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Abstract: Rotating machines are typically equipped with vibration sensors at the bearing location and
the information from these sensors is used for condition monitoring. Installing additional sensors may
not be possible due to limitations of the installation and cost. Thus, the internal condition of machines
might be difficult to evaluate. This study presents a numerical and experimental study on the case of a
rotor supported by four rolling element bearings (REBs). As such, the study resembles a complex real-
life industrial multi-fault scenario: a lack of information, uncertainties, and nonlinearities increase
the overall complexity of the system. The study provides a methodology for modeling and analyzing
complicated systems without prior information. First, the unknown model parameters of the system
are approximated using measurement data and the linearized model. Thereafter, the Unscented
Kalman Filter (UKF) is applied to the estimation of the vibration characteristics in unmeasured
locations. As a result, the estimation of unmeasured vibration characteristics has a reasonable
agreement with the rotor whirling, and the estimated results are within a 95% confidence interval.
The proposed methodology can be considered as a transfer learning method that can be further used
in other identification problems in the field of rotating machinery.

Keywords: rotating machinery; state estimation; Unscented Kalman Filter (UKF); measurement;
simulation

1. Introduction

With the recent advancements in the field of rotating machinery, the industry has
become more interested in utilizing the physics-based simulation model [1]. The availability
of model parameters provides numerous advantages for system identification, predictive
maintenance, and reliability-centered maintenance, where in most cases this is not straight-
forward to find. The model updating methods based on parameter sensitivity analysis
help to enhance the model adaptability for fault diagnosis [2]. The feedback from this
feature can be used for the future design of the machine. The practical difficulties in the
measurements and installation of the sensors are one of the key limitations for evaluating
the internal condition of the machine. The Kalman filter is a mathematical algorithm that
was developed based on control theory, in which the feedback from the output of the system
is used for updating the input of system dynamics [3]. The Kalman filter can be used for
state estimation in different fields including trajectory estimation, parameter estimation for
control or diagnosis, data merging, signal processing, and economics [4].

Michalski and De Souza [5] applied the Kalman filter to estimate the unbalance in a
rotor. Recently, Zou et al. [6] studied the application of the augmented Kalman filter in the
unbalance identification. Their studies show that this method can be used to identify the
unbalance parameters in a laboratory setup. In their study, displacement sensors were used
to record the rotor vibrations. Shrivastava et al. [7] also applied the Kalman filter for the
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identification of unbalance of a rotor-bearing system. In their study, a rotor was modeled as
a rigid rotor, and unbalance was the only excitation in the system. They showed that under
constant speed, the amplitude of the unbalance can be estimated with good accuracy. They
pointed out that when the speed varies, the estimated phase angle may not be accurate and
requires further research.

The vibration measurements by the sensors installed at the bearing locations can be
used as control signals in the Kalman filters. Using different types of sensors, such as
acceleration, velocity, displacement, pressure, and temperature sensors, might require
additional steps for forming the transition matrix in the Kalman filter. In a simple system,
where the behavior of the studied case is linear, the general form of the Kalman filter
can be used for state estimation. However, when there is a nonlinearity in the system, a
nonlinear Kalman filter type, such as the Extended Kalman Filter (EKF), can be used. The
EKF may have some limitations in convergence, as stated in the study by Agarwal and
Bonvin [8]. In the study by Miller and Howard [9], the EKF is used for estimation of the
bearing coefficients. By using the EKF, the system is linearized to estimate the stiffness
and damping force coefficients for bearings. Kang et al. [10] also used the Kalman filter for
estimating the bearing coefficients of the journal bearing.

The combination of the Kalman filter and H∞ filter for fault identification of the rolling
bearing from the noisy signal is discussed in the paper by Khanam et al. [11]. The Kalman
filter can also help to identify an abnormal change in the operation of the machine, and it
can be used for damage detection [12]. The stability properties of the discrete-time EKF
have been discussed in the study by Rapp et al. [13]. Having information on the machine’s
history and experience in signal processing might help to create a more accurate model.
However, in most cases, it is hard to find such information. There have also been other
applications in which movement tracking is essential for machine-efficient operation. In
a recent paper by Ding et al. [14], a multi-sensor fusion and a multi-step Kalman filter
scheme are used for the estimation of the longitudinal and lateral vehicle velocity of electric
vehicles. The vehicle sideslip angle estimation provides important information for the
vehicle’s stability control.

When the covariance of noises cannot be obtained with reasonable accuracy, or in
cases where the noises are time-varying signals, using a traditional EKF can result in poor
estimation. The methods of improved adaptive EKF (AEKF), based on fading weight factors
and prior estimations of limited window length, can be applied to update the covariance
of measurement noise in real time, and the results will be improved [15]. Boada et al. [16]
demonstrated that for the estimation of the sideslip angle, the ANFIS-UKF (Adaptive
Neuro-Fuzzy Inference System) observer is more suitable than methods that apply the
ANFIS-Linear Kalman Filter and EKF. Lai et al. [17] studied the co-estimation of the state
of charge and state of power for lithium-ion batteries based on a fractional variable-order
model. This method is effective and accurate for dynamic operating conditions.

