.0097.

ANN-based SM can better model high-dimension logical scenarios when enough
training data are provided. The GP-based SM usually performs better when the training
set size is limited. As illustrated above, some studies claim that their methods can generate
customized scenarios effectively and reduce testing efforts significantly. However, no cases
involving complicated AV systems are described or applied in the industry.

6.4. Conclusions of Scenario Generation

The tasks of this section are to introduce methodologies for generating diverse, critical,
and customized scenarios. A qualitative comparison of the strategies mentioned above
is presented in Table 3. The section on customized scenario generation is mainly about
obtaining a good SM to assist in the generation of high-quality scenarios. Therefore, the
strategies for customized scenario generation are not included in Table 3.
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Table 3. Qualitative comparison of scenario generation strategies. “Diversity”: Capable of generating
diverse scenarios that can fill the whole ODD. “Criticality”: Capable of finding a large percentage
of critical scenarios. “Knowledge”: a certain amount of expert knowledge is needed. “Iteration”:
Some iterations are required. “Naturality”: testing results can be mapped to that in natural traffic.
“Scalability”: Capable of generating high-dimensional critical scenarios without consuming many
resources. “Y”: Yes. “N”: No. “Y/N”: Yes, for some cases, and NO, for others. For example, random
sampling can generate natural traffic scenarios if sampling on the parameter distributions in natural
traffic, and vice versa.

Type Method Diversity Criticality Knowledge Iteration Naturality Scalability

Diversity-
Oriented

Random Sampling Y N N N Y/N Y
CT Y Y N N N Y
MT Y N Y Y N N

Criticality-
Oriented

AE N Y Y/N Y/N Y Y
Search Algorithms N Y Y/N Y N N

RL N Y Y/N Y N N

As for generating diverse scenarios, random sampling can achieve the best diversity,
and testing results can be mapped to natural traffic. But scenarios generated based on
NDD have only a small percentage of critical scenarios. CT discretizes continuous scenario
parameters and generates scenarios by combining different parameters’ discrete values.
A greater granularity of parameter discretization leads to more scenarios requiring more
computing resources. MT generates scenarios relying on pre-defined mutation rules, which
experts must design. Moreover, the resulting scenarios, including non-critical ones, would
be generated and executed for AV testing, leading to unnecessary wasting of efforts. The
biggest drawback of diversity-oriented methods is that many boring scenarios might be
generated and executed, significantly reducing test efficiency. It is a promising research
topic to reduce the execution of boring scenarios without scarifying coverage.

AE, search algorithm-based, and RL-based methodologies aim to generate critical
scenarios. Unlike the other two methodologies, AE can achieve naturality and criticality at
the same time [147]. However, expert knowledge might be crucial to tune vital parameters
for some statistical sampling techniques, such as IS. Since the original parameter PDF is
essential to AE-based methods, the completeness of source data is essential to AE. Search
algorithms have been proven effective in some cases, but the involved iteration processes
often require much computation, especially for high-dimensional critical scenario gener-
ation. Although RL has been proven more efficient than search algorithms in generating
specific scenarios [180], both need expert knowledge to design a fitness or reward function.
It is a significant challenge and worth more attention to find the most critical scenario for
the VUT based on limited sources.

Customized scenarios could be generated based on high-performance SMs to minimize
unnecessary execution. While many surrogate models can be chosen, such as RBF, Kriging,
QP, IDW, XGB, and SVR [183], each is suitable for certain circumstances. It might be good
to build several surrogate models and choose the best one for the SUT based on their
functional performance.

7. Criticality Metrics of Scenarios

Criticality metrics of scenarios are of great importance in DDSG. On the one hand,
criticality metrics can be used to identify or generate scenarios for DDSG. On the other hand,
the safety of the SUT can also be measured by criticality metrics. Criticality metrics used
in DDSG are listed and compared in [43,189]. This survey categorizes criticality metrics
into five classes: trajectory-based, maneuver-based, energy-based, uncertainty-based, and
combination-based. They are described in the following sections.



Machines 2022, 10, 1101 21 of 32

7.1. Trajectory-Based

Trajectory-based criticality metrics are the ones that can be calculated based on the
whole or part of the trajectories of traffic participants. Time headway (THW) [190], Gap
Time (GT), and Distance Head Way (DHW) quantify the spatial or temporal gap between
two traffic participants without considering their velocities. Time-to-Collision (TTC) is the
time to collide if two participants keep their velocities unchanged. TTC is almost the most
widely used criticality metric. However, there are many scenarios in which the velocities
of traffic participants change, and more than two participants exist. Therefore, some TTC
variants are designed to measure the safety of the whole scenario, such as Worst Time
To Collision (WTTC) [191], Time To Closest Encounter (TTCE) [192], Time Exposed TTC
(TET) [193], minimal normalized positive enhanced time-to-collision (mnpETTC) [184],
Time Integrated TTC (TIT), Time to Zebra (TTZ) [194] et al.

