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Abstract: In order to reduce the switching loss and cost, as well as improve the reliability of the
induction motor (IM) drive system, the technology involving the three-phase current reconstruction
of 60◦ discontinuous pulse width modulation (DPWM2) is studied in this paper. According to
the analysis of the switching state for DPWM2 in different sectors, the three-phase current can be
constructed by sampling the voltage of the DC-link resistor. When the target voltage vector is located
near the sector boundary or in the low-modulation area, the duration of the active vector in the
sampling period is less than the voltage sampling time, which leads to measurement errors of the
DC-link current. Therefore, on the basis of the switching state in different unmeasured areas, a
time compensation method combining phase shifting and frequency reduction is proposed, and
the expressions for comparing values are derived. Lastly, a simulation model and an experimental
platform are established to validate the accuracy of the proposed method.

Keywords: discontinuous pulse width modulation (DPWM); DC-link current sampling;
three-phase current reconstruction; time compensation; phase shifting

1. Introduction

According to the characteristics of DC-side power supply, inverters can be divided
into two types, i.e., voltage-source inverters (VSIs) and current-source inverters (CSIs) [1,2].
Among them, VSIs have high reliability and a simple modulation strategy; thus, they have
been widely applied and studied [3,4]. In order to improve the voltage utilization and
conversion efficiency of VSIs, in recent years, many scholars have performed in-depth
studies on key issues such as switching loss, junction temperature, and life span [5,6].
Furthermore, considering traditional SPWM and SVPWM, many scholars have analyzed
and explored discontinuous pulse width modulation (DPWM) technology [7–9].

In the development of motor drive control, an accurate current measurement is a
necessary condition to obtain the excellent control performance of the motor, and two
or three current sensors are generally needed to detect the three-phase stator current of
the motor [10]. In addition, a current sensor is required to detect the DC-link current for
short-circuit information detection and protection. However, the use of too many current
sensors increases the economic cost of the motor drive system. Once a fault occurs in a
current sensor, the motor does not operate properly [11]. To improve reliability and reduce
cost, the technology involving phase current reconstruction based on the voltage sampling
of a DC-link single resistor has been extensively researched. However, the algorithm
implementation of phase current reconstruction is more complicated, as a function of the
following problems:

(1) The DC-link current is zero during the period of the zero vector; thus, the DC-link
current can only be detected during the active vector [12];
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(2) When the switching state changes, it takes some time for the DC-link current to
become stable, while the duration of the analog-to-digital conversion should also be
considered. Therefore, it is necessary to ensure that the duration of the active vector
takes the above into account [11];

(3) The sampling moment may be in the oscillation stage or in the period of zero vector,
which can induce serious errors in the sampling current, leading to the failure of phase
current reconstruction [13];

(4) When the target voltage vector is located near the sector boundary or in the low-
modulation area, the duration of one or two active vectors is too short to sample the
DC-link current [14]. In this paper, both the sector boundary and the low-modulation
area are considered unmeasured areas.

In order to solve the above problems, some methods have been proposed in the
literature. A discrete filtering algorithm was used in [15] to remove the rapidly changing
sampling current, thereby obtaining a more accurate sampling current; however, this
method may reduce the dynamic performance of the system. For situations where the
deviation of the sampling current is large, a model-based current observer was introduced
in [16] to improve the accuracy near the sector boundary; however, the observation model
was too sensitive to the motor parameters. In [17], the sampling range was expanded by
adding additional active vectors on the premise that the output voltage vector remains
unchanged; however, the switching number and the current ripple increased. In [13],
a single-pulse signal was injected into the non-observation area; hence, the three-phase
currents could be reconstructed according to the fluctuation of the DC-link current. In [18],
the phase current reconfiguration was optimized by improving the measurement topology,
and a good reconstruction performance was obtained when the output voltage vector was
in the low-modulation area. In [19], the duration of the active vector at the sampling instant
was extended by changing the switch state of the SVPWM. Compared with other methods,
this method is easy to implement; however, it is not suitable for DPWM.

In this paper, the principle and the switching state of the 60◦ discontinuous modulation
(DPWM2) strategy are analyzed, and the methods of DC-link current sampling and phase
current reconstruction are presented. Then, to solve the problem that the duration of one or
two active vectors in sampling period is too short to sample the DC-link current, a time
compensation method is proposed. Lastly, simulations and the experimental validation of
the proposed method are performed.