In root cause analysis and fault identification of rotating machinery, having a model
for the system’s dynamics is a great asset. The model does not need to be in full detail, but
it should represent the main behavior of the machine. A lack of information concerning the
model parameters is one of the main limitations in modeling system dynamics. When the
machine is rather old, and it has experienced a fault or failure, the system condition may
have been changed from the original condition. Therefore, modeling and analyzing the
system dynamics becomes more difficult. In addition to difficulties in the modeling, the
limitations in measurement and conducting the detailed experimental study are restrictions
for validating the models. Therefore, it is important to find a simplified methodology to
evaluate the system dynamics based on the existing measurement points.

The main novelty of this study is that it can provide a methodology for modeling
and analyzing complicated systems when there is no information concerning the system.
This study presents a numerical and experimental study on the case of a rotor supported
by four rolling element bearings (REBs). This setup is mounted on a pedestal that has
translational and rotational movement during the test. No documents concerning the
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machine pedestal exist. Thus, the accurate static properties of the pedestal were not
known. The lack of information concerning the pedestal and the supports, as well as
the combination of the pedestal movement and unbalance, resembles a typical real-life
industrial system with complex responses where there is no exact information concerning
the system. The nonlinearity caused by the bearings and rotor dynamics, as well as the
complicated support structure, increase the overall complexity of the system. The system
under investigation has a combination of pedestal movement and unbalance, which both
influence the once per revolution excitation. There are also several unknown parameters in
modeling the system, which are approximated by measurement data and the linearized
model.

In the setup, the vibration at the bearing locations is measured by accelerometer
sensors. In industrial applications, the installation of accelerometers is the easiest way to
measure vibration motion. Installing additional displacement sensors might not be possible
in many cases due to limitations of space, which is needed for the instrumentation. In
addition, the accelerometer measures absolute vibration motion, whereas the displacement
sensor measures relative displacement motion. The measurement data features a high
nonlinearity in the system. Therefore, evaluating the internal condition of a machine based
on limited sensor data is challenging. In this study, the Unscented Kalman Filter (UKF) is
applied to the state estimation, as it is robust in handling the nonlinearity in the system, and
it can provide more accurate results with respect to the general form of the Kalman filter.
The unmeasurable responses can be estimated efficiently and accurately, and the proposed
methodology and process can be considered as a transfer learning method, in which the
physics-based simulation model-generated data can be further used in other identification
problems in the field of rotating machinery, and more complex real-life systems.

2. Methods

This section starts by presenting the dynamic model for the system of the rotor-bearing
system. Then, the process of utilizing the Kalman filter will be explained.

2.1. A Model of Rotor and Support

The system model includes descriptions of the rotor, bearings, and support. The
equation of motion (EOM) of the system can be written as follows:

M
..
q + (C + ωG)

.
q + Kq = Fext, (1)

where M is the mass matrix, C is the damping matrix, G is the gyroscopic matrix, K
is the stiffness matrix, and ! is the angular velocity of the rotor. The vector of physical
coordinate is denoted as q (displacement). Here,

.
q, and

..
q represent the first and second

time derivatives of the vector of physical coordinates (velocity and acceleration).
The system matrices can be written in partitioned form as follows:

M =

[
MR MRpede

MRpede Mpede

]
, (2)

C =

[
CR CRpede

CRpede Cpede

]
, (3)

G =

[
GR 0
0 0

]
, (4)

K =

[
KR KRpede

KRpede Kpede

]
, (5)

where the subscript pede denotes the dofs for the machine pedestal and the rotor dofs are
shown by subscript R. The matrices MR, CR, GR and KR are the rotor mass, damping,
gyroscopic, and stiffness matrices that can be formulated based on shear deformable
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Timoshenko beam element theory [18]. Bearings are included in the system matrices as
linearized spring and damper coefficients. The forces resulting from the bearing and
the pedestal are considered in the formation of global stiffness and damping matrix. In
Equations (2)–(5), MRpede, CRpede, and KRpede refer to the cross-coupling terms of the rotor
and pedestal. In Equation (1), Fext is the vector of external forces that includes rotor
unbalance.

Fext =

[
Fub
0

]
, (6)

where the vector of unbalance force Fub consists of unbalance forces at each node. For the
rotor node i, the components of the unbalance force in radial directions (Fi

y and Fi
z) are:[

Fi
y

Fi
z

]
= miriω

2
[

cos(ωt + ψi)
sin(ωt + ψi)

]
, (7)

where the mi is the unbalance mass and ri is the distance from the rotational axis where
unbalance is located. The phase angle is denoted as ψi.

This study concentrates on the lateral movement of the rotor. The axial and torsional
dofs are constrained in the FE model of the rotor. After applying constraints, each node has
four dofs. The vector of the physical coordinate can be rewritten as:

q =


yi zi θi

y θi
z︸ ︷︷ ︸ yj zj θ

j
y θ

j
z︸ ︷︷ ︸

node i = 1 to N︸ ︷︷ ︸ node j = 1 to w︸ ︷︷ ︸
qR (rotor dofs) qpede (support dofs)


T

(8)

The vector q contains the rotor dofs (qR) and support dofs (qpede). Here, yi, zi, θi
y and

θi
z show the translational and rotational dofs of the i th node of rotor. Similarly, yj, zj, θ

j
y and

θ
j
z are the dofs of support node j. The number of rotor nodes in the FE model is denoted as

N, and the number of nodes in the support is denoted as w.

2.2. State-Space Form of Equation of Motion

The system of EOM given in Equation (1) in the state-space form can be written as:

.
x(t) = ϕx(t) + F(t), (9)

where x is the state vector, x =

[
q
.
q

]
, q is vector physical coordinates introduced in Equation

(8), and ϕ is system matrix:

ϕ =

[
0 I

−M−1K −M−1(C + ωG)

]
(10)

and F(t) =
[

0
M−1Fext

]
.