Post Encroachment Time (PET) [195] is the time gap between one traffic agent leave
and another one enters a conflict area, as shown in Figure 9 and Equation (2). PET is more
suitable than TTC for the criticality quantification of intersection scenarios.

PET(Veh1, Veh2, CA) = tenter(Veh1, CA)− tleave(Veh2, CA) (2)
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However, TTC and its variants are available only after scenario execution. For scenar-
ios unexecuted, it is impossible to be measured by trajectory-based metrics.

7.2. Maneuver-Based

Maneuver-based criticality metrics (MBSMs) are the ones that are relative to collision-
avoiding maneuvers, such as braking and steering. Criticality metrics relative to braking
behaviors include Time To Brake (TTB), Deceleration to Safety Time (DST), Brake Threat
Number (BTN), Required Longitudinal Acceleration, Longitudinal Jerk, and so on [190,196].
Criticality metrics involving steering maneuvers include Time To Steer (TTS), Steer Threat
Number (STN), Required Lateral Acceleration (RLA), Required Longitudinal Acceleration
(RLA), Required Lateral Acceleration, Lateral Jerk, et al. In some MBSMs, all kinds of
collision-avoiding maneuvers are considered, including Time to Maneuver (TTM), Required
Acceleration (RA), and Time to Reaction (TTR).

Based on trajectories generated by a path planner, some information about scenarios
can be derived. Several criticality metrics based on trajectories are designed by [197],
including SafePathInv, UnsafePercent, NarrowInv, AvgEffort, MinEffort, NarrowInv, and
CriticalTime. SafePathInv is the inverse of the number of safe paths available to the VUT.
UnsafePercent is the percentage of paths that will lead to a collision among all safe paths for
the VUT. AvgEffort is the average effort the VUT needs to pay to pass the scenario safely. All
safe paths are analyzed to obtain the absolute values of steering and acceleration to follow
each safe path. MinEffort is the minimum effort required to follow a safe path. Critical
Time is the minimal time available before the VUT is unable to avoid a crash. Numerical
experiments indicate that most difficult scenarios in the NGSIM dataset have a score of
3.22, while a rule-based attacker designed by [197] can generate adversarial scenarios with
a score of 3.95. However, this method heavily relies on the performance of the path planner.
Different path planners may lead to different results.
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Maneuver-based metrics do not rely on the performance of the VUT, which makes them
suitable for measuring scenario criticality before executions. However, some maneuvers-
based metrics, such as STN, BTN, SafePathInv, cannot separate similar scenarios with
different criticality.

7.3. Energy-Based

If a collision is not avoidable, it is necessary to reduce the accident’s severity. The
kinematic energy released in a collision is directly relative to crash severity [198]. Therefore,
the kinematic energy of traffic participants can be used as a criticality metric. In [31], the
kinematic energy of the ego at the moment of avoiding the collision is regarded as part of
the Scenario Risk Index (SRI).

The kinematic energy of a traffic agent is relevant to its weight, which is not al-
ways available. Therefore, energy-based metrics often work as a complement to other
criticality metrics.

7.4. Uncertainty-Based

Many factors may contribute to the crash in a scenario, such as road friction and veloc-
ity variance of vehicles. Therefore, possibility-based metrics are proposed to capture these
uncertainties. The temporal variation of estimated collision speed between a vehicle and
a pedestrian in a crosswalk scenario is quantified by Pedestrian Risk Index (PRI) in [199].
Crash Potential Index (CPI) [200] is the average crash possibility if the required deceleration
exceeds the maximal available deceleration in the scenario. The maximal available deceler-
ation in the scenario is described as a distribution relevant to objective factors such as the
road material and performance of the braking system. Parameters in CPI are obtained by
calibration based on traffic data in an intersection in NGSIM dataset in [200]. No application
case of this metric is described in [200].

In natural traffic, a minor behavior change of the traffic participants around the ego
might lead to a fetal accident [201]. Ref. [202] insists that a scenario is critical if the VUT
cannot predict the trajectory of at least one participant. In [203], all possible trajectories
of NPCs are predicted, and Monte-Carlo simulations are carried out to estimate Time-To-
Critical-Collision-Probability (TTCCP) to consider the uncertainty of their behaviors.

7.5. Combination-Based

Different metrics with different properties can measure scenarios from different per-
spectives. Five metrics are exploited in [170] to guide evolutionary algorithms to find
scenarios with different properties, including criticality. Furthermore, as a general metric
that can measure the safety of all scenarios does not exist now, combining different metrics
is a good option.