2. Topology and Control Scheme
2.1. Topology of IM Fed by Voltage Source Inverter

Figure 1 shows the topology of the induction motor (IM) drive system fed by the three-
phase voltage source inverter (VSI), where udc is the DC-link voltage, Cdc is the DC-link
capacitor, S1–S6 are the power switching devices, and ia, ib, and ic are the three-phase stator
currents of the IM. In particular, Rdc is the sampling resistor, the DC-link current is obtained
by sampling the voltage of Rdc to reconstruct the three-phase currents.
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2.2. Vector Control Scheme for the IM Fed by VSI

In the synchronous rotating frame (d–q axis) based on rotor flux orientation, the block
diagram of the vector control scheme for the IM fed by VSI is shown in Figure 2. After
executing the speed, the current inner loop, and the flux outer loop controllers, respectively,
the command values of the stator voltages in the d–q axis u∗d and u∗q are obtained. In order
to reduce the switching losses, DPWM2 is employed to generate the switching signals
of S1–S6.
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3. Switching Signal Generation Method of DPWM2

Firstly, by substituting u∗d, u∗q, and θr into Formula (1), the stator voltages u∗α and u∗β in
the two-phase rotating coordinate frame can be obtained.{

u∗α = u∗d cos θr − u∗q sin θr

u∗β = u∗d sin θr + u∗q cos θr
(1)

Then, the amplitude U and angle θ of the target voltage vector can be calculated as{
U =

√
(u∗α)

2 + (u∗β)
2

θ = arctan(u∗β/u∗α)
(2)

Under different θ, the modulation function of DPWM2 is shown in Table 1, where ma,
mb, and mc are the modulation ratio functions for phases a, b, and c, and M is defined as
U/udc. The waveforms of ma, mb, and mc in one carrier period are presented in Figure 3. It
can be seen that ma, mb, and mc reach 1 or −1 alternately, and the switching devices of each
phase bridge arm do not act for two 1/6 cycles.

Table 1. The modulation ratio function of DPWM2.

Sector θ ma mb mc

I 0≤ θ < π/3 1 1 −
√

3Mcos(θ + π/6) 1 +
√

3Mcos(θ + 5π/6)
II π/3 ≤ θ < 2π/3 −1 −

√
3Mcos(θ + 5π/6) −1 +

√
3Msin(θ) −1

III 2π/3 ≤ θ < π 1 +
√

3Mcos(θ + π/6) 1 1 −
√

3Msin(θ)
IV −π ≤ θ < −2π/3 −1 −1 −

√
3Mcos(θ + π/6) −1 +

√
3Mcos(θ + 5π/6)

V −2π/3 ≤ θ < −π/3 1 −
√

3Mcos(θ + 5π/6) 1 +
√

3Msin(θ) 1
VI −π/3 ≤ θ < 0 −1 +

√
3Mcos(θ + π/6) −1 −1 −

√
3Msin(θ)

The switching sequences of DPWM2 in one carrier period under different sectors are
depicted in Figure 4, which contains five segments. In Sectors I, III, and IV, 111 is utilized
as the zero vector, which is located in the middle of the whole sequences. In Sectors II,
IV, and VI, 000 is utilized as the zero vector, which is located in the front and end of the
whole sequences. In Figure 4, T0, T1, and T2 represent the dwell time of the zero vector, the
first active vector, and the second active vector, respectively. Additionally, Sa, Sb, and Sc
represent the switching state of the three-phase bridges.
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4. Phase Current Reconstruction Method Based on Single Resistor Sampling

Figure 5 shows the equivalent circuits of IM fed by VSI under different switching
states. In the switching state of the active vector, one phase current can be obtained from
idc. In the switching state of the zero vector, idc is equal to zero, so the DC-link current
cannot be detected during the switching state of the zero vector. According to Figure 5, the
relationship between idc and the three-phase currents is summarized in Table 2.

Table 2. The relationship between DC-link current and the three-phase currents.