2.3. Kalman Filter Implementation for System Dynamics

The Kalman filter provides numerous advantages over other identification tools, for
example, with the least-square optimization and neural network: (i) the measurement data
can be noisy, but the error introduced due to the measurement data can be defined; (ii) the
state estimation is computationally efficient, and it can be combined with the simulation
of the rotor-bearing system; and (iii) the model will be updated based on the feedback
between the measurement and simulation.

In the Kalman filter, the states in the system dynamics can be estimated using the
measurement data. The Kalman filter calculates the propagation of the estimated states
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and their uncertainty in the form of an error covariance matrix over the progress of time.
The Kalman filter is an effective method when the states are statistically independent [19].
In simple structures, the implementation of the Kalman filter is straightforward, and the
statistical independence between the states is satisfied. When the FEM is used to model
the flexibility of the rotor, for a given node in the FE model, the deformations in different
directions might not be at the same level and tuning the covariance matrix needs to be
conducted more carefully.

Figure 1 shows the flow chart of the simulation model. The system under investigation
can behave in a nonlinear way. Using the linearized model for the bearing and simplification
of the modeling helps to linearize the system model and reduce the complexity. The model
for the system dynamics has a reasonable accuracy and enables the main behavior of
the system to be captured. In this study, the UKF is used for the state estimation; this
has been described in detail in the study of Wan and Merwe [20]. The UKF is suitable
for the case with strong nonlinearity in the observation and model. Compared to the
EKF, the implementation of the UKF does not require the calculation of the Jacobian and
transition matrix, which is a great advantage. Using the UKF enables the posterior mean
and covariance up to the third order of the Taylor expansion to be obtained. This helps
to achieve more accurate results than general from the Kalman filter and the EKF (uses
first order Taylor expansion). However, computational time can increase. The acceleration
measured at the bearing locations is used as an observation. The states at unmeasurable
locations of the rotor are estimated using the Kalman filter. The states vector given in
Equation (9) needs to be modified and includes the acceleration terms:

xk =
[
q

.
q

..
q
]

(11)
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The subscript k shows the iteration number in current time step. The size of xk is n × 3,
where n is the total number of dofs in the FE model.

In the Kalman filter, at every time step the states are calculated. Here, x̂ is the estimation

of the state vector x. The initial state (x̂+0 ), and initial error covariance (
^
P
+

0 ) for Kalman
filter can be shown as:

x̂+0 = E[x0]

P̂+
0 = E

[(
x0 − x̂+0

)(
x0 − x̂+0

)T
] (12)

Here, x̂− and x̂+, are the priori and posteriori estimation of state vector, respectively.
In the UKF, a set of points known as sigma points are passed through the model. The sigma
points (χ) can be considered as sample points that result in the Gaussian distribution of
the system. The Van der Merwe Scaled Sigma Point algorithm is used for creating sigma
points. The sigma points can be calculated as follows [[20]:

χk−1(0) = x̂+k−1

χk−1(i) = x̂+k−1 +
(√

(L + λ)P+
k−1

)
i

i = 1, . . . , L

χk−1(i) = x̂+k−1 −
(√

(L + λ)P+
k−1

)
i−L

i = L + 1, . . . , 2L

(13)

where the subscript k and k − 1 refer to the current and previous time step, respectively.
Here, L is dimension of system, and λ is a scaling parameter (λ = α2(L + κ)− L) [21,22].

The sigma points are scaled with the weights as follows:

wm
0 = λ/(L + λ)

wc
0 = λ/(L + λ) +

(
1 − α2 + β

)
wm

i = wc
i = 1/2(L + λ) i = 1, . . . , 2L

(14)

where wm
i is the weight of the mean, and wc

i represents the weight of the covariance P, and
β is a scaling parameter including prior knowledge concerning the distribution of x.

The parameters, α, β, and κ control the spread of the sigma points. The parameter α
determines the spread of the sigma points around the mean. Generally, α is set to a small
positive value (0 ≤ α ≤ 1). Typical value is α = 0.0001 [23]. With a small value of α, the
sigma points are closer to the mean. The larger value of α spreads the sigma points out
from the mean. The parameter κ ≥ 0 ensure the positive definiteness of the covariance
matrix, by default κ = 0. Here, β is a nonnegative weight used to include the higher-order
behavior of system, β = 2 is suitable choice for Gaussian problems [21,23].

In this study, it has been found that the smaller value of α is suitable for the case where
the measurement data has less variation in time. In addition to tuning the parameters α,
β, and κ, the covariance matrix for plant and noise also affect the estimation. Using the
higher value for the parameter α fits our intuition to consider the higher fluctuation of the
measurement data. With larger α it was possible to use the raw measurement data, even
without applying signal processing tools. The prior state and the covariance is as follows:

^
x
−
k =

2L

∑
i=0

wm
i χk(i) (15)

P−
k =

2L

∑
i=0

wc
i
(
χk(i)− x̂−k

)(
χk(i)− x̂−k

)T
+ Q (16)

The measurement function h transforms sigma points into the measurement space to
update the filter (

1 
 

(𝓎 = ℎ(𝝌ሻ = h(χ)). The state and the covariance in the measurement space are:

^
y
−
k =

2L

∑
i=0

wm
i

1 
 

𝔂  k(i) (17)
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Pyy =
2L

∑
i=0

wc
i

(

1 
 

𝔂  k(i)−
^
y
−
k

)(

1 
 

𝔂  k(i)−
^
y
−
k

)T
+ Rk (18)

where Q and Rk are covariance matrix of plant noise and measurement noise, respectively.
The cross-covariance between the state and measurement is expressed as follows:

PXy =
2L+1

∑
i=0

wc
i

(
χk(i)−

^
x
−
k

)(

1 
 

𝔂  k(i)−
^
y
−
k

)T
+ Rk (19)

Then, the Kalman gain
(
Kgk

)
is given by:

Kgk
= PXyPyy

−1 (20)

Subsequently, the posterior can be calculated as follows:

x̂+k = x̂−k + Kgk

(
yk − ŷ−

k
)
yk (21)

P+
k = P−

k − Kgk
PyyKgk

T (22)

3. Experimental Setup Description

The schematic of the system is presented in Figure 2. The main structure consists of a
rotor supported by four bearings. The structure is mounted on a pedestal that has a heavy
mass compared to the main structure (Figure 3). This will cause the whole system to behave
as a rigid body, mounted on flexible supports. The lack of information concerning the
mass and stiffness properties of the machine pedestal, as well as the stiffness and damping
properties of the bearings, increases the number of unknowns in the system model. The
support properties and identification of CRpede and KRpede will be described in Section 3.3.
The electric motor (Model: Kleedrive T3A 90L-6 (1.1 kW)) drives the rotor. The FE model
of the rotor is built based on the CAD model of the rotor. The initial investigation and the
sensitivity analysis show that, due to the high flexibility of the rubber coupling between
the rotor and electric motor (Figure 4a), the motor has a low contribution to the vibration
characteristic of the main rotor. Therefore, in the rotor dynamics analysis, the system is
modeled as a single rotor (main rotor). However, in the equivalent model for the support,
the effect of motor mass is considered. The system is supported by four ball bearings. Ball
bearings 1, 3, and 4 are type UC204, and they are connected to the machine pedestal with
the cubic steel blocks (Figure 4b). In the structure, disc number 2 is not a rotating part. Disc
number 2 is part of the support structure, and it is attached to the machine pedestal via
a plate and bolt (Figure 4c) and causes the equivalent stiffness of support 2 to be lower
than other supports. Bearing 2 is a ball bearing model FAG 16004. The main dimension
and material properties of the rotor are shown in Table 1. The coupling properties are not
known.

Table 1. The main dimensions and material properties of the rotor system.

Item Value Item Value

Rotor diameter 20 mm Mass of disc 1 17.22 kg
Rotor length 770 mm Mass of disc 3 16.11 kg

Modulus of elasticity 2.05 × 1011 Pa Mass of disc 4 3.88 kg
Poisson’s ratio 0.285 Mass of supports 1, 3, 4 8.9 kg

Density of rotor and pedestal 7850 kg/m3 Mass of support 2 (disc2) 3.54 kg
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3.1. Sensor Setup

The sensor setup and instrumentation are shown in Figure 5. A total of five triaxial
IEPE-type piezoelectric accelerometers were attached to the structure (Kistler 8766A050,
100 mV/g). To measure the lateral vibrations of the shaft, two (additional) accelerometers
were installed into disk 2, MP7, and MP22 (Figure 6a). The angular vibration was measured
by two optical tachometers from disks 1 and 3. Multi-channel signal acquisition hardware
(Siemens Scadas Mobile SCM209) was used for data acquisition and signal preprocessing.
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A sampling frequency of 2048Hz was used for the data acquisition, which was selected
to ensure that all relevant vibration components are captured during acquisition. During
the analysis phase, the raw data was low-pass filtered to appropriate the frequency range.
Simcenter Testlab software (formerly LMS Test.Lab) was used for measurement data post-
processing, spectral analysis, order tracking, and experimental modal analysis. Simcenter
Testlab is a data acquisition and analysis software for noise, vibration, and durability testing.
Matlab software was used for post-processing the measured data.
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of the disk).
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In the experiments, two tests (tests-a and test-b) were performed. In these two tests,
the break was physically removed from the setup. In the experiment, the initial unbalance
mass and phase are not known. In test-a, the machine is running with a sweep cycle speed
from 100 to 700 rpm, without additional excitation. In test-b, 99 g unbalance is added to
disc 1 (by attaching a nut and bolt, Figure 6b), and the machine is accelerating with a sweep
cycle speed from 200 to 700 rpm. In the calculation of the unbalance force, the speed profile
(ω) is recalled from the tachometer data. The term !t in Equation (7) is sensitive to the
cumulative error in the measured rotating speed signal. Here, the angle ωt is updated from
the collected measurement of tacho3.

3.2. Measurement Data

Figure 7 shows the auto-power spectral map of test-b. It can be seen in Figure 7a that
for sensor MP22, in addition to the peaks at rotation speed, there are additional peaks
showing the higher-order harmonic frequencies. The sensor MP22 is installed in the upper
half of disc 2. This disc is connected to the machine pedestal with only one bolt, and
has significantly less stiffness in comparison to the other supports, and features some
directional movement. This can be a reason for the presence of higher-order harmonics.
For bearings 1, 3 and 4, the higher-order frequencies are visible in the signal, but with a
very low amplitude. Bearing 4 is mounted on the cubic block with a weight of 8.9 kg, and
the support is stiffer compared to bearing 2. Later, the measurement data is filtered for a
low-frequency range and the higher-order harmonics become insignificant, and they are
beyond the scope of the simulation model.
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Figure 7. Test-b preliminary results, auto-power recorded at sensor MP22 horizontal (a), sensor
MP6 horizontal (b). The resonances at 7 Hz, 30 Hz and 74 Hz corresponds to the lateral rigid body
movement of the machine pedestal, rigid body yawing mode of the machine pedestal and 2nd
forward whirling mode of the rotor, respectively.