On the one hand, several criticality metrics can be adaptively used to measure sce-
nario criticality. An adaptive methodology to measure scenario safety is described in [204].
Several criticality metrics concerning different aspects are selected based on multidimen-
sional criticality analysis. A situation awareness module is designed to identify the type of
the current scenario. Applicable metrics in the current scenario are calculated, and those
exceeding pre-defined thresholds are weighted and summed together, resulting in the
safety of the current scenario. In [178], a combination-based safety, including longitudinal
acceleration, time headway, and TTC, is applied as a reward function to guide critical
scenario generation based on RL.

On the other hand, metrics concerning several other aspects except safety may be
integrated. The production of exposure, severity, and controllability is used to quantify
the risk of a scenario in [158,205]. Exposure is the expected happening possibility of
a scenario. Severity is the expected possibility of collision if no backup operators are
available. Controllability is the ratio of expected collision possibility with and without
backup operators.
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7.6. Conclusions of Criticality Metrics of Scenarios

Five classes of criticality metrics are considered in this section. The trajectory-based
criticality metrics can be calculated given all trajectories of traffic participants in a scenario
or all positions in a scene. Maneuver-based ones are proposed to measure the difficulty
of avoiding an accident. Energy-based ones are applied to measure the severity of a
crash. Uncertainty is the key to uncertainty-based criticality metrics. More uncertainty in
a scenario would lead to more challenges for the SUT. Unlike other criticality metrics, a
combination-based critical metric integrates several metrics concerning different aspects,
resulting in a more comprehensive metric. However, to our knowledge, no single criticality
metric can be utilized for all scenarios. Therefore, researchers are advised to design or adopt
appropriate criticality metrics for different scenarios. A general and objective criticality
metric for all scenarios does not exist by far.

8. Discussions and Conclusions

This work decomposes methodologies described in relevant studies into solutions
to several fundamental problems about DDSG, including source data collection, scenario
identification, scenario generation, and criticality metrics of scenarios. Involved techniques
for similar problems are analyzed and compared with each other. Conclusions about each
methodology mentioned in this survey can be found at the end of the related section. To
avoid unnecessary repetition, they are not included in this section. Some hot research topics
are summarized as follows:

1. Develop a toolchain that can generate good-quality traffic-scenario data on simulation
platforms to reduce the efforts and investments for gathering source data in the
real world.

2. Build a methodology that can effectively and efficiently identify known and unknown
scenarios in source data without sacrificing feasibility to use all source data fully.

3. Use different methodologies to generate diverse, critical, and natural scenarios to
meet different requirements in different development stages.

4. Find a strategy to obtain high-performance Surrogate Models (SM) based on
limited resources.

5. Design a general criticality metric that can objectively quantify the criticality of
all scenarios.

There are also some significant problems in AV testing, rather than only existing in
DDSG, and the authors of this survey think it is necessary to point out. Here are some of
the most crucial ones:

1. Simulation fidelity and computing power need improvement. Simulation with high
fidelity is crucial to executing scenarios and can contribute to source data generation.
Simulation technology has been widely utilized in SBT. However, on the one hand,
many studies utilize simulation techniques to execute scenarios. On the other hand,
no software companies claim that their software can replace experiments in the real
world. If it is impossible to replace the real world with a virtual one, it will be
helpful to quantify the gap between them, which can let us know how much we
can trust the simulation results. Moreover, it is of great significance to use low-
fidelity simulations to reduce high-fidelity simulations, which are more expensive
and consume more time.

2. There are no conclusions on how many of what scenarios are enough for AV testing.
There is an infinite number of scenarios in the physical world. It is impossible to
test AVs in all of them. An embarrassing dilemma is that many studies propose
many scenario-based methods to test AVs, and no one concludes how many of what
scenarios are enough for AV testing. It is significantly vital to draw a terminal line for
this endless Marathon.

3. Data sharing is crucial for AV testing. Safety-critical events hidden in NDD are crucial
for DDSG. However, because of the Curse of Rarity (CoR) [206], a large amount of
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NDD would significantly contribute to DDSG. While some open datasets are available
for researchers, giant companies like Tesla, Baidu, Didi, et al. hold a large amount of
NDD privately. Furthermore, because many functions are complete black boxes, it is
hard for a researcher or an engineer to generate customized scenarios for the VUT. It
is reasonable to believe that more comprehensive cooperation between industry and
academia can tremendously enhance the development of SBT of AVs.

4. The unignorable gap between ideology and reality deserves more attention: While
one of the aims of developing AVs is to reduce traffic accidents to zero, achieving
zero accidents in practice is severely challenging. It might be good to mitigate the
public expectation to an appropriate level to let more un-perfect but good AVs be
tested in natural traffic. This way, AVs will evolve and collect more valuable data
for researchers.
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