Switching-State 000 100 110 010 011 001 101 111

idc 0 ias −ics ibs −ias ics −ibs 0
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Firstly, to demonstrate the method for the three-phase current reconstruction of
DPWM2 based on the DC-link current sampling, Sector I is taken as an example. The
diagram is shown in Figure 6a. In the first half of the carrier period, three times of sampling
are carried out in the switching states of 100, 110, and 111, respectively. Since the DC-link
current is constantly changing during the active vector time, aiming to obtain the average
current in each sequence, sampling is carried out at the middle time of each active vector,
and the sampling current in the stage of zero vector is used to obtain the offset. Since the
sum of the three-phase currents is equal to zero, the relationship between the three-phase
currents and three-time sampling current (idc(k + 1), idc(k + 2), idc(k + 3)) can be described as

ia(k) = idc(k + 1)− idc(k + 3)
ib(k) = −idc(k + 1) + idc(k + 2) + 2idc(k + 3)
ic(k) = −idc(k + 2)− idc(k + 3)

(3)
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Figure 6. The diagrams of the three-phase current reconstruction of DPWM2 based on the DC-link
current sampling: (a) Sector I; (b) Sector II.

The diagram of the three-phase current reconstruction in Sector II is shown in Figure 6b.
Different from Sector I, the first current sampling occurs in the stage of zero vector, and
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according to Figure 4b, Figure 5b, Figure 6b, the relationships between the three-phase
currents and three-time sampling current are described as

ia(k) = 2idc(k + 1)− idc(k + 2) + idc(k + 3)
ib(k) = idc(k + 2)− idc(k + 1)
ic(k) = −idc(k + 3)− idc(k + 1)

(4)

Similarly, the expressions of three-phase currents in Sectors III–VI can be derived and
shown as Formulas (5)–(8), respectively.

ia(k) = −idc(k + 2)− idc(k + 3)
ib(k) = idc(k + 1)− idc(k + 3)
ic(k) = −idc(k + 1) + idc(k + 2) + 2idc(k + 3)

(5)


ia(k) = −idc(k + 3)− idc(k + 1)
ib(k) = 2idc(k + 1)− idc(k + 2) + idc(k + 3)
ic(k) = idc(k + 2)− idc(k + 1)

(6)


ia(k) = −idc(k + 1) + idc(k + 2) + 2idc(k + 3)
ib(k) = −idc(k + 2)− idc(k + 3)
ic(k) = idc(k + 1)− idc(k + 3)

(7)


ia(k) = idc(k + 2)− idc(k + 1)
ib(k) = −idc(k + 3)− idc(k + 1)
ic(k) = 2idc(k + 1)− idc(k + 2) + idc(k + 3)

(8)

5. Sampling Time Compensation Method for Unmeasured Areas

According to the above analysis, the DC-link current sampling during the switching
states of the active vector should be completed twice within the half period of carrier
signal rising. However, in the process of actual current sampling, a time delay occurs
in the switching device action and A/D conversion, and the DC-link current also has an
oscillating process. Therefore, the duration of the active vector should not be less than Tmin,
which is the minimum current sampling time. Tmin is defined as follows:

Tmin = Tdead + Tset + TAD (9)

where Tdead is the total time of the switching delay and the dead time, Tset is the time of
the DC-link current achieving to steady state, and TAD is the time of A/D conversion.

It can be seen from Section 4 that the vector order of odd sectors is different from
that of even sectors. Meanwhile, different sector boundaries have different active vectors
whose duration time is less than Tmin, and therefore, a variety of situations need to be
discussed. If the target voltage vector is located in the areas of the sector boundary, the
duration of an active vector will be less than Tmin. If the target voltage vector is located in
the low modulation, the duration of both active vectors is less than Tmin, and phase current
reconstruction cannot be completed under the above two conditions. The areas of the sector
boundary and low modulation is shown in Figure 7.

Next, the time compensation methods for the active vector under different conditions
will be described.