A vibration resonance peak at 7 Hz has been observed in the measurement data
for all bearings. The amplitude of vibration at this frequency in the vertical direction
is significantly less than in the horizontal direction. Experimental modal analysis with
impact hammer excitation was carried out to identify this frequency for the standstill rotor.
The impact excitation (with hammer Endevco E2302-5) was applied to disk 4 in lateral
and vertical directions (Figure 8a). The measured natural modes and natural frequencies
were verified by this separate impact testing (Figure 8b). The measurement points 51–54
were located at the outer corners of the pedestal. The sensor MP33 was located on the
top of the motor to identify possible motor deflection with respect to the pedestal (at
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higher frequencies). This sensor indicated that the motor can be considered to have a rigid
connection with the pedestal. Other measuring points were located on discs 1, 2, and 3. The
frequency of 7 Hz corresponds to the lateral rigid body movement of the machine pedestal.
Figure 7b presents the spectral map fore sensor MP6 (at bearing 1). The resonance at 30
Hz corresponds to the rigid body yawing mode of the machine pedestal. However, this
resonance cannot be seen significantly at other measuring points. The resonance at 74 Hz
corresponds 2nd forward whirling mode of the rotor.
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3.3. Support Identification

To estimate the stiffness properties of the pedestal, the support model is simplified,
as shown in Figure 9, where M shows the equivalent mass of the combination of the
rotor, bearing blocks, electric motor, and machine pedestal. In the equivalent system, the
translational and rotational motion should be included. Here, Ks1−2, and Cs1−2 show the
stiffness and damping of the pedestal, respectively. The distance of the machine pedestal
legs with respect to the center of the mass of the whole structure is denoted as a and b.

Applying the simplified model, the structure movement at the center of the mass can
be modeled with a single mass having four dofs. By using this model and performing the
eigenvalue analysis on the equivalent mass for the whole structure and comparing the
natural frequencies with the rigid body frequencies obtained from the measurement, the
unknown mass properties (Mpede), and the stiffness of the machine pedestal (Kpede) can be
estimated. The matrix Kpede includes the translation and rotational stiffness and damping
of the pedestal (shown by Ks1−2). Then, by using the proportional damping, the damping
of the machine pedestal (Cpede) can be calculated.

The stiffness matrix for the machine pedestal, Kpede, has translational (y, z) and
rotational (θy, θz) dofs and cross-coupling terms, due to the moment applied on the system
(due to the unsymmetric location of the mass center). Taking into consideration the heavy
mass of the pedestal and the high vertical stiffness, in Equation (8), the terms y and θz
for qpede can be ignored. The combination of the ball bearing stiffness and the cubic steel
blocks/disc2 forms a series spring connection, with equivalent stiffnesses denoted as Ke1−4.
In the formation of the matrix KR and CR, the stiffness and damping of the rotor, and
the equivalent stiffnesses Ke1−4, are taken into account. The stiffness of the cubic steel



Machines 2022, 10, 1116 12 of 23

is the equivalent stiffness of the bearing cap and bolt joints. It should be noted that the
acceleration is measured from the bearing housing, and not directly from the shaft.
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4. Results

Figure 10 shows the FE model of the rotor. The model consists of 11 elements. The
bearings are modeled as spring- dampers. The bearings are located at nodes 2, 6, 7, and
8. Discs 1, 3, and 4 are modeled as a mass point at nodes 5, 9, and 12 (disc 2 does not
rotate and it is part of the support). The pedestal is considered a mass point at node 13 (its
location is approximated based on the center of mass of the whole structure). The free-free
modes of the rotor are close to the frequencies obtained from SolidWorks model (Table 2).
The stiffness of the ball bearings is 1.4×108 N/m and is selected based on literature [24].
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Table 2. Free-free modes.

Item Simulation (Hz) Solidworks (Hz)

Torsional 36.14 36.57
Lateral 44.61 45.15
Lateral 45.58 45.56
Lateral 84.95 88.83
Lateral 86.80 89.34

The stiffness of the cubic blocks under the bearings, the connection of disc number 2 to
the pedestal, and the pedestal itself are tuned based on the measurement data, as explained
in Section 3.3. The system dynamics are verified using the modal analysis results. The



Machines 2022, 10, 1116 13 of 23

identified support properties are shown in Table 3 and are based on the simplified model
presented earlier. Due to the connection type of support 2 (see Figure 4c), the stiffness is
lower compared to supports 1, 3, and 4. The proportional damping 2 × 10−5 × bearing
stiffness is used for estimating the damping of bearings 1–4 [25].

Table 3. Estimated support properties.