5.1. Time Compensation Methods in the Area near the Sector Boundary

Sectors I and II are taken as an example to discuss the time compensation method in
different conditions; the areas near the sector boundary are divided into four regions, as
shown in Figure 8.
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5.1.1. Target Voltage Vector in Region 1

The rising stage of the carrier is noted as the sampling period, and the falling stage is

noted as the compensation period. When the target vector
→
Vref is located in Region 1, T2,

the duration of
→
V2 is less than Tmin. If T2 ∈ (Tmin, 2Tmin), a simple phase-shifting method

can be adopted to guarantee the duration of
→
V2 in the sampling period is equal to Tmin, and

the duration of
→
V2 in the compensation period is equal to (T2−Tmin); the switching state in

a carrier period is shown in Figure 9. It can be seen that there is no change in the duration
of any vector. It is worth noting that the comparison value of phase-c in the rising stage of
carrier is not the same as that in the falling stage. The triangle in Figure 9a is similar to that
in Figure 9b, so the comparison value in the rising stage mcr and in the falling stage mcf
should be satisfied as {

mcr−mb
Tmin

= 2(mc−mb)
T2

= 4
Ts

mcf−mb
T2−Tmin

= 2(mc−mb)
T2

= 4
Ts

(10)

where Ts is the carrier period, and the mcr and mcf can be obtained as mcr = mc +
4
Ts

(
Tmin − T2

2

)
mcf = mc − 4

Ts

(
Tmin − T2

2

) (11)

When T2 is less than Tmin, the diagram of phase shifting is shown in Figure 10. The

duration of
→
V2 in one sampling period is set to Tmin, and the falling edge of Sc is later than

Sb, so a new active vector
→
V6 appears, and the duration of

→
V6 is Tmin − T2. According to

Figure 10b, the synthetic voltage vector one sampling period
→
Vs can be expressed as

→
Vs =

T1

2Ts

→
V1 +

Tmin

Ts

→
V2 (12)
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where Ts is the carrier period. The synthetic voltage vector in one sampling period
→
Vc can

be expressed as
→
Vc =

Tmin − T2

Ts

→
V6 +

T1 + 2T2 − 2Tmin

2Ts

→
V1 (13)
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(a) before phase shifting; (b) after phase shifting.
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→
V6 can be expressed as

→
V6 =

→
V1 −

→
V2 (14)

According to Formulas (11)–(13),
→
Vs +

→
Vc can be obtained as

→
Vs +

→
Vc =

T1

Ts

→
V1 +

T2

Ts

→
V2 (15)

which is equal to
→
Vref. The slope of the triangular carrier is 4/Ts, according to the similar

triangle relationship, which is the same as Formula (10), and the expressions of mcr and mcf
can be expressed as {

mcr = mc +
4
Ts

(
Tmin − T2

2

)
mcf =

T1+2T2−2Tmin
T1+T2

mc
(16)
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5.1.2. Target Voltage Vector in Region 2

When the target vector
→
Vref is located in Region 2, T1, the duration of

→
V1 is less than

Tmin. If T1 belongs to the range (Tmin, 2Tmin), the duration of
→
V1 in one sampling period

will be adjusted to Tmin, and the duration of
→
V1 in the sampling period will be equal to

T1 − Tmin; the switching state in a carrier period is shown in Figure 11. At this time, the
switching state waveforms of phase-b and phase-c are no longer symmetrical in a carrier
period. The expressions of the phase-b comparison value in the rising stage mbr and the
comparison value in the falling stage mbf are expressed as mbr = mb +

4
Ts

(
Tmin − T1

2

)
mbf = mb − 4

Ts

(
Tmin − T1

2

) (17)

and the expressions of mcr and mcf are expressed as mcr = mc +
4
Ts

(
Tmin − T1

2

)
mcf = mc − 4

Ts

(
Tmin − T1

2

) (18)
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Figure 11. The diagram of the phase-shifting compensation method in Sector I when T1 ∈ (Tmin, 2Tmin):
(a) before phase shifting; (b) after phase shifting.

Different from Region 1, when T1 is less than Tmin, if the duration of
→
V1 in the sampling

period is set to Tmin, the voltage error will not be able to be eliminated by adjusting the

duration and phase of
→
V0 and

→
V2. In order to solve this problem, a modulation method

combining phase shifting and frequency reduction is proposed in this paper. The carrier
period increases to TsTmin/T1. The diagram is shown in Figure 12. The value of mbr is the
same as Formula (17), and mbf is equal to zero. mcr and mcf can also be expressed as Formula
(18). If the target vector is near the boundary of Sectors III and IV, the time compensation
method of phase shifting and frequency reduction are shown in Figures 9–13, and the
calculation method for the comparison value is shown in Formulas (11), (16) and (18).