Location Value

stiffness Ke1 (nodes 2 to 13), (Figure 9) 1 × 108 N/m
stiffness Ke2 (nodes 6 to13) 9 × 105 N/m
stiffness Ke3 (nodes 7 to13) 1 × 108 N/m
stiffness Ke4 (nodes 8 to13) 1.1 × 108 N/m

machine pedestal stiffness-z direction (node 13 to ground) 4.6 × 105 N/m
whole mass of the structure 366 kg
inertia of the whole system Iy = 62.12 kg m2, Iz = 8.84 kg m2

The natural frequencies obtained from the Campbell diagram (Figure 11) at 700 rpm
are compared with the natural frequencies obtained from the FE model by Nastran software
and the measurement data (Table 4). In the Campbell diagram, the rigid body modes, due
to the machine pedestal, can be seen at 7.15 Hz and 29.92 Hz; this has good agreement
with the lateral and rotational rigid body frequencies obtained from measurement (7 Hz
for translational, 30 Hz for yaw movement around the y-axis). The calculated natural
frequencies and mode shapes were verified by separate impact testing for the standstill
rotor, as explained earlier. For the lateral rigid body mode, a damping ratio of 3.2% is
obtained from the measurement.
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Figure 11. Campbell diagram.

Table 4. Rotor and support model verification with the fem and measurement data.

Campbell Diagram at
0 rpm

Nastran FEM
at 0 rpm

Campbell Diagram at
700 rpm

Measurement at
700 rpm

torsional 36.10 (Hz) 35.15 (Hz) 36.10 (Hz) -
1st forward 43.92 (Hz) 43.17 (Hz) 46.87 (Hz) 45.45 (Hz) at Disc344.36 (Hz) at Disc2
2nd forward 73.52 (Hz) 70.22 (Hz) 74.83 (Hz) 74.35 (Hz) at Disc2
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4.1. Unbalance Response

The unbalance can be recognized by a vibration peak at 1× vibration (once per rev-
olution). In the experiment, the contribution of the pedestal movement, higher-order
frequencies, and support types influence the recorded vibration measurement. Therefore,
using the raw measurement data to study the unbalance response might not provide clear
information concerning the system behavior. The order tracking is applied, and the first
order component of the acceleration sensor data is extracted. Figure 12 shows the 1×
component of the measurement data. The first order component of the measurement data
is converted to mm units in order to compare it with the corresponding results from the
simulation model.
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Figure 12b shows the peak of the vibration at the first order, the 1× component of
test-b appears at 400 rpm. The rotating speed in the case of test-a has been changed very
quickly and has large fluctuation; the peak is visible at a slightly higher speed of 450 rpm
(Figure 12a). The peak of frequency at the 1× component of the signal is close to the pedestal
movement mode (7 Hz). The unbalance response is dominated by pedestal translational
mode. The vibration peak appears primarily in the horizontal, and slightly in the vertical,
direction. The vertical response of sensor MP22 is rather high. This sensor is located in the
upper half of disc2 (Figure 4c) and does not capture the movement of the pedestal. Sensors
MP6, MP8, and MP9 record the vibration of bearings 1, 3, and 4, respectively. The pedestal
has high vertical stiffness; therefore, it cannot move significantly in this direction.

Figure 12 shows that at the end of the measurement at 700 rpm there is a small differ-
ence between the amplitude of the 1× component at test-a (without additional unbalance)
and test-b (99 g unbalance was added to disc1). This shows that the residual unbalance in
test-a is significant compared to test-b. Equation (7) shows that for a specific speed and a
certain phase, the unbalance force is proportional to the unbalance mass. The ratio of the
amplitude between the two tests shows that the unbalance phase is not the same in the
two tests, and the initial unbalance on test-a is high. The exact value of unbalance remains
unknown.

Figure 13 shows the unbalance response obtained from the simulation model. The
initial unbalance and phase at test-a are not known. Therefore, it might be possible that in
the setup the unbalance also exists on the other planes. In the simulation, 40 g unbalance
mass is added to disc1 to provide a similar amplitude to the measurement.
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4.2. State Estimation Using Kalman Filter

The Matlab ode15s integrator is used for the transient simulation of system dynamics,
and it is based on the 4th order Runge-Kutta integration method for solving stiff problems.
In the model, the speed profile and the sampling frequency were chosen according to the
measurement data (sampling frequency 2048 Hz). The time step is 1/2048 s, the maximum
integration step is 5 × 10−4 s, and the maximum allowable integration error is 1 × 10−4.

In the model, there are 150 states (3 × 50 dofs, 50 displacements, 50 velocities, and
50 acceleration). The observation is vibration recorded by the eight acceleration sensors
(horizontal and vertical vibration at bearing locations). Inside the simulation model, the
assumed modal reduction is used to reduce the computational time (see Appendix A). The
measurement data needs to be processed before being utilized in the Kalman filter.

4.2.1. Preprocessing Measurement Data

As can be seen in Figure 14, test-a begins at 100 rpm and test-b at 200 rpm. The
acceleration rates for these tests are different. At the end of the tests, the machine is
running at a constant speed of 700 rpm. Figure 15a shows the raw measurement data for
bearing 1, recorded in the test-b. The raw measurement data have a large variation in
amplitude; it includes the higher order components, and many aspects of the model were
not fully known. The low-pass filter 20 Hz was applied to the measurement data (using
Simcenter Testlab software) to see a clearer image from the system behavior. This frequency
range enables us to observe the main behavior of the system and remove the higher order
frequencies. Figure 15b show the synchronized tachometer and acceleration for test-b. The
start of the measurement data for test-a and test-b are matched in such a way that they
both have the same reference point, based on the pulse recorded by tachometer. In the next
section, the state estimation is carried out for the steady state part of the data.
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Figure 15. Measurement data for bearing 1 at test-b, (a) raw measurement data, (b) after synchroniz-
ing the tachometer data and acceleration data.