5.1.3. Target Voltage Vector in Region 3

When
→
Vref is located in Region 3, T3, the duration of

→
V3 (100), is less than Tmin. If

T3 belongs to the range (Tmin, 2Tmin), the duration of
→
V1 in one sampling period will be

adjusted to Tmin, and the duration of
→
V3 in one sampling period will be equal to T3 − Tmin;

this method is the same as that of Regions 1 and 2, and there is no change in the duration of

any vector. If T3 is less than Tmin, the duration of
→
V3 in one sampling period is set to Tmin,
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and the falling edge of Sa is later than Sb, so a new active vector
→
V1 (100) appears, and the

duration of
→
V1 is Tmin − T2. Due to

→
V2 =

→
V1 +

→
V3, the error caused by the increase

→
V3 can

be eliminated by
→
V1, and the synthetic voltage vector is equal to

→
Vref; the switching state

in one carrier period is depicted in Figure 13. The expressions of the comparison value
of phase-a in the rising stage mar and the comparison value in the falling stage maf are
expressed as {

mar = ma +
4
Ts

(
Tmin − T2

2

)
maf =

T3+2T2−2Tmin
T3+T2

ma
(19)
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Figure 13. The diagram of the phase-shifting compensation method in Sector II when T3 < Tmin: (a)
before phase shifting; (b) after phase shifting.

5.1.4. Target Voltage Vector in Region 4

When
→
Vref is located in Region 4, T2, the duration of

→
V2 (010) is less than Tmin. Since

→
V2 is a continuous vector, The case that T2 belongs to the range (Tmin, 2Tmin) should not be

considered. However, if T2 is less than Tmin, and the duration of
→
V2 in one sampling period

is set to Tmin, the voltage errors will be generated and unable to be eliminated by phase
shifting alone. Therefore, the modulation method combining phase shifting and frequency
should be adopted; the diagram is shown in Figure 14. After the carrier period expands to
TsTmin/T1, all switching-state waveforms in one carrier period are symmetrical, and the
comparison values do not need to be adjusted.
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Figure 14. The diagram of the phase-shifting compensation method in region 4 when T2 < Tmin:
(a) before phase shifting; (b) after phase shifting.

5.2. Time Compensation Methods in the Area of Low Modulation

When
→
Vref is located in the area of low modulation, the duration times of the two

active voltage vectors are less than Tmin. To ensure that the DC-link current can be sampled
in the stages of two active vectors, the segments of the active voltage vectors are combined
and placed in the sampling stage, and the carrier period is increased. The specific methods
are as follows:

5.2.1. Target Voltage Vector in the Area of Low Modulation Belonging to Sector I

After phase shifting and carrier frequency reduction, the diagram of the switching
state is shown in Figure 15. The carrier period is expanded to TsTmin/Tmin12, where Tmin12

is the minimum of T1 and T2. T∗1 and T∗2 are the new duration times of
→
V1 and

→
V2 and are

defined as {
T∗1 = Tmin, T∗2 = T2Tmin/T1 T1 ≤ T2
T∗1 = T1Tmin/T2, T∗2 = Tmin T1 > T2

(20)
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Both mbf and mcf are set to zero, and mbr and mcr are expressed as{
mbr =

mbT∗1
T1

mcr =
mc(T∗1 +T∗2 )

T1+T2

(21)

When
→
Vref is located in the area of low modulation belonging to Sectors III and V,

the method of time compensation and comparison value calculation is the same as that
in Sector I.

5.2.2. Target Voltage Vector in the Area of Low Modulation Belong to Sector II

After phase shifting and switching frequency reduction, the diagram of the switching

state is shown in Figure 16. T∗2 and T∗3 are the new duration times of
→
V2 and

→
V3 and are

defined as {
T∗2 = Tmin, T∗3 = T3Tmin/T2 T2 ≤ T3
T∗2 = T2Tmin/T3, T∗3 = Tmin T2 > T3

(22)

where Tmin23 is equal to the minimum value of T2 and T3. The phase-a switching-state
waveform in one carrier period is symmetrical in the middle, and the new comparison
value m∗a is expressed as

m∗a = 1−
T∗1 (1−ma)