4.2.2. Estimation of Acceleration

Figure 16 shows that, whilst there is a considerable difference between the simulation
model and the measurement data, and all dofs are used in the model, the Kalman filter
can estimate the acceleration at the bearing locations with high accuracy. The estimated
value for the acceleration is within the 95% confidence interval, which has been described
in detail in the study by Howard et al. [26]. The Kalman filter parameters are shown in
Table 5. Tuning the covariance matrix is dependent on the model and measurement data.
Applying the UKF with 150 states demands a high computation burden, and it took more
than eight hours to study the steady state part of the measurement data at 700 rpm. We
focused on the last 4 s of measurement data (a zoom view is shown in the results). Here, the
UKF is used for state estimation as it helps to consider high fluctuation in the experimental,
and it was robust for this measurement.
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Table 5. Final parameter used in Kalman filter.

Item Value

Initial covariance for simulation displacement, velocity,
and acceleration 1 × 10−8, 5 × 10−8, 1 × 10−8

Process noise displacement, velocity and acceleration 1 × 10−7, 5 × 10−7, 1 × 10−7

Measurement noise level 3 × 10−6

Unscented Kalman filter parameters (α, β, κ) 0.01, 2, 0
Number of states 150

Number of observations 8
Number of iterations in Kalman filter 8192

Initial states for displacement, velocity and acceleration 0

The selection of the Kalman filter can affect computational time. The EKF uses lin-
earization for the propagation of the error covariance matrix and Kalman gain, and it
seems to be a faster solution. When the initial estimate of the state is wrong, or an accurate
model is not possible to develop, the state estimation using the EKF might not converge.
For problems where nonlinearity is not high, the EKF offers an acceptable performance.
The UKF is more robust than the EKF and can handle high nonlinearity [27]. However,
the computational effort increases due to the larger matrixes and the calculation of sigma
points. In this study, after testing, it was found that the UKF is robust and can handle the
raw measurement data well, while the EKF did not converge.

4.2.3. Effect of Number of Observations of the Estimation

In this section, rather than presenting all eight measurement points, the measurements
of three bearing locations are selected as observations, and the capability of the Kalman filter
in the estimation of the response at the fourth bearing location (for validation purposes) is
tested. Table 6 shows the configuration for the selection of the observation and prediction
points.

In Figure 17a, the measurement data at bearings 2, 3, and 4 are selected as observations
and the Kalman filter is used to predict the response at bearing 1. The results are compared
with the corresponding recorded measurement data. Similarly, the Kalman filter is tested
for the estimation of the response at bearings 3 and 4 (Figure 17b,c). Here, bearing 2
was not chosen as a validation point because it has a different installation point for the
sensor. Bearings 1, 3, and 4 have similar conditions and are more suitable for the validation.
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Figure 17a shows that the Kalman filter can track the measurement data at bearing 1. The
estimated amplitude is close to the measurement data. There is a phase shift between the
prediction response in the y-direction, which may be due to the uncertainty in the unbalance
at disc 1. Figure 17b,c shows that, using the six measurement points as an observation, the
Kalman filter can predict the responses at bearings 3 and 4 with reasonable accuracy. The
response in the z-direction has a higher vibration due to the horizontal movement of the
pedestal. The amplitude of the vibration in y-direction is relatively low.
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Table 6. Configuration used for section of observation and prediction.

Measurement (a) (b) (c)

observation

brg2-y brg1-y brg1-y
brg2-z brg1-z brg1-z
brg3-y brg2-y brg2-y
brg3-z brg2-z brg2-z
brg4-y brg4-y brg3-y
brg4-z brg4-z brg3-z

prediction brg1-y brg3-y brg4-y
brg1-z brg3-z brg4-z
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Figure 18 shows the case in which six measurement points are used in the model
(response at bearing 1, 2, and 4) and bearing 3 is used for prediction. Here, the confidence
interval for the calculated response by the Kalman filter for bearing 1 is presented, showing
high accuracy with respect to the measurement data, and the estimated results by the
Kalman filter for the states are located within the 95% confidence interval.
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4.2.4. Deflection along the Rotor