T1
(23)

Machines 2022, 10, x FOR PEER REVIEW 13 of 20 
 

 

After phase shifting and switching frequency reduction, the diagram of the switching 

state is shown in Figure 16. *

2T  and *

3T  are the new duration times of V2  and V3  and are 

defined as 

* *

2 min 3 3 min 2 2 3

* *

2 2 min 3 3 min 2 3

,  /      

/ ,       

T T T T T T T T

T T T T T T T T

 = = 


= = 
 (22) 

Sb

Sc

1−

1

mbr1

ma

000 010 110 010 000

*

1T

*

2T

mbr2

min

min 23

sT T

T
 

Figure 16. The diagram of the switching state when 
refV  is located in the area of low modulation 

belonging to Sector II. 

where Tmin23 is equal to the minimum value of T2 and T3. The phase-a switching-state 

waveform in one carrier period is symmetrical in the middle, and the new comparison 

value *

am  is expressed as 

*

* 1 a

a

1

(1 )
1

T m
m

T

−
= −  (23) 

There are two comparison values of phase-b in the rising stage, which are denoted as 

mbr1 and mbr2, respectively, whose expressions are shown as 

* *

1 2 a

br1

1 2

*

1 a

br2

1

( 2 )(1 )
1

(1 )
1

T T m
m

T T

T m
m

T

 + −
= −

+


− = −



 (24) 

When Vref  is located in the area of low modulation belonging to Sectors IV and VI, 

the method of time compensation and comparison value calculations are the same as those 

in Sector II. 

6. Simulation Results 

A simulation model was established in the environment of MATLAB/Simulink, as 

shown in Figure 17. It included four modules: power topology, vector control, DPWM2, 

and current reconstruction; the carrier period and control period were set as 100 µs, and 

Tmin was set as 12 µs. 

Figure 16. The diagram of the switching state when
→
Vref is located in the area of low modulation

belonging to Sector II.

There are two comparison values of phase-b in the rising stage, which are denoted as
mbr1 and mbr2, respectively, whose expressions are shown as mbr1 = 1− (T∗1 +2T∗2 )(1−ma)

T1+T2

mbr2 = 1− T∗1 (1−ma)
T1

(24)

When
→
Vref is located in the area of low modulation belonging to Sectors IV and VI,

the method of time compensation and comparison value calculations are the same as those
in Sector II.
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6. Simulation Results

A simulation model was established in the environment of MATLAB/Simulink, as
shown in Figure 17. It included four modules: power topology, vector control, DPWM2,
and current reconstruction; the carrier period and control period were set as 100 µs, and
Tmin was set as 12 µs.
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Figure 17. The simulation model in MATLAB.

Firstly, the results of three-phase current reconstruction were compared; under the
open loop control, the simulation waveforms of three-phase currents are shown in Figure 18.
Without time compensation, significant fluctuations occurred in the reconstructed three-
phase currents, which appeared in the transition of the sector. After time compensation,
those fluctuations were obviously attenuated, and the reconstructed currents were basically
consistent with the fundamental components of the real three-phase currents.
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Figure 18. The simulation waveforms of three-phase currents: (a) real current; (b) construction cur-
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Finally, the closed-loop vector control performances based on DPWM2 were verified, 
and instead of current detection, the phase current reconstruction method based on the 
DC-link current sampling method proposed in this paper was used to obtain the stator 
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Figure 18. The simulation waveforms of three-phase currents: (a) real current; (b) construction
current without time compensation; (c) construction current with time compensation.

Finally, the closed-loop vector control performances based on DPWM2 were verified,
and instead of current detection, the phase current reconstruction method based on the
DC-link current sampling method proposed in this paper was used to obtain the stator
current. The command value of the speed was set as 600 rpm, and the torque load was set
to 6 N·m. The simulation waveforms of the torque, the speed, and the three-phase stator
currents are shown in Figure 19. After 0.2 s, the speed reached 600 rpm without steady
error. According to Figure 19c,d, the amplitude and the phase of the reconstruction of the
three-phase currents are the same as the measured current.
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speed; (c) measured current; (d) construction current. 
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7. Experimental Results

An experimental platform was established and mainly composed of a driver with a
controller, DC power supply, IM, a communication system, and a measuring device, which
are shown in Figure 20. The control algorithm was executed by using the DSP made in
Freescale, whose type is 56F830, and the type of the switching device is IPB042N10N3 made
by Infineon. The parameters of the IM adopted in this experiment are shown in Table 3.
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Figure 21. The experimental waveforms of DPWM2: (a) modulation ratio; (b) switching signal. 

Figure 20. Prototype for VSI-fed IM drive system.
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Table 3. The parameters of the IM for the experiment.

Parameters Description Value

Rs (Ω) Stator resistance 0.07
Rr (Ω) Rotor resistance 0.05

Ls (mH) Stator inductance 4.51
Lr (mH) Rotor inductance 4.63
Lm (mH) Mutual inductance 4.38

σ Flux leakage coefficient 0.088
Pn (kW) Rated power 1.2
Un (V) Rated voltage 48
f n (Hz) Rated frequency 50

J (kg·m2) Rotational inertia 0.001
np Number of pole pairs 2

Two interrupt programs were included and triggered by A/D and PWM signals: the
algorithm of DC-link current sampling was completed by the A/D interrupt program, and
the programs of vector control and DPWM2 were completed by the PWM interrupt program.

The experimental waveform of the modulation ratio is shown in Figure 21a. The
shape is the same as that in Figure 3. The waveform of the switching signal is shown in
Figure 21b. In two one-sixth cycles, the switching signal remained at the ON or OFF state,
so the correctness of the DPWM2 modulation algorithm designed in this paper was verified.
Figure 22 shows the voltage of the DC-link sampling resistor; when the switching state
suddenly changed, after about 0.3 µs oscillation, the voltage of Rdc reached a steady state.
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the programs of vector control and DPWM2 were completed by the PWM interrupt pro-
gram. 

DC power 
supply

Oscilloscope IM

Driver and controller RS232 to USB cable  
Figure 20. Prototype for VSI-fed IM drive system. 
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In order to verify the control performance of low modulation area, IM operates without
load. The measured stator current is shown in Figure 23a. The current waveform is very
smooth without obvious distortion and burrs. The reconstruction stator current is shown in
Figure 23b, which indicates that a good reconstruction effect can be obtained. Figure 23c,d
show the waveforms of the stator current in the d–q axis, indicating that both ids and iqs
can track the command value without a large ripple. The experimental results show the
feasibility and correctness of the three-phase current reconstruction method with sampling
time compensation for DPWM2.
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Under the same operation condition and DPWM2, a quantitative comparison of the
proposed method with the vector control based on the current sensor was made, as shown
in Table 4. Due to a little reconstruction current error at the sector boundary, the fifth
component of the stator current slightly increased, which caused a slight increase in the
THD of the stator current and the torque ripple. The cancellation of the current sensor had
little impact on the control performance.

Table 4. Quantitative comparison between the proposed method and the current sensor sampling.

Current
Acquisition

Method
Steady Error THD of Stator

Current 5th Harmonic Torque Ripple
(N·m)

Reconstruction No 4.65% 1.21% ±0.50
Hall sensors No 4.09% 0.95% ±0.36

8. Conclusions

In order to reduce the cost and the switching loss of the voltage source inverter-fed in-
ductor motor drive system, this paper presented a novel three-phase current reconstruction
method based on DC-link current sampling for DPWM2, and a time compensation strategy
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was proposed to solve the problem that the duration of the active vector is too short to
sample DC-link current. The feasibility and correctness were verified through simulations
and experimental results. The main contribution could be summarized as follows:

(1) Three current samples were completed in different switching states during the carrier
rise stage, and the mathematical expressions between the three-phase currents and
the measured DC-link current in different sectors were derived;

(2) When the target voltage vector was located near the sector boundary, if the total
duration of the active vector was greater than the minimum sampling time, or the
half of duration of the first active vector was less than the minimum sampling time,
the duration of the active vector in the sampling stage can be broadened by phase
shifting without changing the synthetic vector in one carrier period;

(3) If the half duration of the first active vector was less than the minimum sampling time,
or the target voltage vector was located in the low modulation areas, a time compen-
sation method combining phase shifting and frequency reduction was proposed, and
the accurate reconstruction of three-phase currents can be realized without voltage
vector error.
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