This section uses the eight measurement points of the bearing locations (nodes 2, 6,
7, and 8 of the FEM model) as an observation, and the rotor movement in all nodes are
plotted in Figure 19. It can be seen from Figure 19a that the highest movement appears
near discs 3 and 4 (nodes 9–12). There is a clear movement near disc 1. Discs 1, 3, and 4 are
quite heavy (17.22 kg, 16.11 kg, and 3.88 kg, respectively). This caused the amplitude of
the predicted acceleration at these locations to become high. In the middle of the rotor and
near the bearing location, the amplitude is relatively small, as the movement is restricted.
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The estimated pattern by the Kalman filter agrees reasonably well with the first
forward whirling mode shape of the rotor at 700 rpm (Figure 19b), which has a significant
contribution to the rotor deflection shape. It should be noted that, according to the Campbell
diagram, the frequency of the first forward at 700 rpm is 46 Hz, while the 1× excitation
appears at 7 Hz. The first forward mode is not the only mode contributing to the deflection
at 700 rpm. In fact, the rotor deflection shape at 700 rpm is a combination of several mode
shapes. The shape and magnitude of deflection is highly dependent on the amount of
unbalance and its distribution, as well as the contributions of individual modes, where
due to the unclear unbalance condition it cannot be investigated in detail. In the future,
a detailed study into the initial unbalance, and measuring the runout in the experiment,
can help to provide a clear picture of the rotor deflection. The UKF helps to deal with
high uncertainty in the model, along with measurement. The main drawback of the UKF
was that the computational burden took several hours, due to the large size of the matrix
for the generation of sigma points. However, the UKF is not the end point for Kalman
filter modeling. There are also other types of Kalman filter models. The optimum selection
is dependent on the system under investigation and needs to be evaluated case by case.
When the parabolic distribution has a Gaussian from, using the state-space form and the
Kalman filter is suitable. During the present study, we noticed that if the parameters of the
UKF, the noise covariance of the plant (Q), and measurement (R) are not selected correctly,
the outlier can exist in the estimated states. In other words, there are no standard solutions
or guarantees from the Kalman filter model. The nonlinear Kalman filter types also require
careful tuning of the covariance and parameter selection. The stability and convergence can
also be affected by the signal processing step carried out in the model. Using the proper
signal processing tools, filtering the desired frequency range in advance helps to provide a
more suitable data for the model. The Kalman filter is capable of considering the possible
error and noise covariance in the measurement, however, we believe that, for the simple
system, the UKF helps to provide a state estimation with good accuracy and predictability.
The dual estimation of the UKF and EKF, the particle filter, and Kreisselmeier K-filters [28]
can be also tested in the future.

5. Conclusions

This paper presents an experimental and numerical study of a rotor system with four
bearings. The system under investigation resembles the typical industrial cases in which
multiple unknowns exist in the system. The FE model was used for modeling the rotor.
The stiffness and damping of the bearings, the support, and the pedestal were unknown,
and they were approximated with the measurement data. The measurement data showed
the presence of higher order harmonics and the rigid body movement of the pedestal. The
impact hammer and the modal analysis of the experimental setup were carried out to find
the translation and rotational rigid body movement of the frame.

In the experiments, two cases were studied: first, a system with no added unbalance;
then, the single unbalance mass was added to a disc, and the vibration at the bearing
locations during the sweep was measured using acceleration sensors. The initial unbalance
mass and phase were not known. The first order tracking of the measurement data shows a
significant initial unbalance in the system. The comparison of the unbalance response with
the first-order tracking of the measurement data was used for verifying the model. The
model can capture the measurement response with reasonable accuracy.

This paper also demonstrated the application of the Kalman filter for the estimation of
unmeasurable parts of the machine. The UKF was used to estimate the state of the system,
i.e., the displacement, velocity, and acceleration at all degrees of freedom of the FE model.
To verify the results, the acceleration estimated by the Kalman filter was compared with
the corresponding measurement data. The UKF algorithm can estimate the acceleration at
the bearing locations with high accuracy using either eight or six measured accelerations
as observations. The estimated value for the acceleration is within the 95% confidence
interval.
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The optimum selection of the Kalman filter model is highly dependent on the system
under investigation and the measurement data, and these need to be evaluated case by case.
In addition, the importance of the signal processing for identifying the main frequency and
behavior of the system cannot be neglected. As the raw measurement signal might contain
noise, higher order frequencies may not be of interest. The higher order frequencies can
be the result of several factors, e.g., looseness, misalignment, bearing problems, etc. In the
future, by modifying the support structure, improving the connection to the ground, and
performing a misalignment check, the problem of possible looseness in the support can
be improved, and this can help to overcome the higher order frequencies that appeared in
the measurement. The present study can provide an insight into simplifying most of the
real-life industrial problems in rotating machines. In addition, future research scope would
aim for the optimization of the data acquisition system with open-source, cost-effective, and
robust systems as, with the Kalman filter, the data quality can be compromised. Despite
the limited measurement data, the system dynamics and states can be estimated.

Then, Equation (1) can be rewritten as follows:

Mr
..
P + (Cr + ωGr)

.
P + KrP = Fextr (23)

where P is a vector of the modal coordinate. By using the following transformation, the
physical coordinates can be converted to the modal coordinate.

q = SrP (24)

Rather than solving the system of equation with 150 dofs in physical coordinates, the
transient analysis will be solved for eight modal coordinates and after solving the system
of equation, the results will be converted back to the physical coordinates.
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Appendix A

The system of the equation for motion given in Equation (1) can be solved by the
numerical integration method. Due to the high number of degrees of freedom, the solution
is computationally time demanding. The assumed modal reduction method can be applied
to reduce the computational effort. In this method, after conducting eigenvalue analysis,
the reduced mode shape matrix can be defined as follows:

Sr = [S1 S2 S3 . . . Sr] (A1)

where r is the desired number of modes (in this study the first eight modes are selected).
The lower frequency modes contribute more to the system’s behavior. By neglecting the
mode shapes due to the higher frequencies, the number of degrees of freedom can be
reduced, and the results will have acceptable accuracy [29]. Then, the reduced mass matrix
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(Mr), stiffness matrix (Kr), damping matrix (Cr), gyroscopic matrix (Gr), and force matrix
(Fextr) can be expressed as follows:

Mr= ST
r MSr Gr= ST

r GSr
Kr= ST

r KSr Fextr = ST
r Fext Cr= ST

r CSr
(A2)
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