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Abstract: Advanced manufacturing is a new trend for sustainable industrial development, and digital
twin is a new technology that has attracted attention. Blast furnace smelting is an effective method
in the manufacturing of iron and steel. Comprehensive and dependable surveillance of the blast
furnace smelting process is essential for ensuring the smooth operation and improving of iron and
steel output quality. The current technology makes it difficult to monitor the entire process of blast
furnace ironmaking. Based on Unity 3D, this study presents a digital-twin virtual reality simulation
system of blast furnace ironmaking. First, shading modeling creates a three-dimensional dynamic
geometric model in different ironmaking system scenarios. Then, we script the animation and call
particle system according to the motion mode of distinct geometric objects to give the dynamic
effect of geometric objects. Shaders are the focus of the design and contributions. In addition,
shader optimization technology can reduce hardware resource consumption and increase system
fluency. Vertex shaders are used for all types of coordinate space transformation and vertex output;
fragment shaders are used for texture sampling, light model calculation, normal calculation, noise
superposition, and color output. The shader rendering technique allows for more realistic lighting
effects. The presented dynamic digital twin system implements more realistic lighting analyzed in
the ironmaking process. Virtual interaction logic’s design and deployment process is based on HTC
VIVE hardware and VRTK toolkit. In the actual simulation process, the typical animation frame rate
is stable at about 75 FPS (frames per second). The simulation system runs smoothly and a cutting-edge
and state-of-the-art method for observing the blast furnace ironmaking process is suggested.

Keywords: virtual reality; shader; virtual interaction; digital twin; ironmaking process

1. Introduction

Intelligent systems and virtual reality technology are currently hot topics that can
revitalize the industry, increase companies’ competitiveness, and reduce production costs.
It yields more intelligent manufacturing and production, which avoids safety hazards
and improves profits. Iron and steel are one of the core sectors of the national economy,
accounting for tremendous social and technological progress. Blast furnace smelting is the
upstream process of steel manufacturing [1,2]; the blast is the primary emission link of iron
and steel production, and the furnace is also the most energy-intensive process [3–6]. The
environment of ironmaking blast furnaces is complicated and harsh, with high temper-
atures, high dust levels, and a high level of vibration interference [7–9]. The traditional
operation style makes it impossible to observe the whole process of blast furnace iron-
making, and there is a possibility it causes a significant safety hazard to the workers and
operators. It is critical to implement a technique and technology that can thoroughly and
consistently replicate and monitor the blast furnace ironmaking process in real time. Based
on the above analysis, this study presents a virtual reality simulation system based on
digital twin and Unity 3-Dimension (3D), which is then deployed to the blast furnace
ironmaking sector.
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Virtual reality (VR) is a new graphics and image technology. It generates a three-
dimensional simulation system, for users in visual, auditory, tactile, and other areas of
communication and interaction using computer simulation [10,11]. The interaction between
the user and the simulation system, as well as the user’s own perception and cognitive
ability to touch the object, inspire the user inspiration, in order to thoroughly obtain the
spatial information and logical information included in the system [12,13]. In the last
decades, the digital twin has been a hot topic for international researchers, some of which
have been applied to the non-ferrous and manufacturing industries. For instance, Zhou et
al. investigated the collaborative optimization strategy for reducing energy, which develops
the progress of ironmaking production [14]; however, the furnace blast efficiency is ignored
by their digital twin method. Boschert et al. proposed the simulation aspect of the digital
twin techniques, which gives a comprehensive review of the digital twin [15]. In [16], a
novel digital twin dosing system for iron reverse flotation is proposed, and solves the
flotation monitoring in iron production, although the large-scale process of ironmaking
is not presented. Some other digital twin invariants can be also specified in concept
review [17], iron bird design [18], cloud computing platform [19], potential analysis [20],
and aluminum electrolysis process [7,19,21–23].

In recent years, the study of virtual reality simulation systems has been the hottest
topic and has received a lot of attention. DarPA has been working on virtual battlefield
technologies since the 1980s. Foreign virtual reality simulation system development is
currently pretty developed. In recent years, the virtual reality simulation system has been
quickly expanded, for example, by being used in medical, education, manufacturing, design,
and other industries, and a number of achievements have been made [24–26]. Burdea et al.,
for instance, provides a full introduction to virtual reality technology, including the source,
development, and future directions [10]. Zenner et al. established an immersive process
model to investigate the interplay of a virtual and cyber-physical world [13].

Immersion, interactivity, multisensory, conceptualization, autonomy, and authenticity
are all qualities of a VR simulation system. Shader technology is one of the technologies
that have an impact on authenticity. One purpose of shader technology is to replace
the existing non-programmable fixed rendering process with a programmable rendering
pipeline. Fixed rendering pipelines or texture mapping is used to create traditional light
and shadow effects; however, these approaches are restricted to texture mapping and
the physical attributes of the model object itself, and their flexibility is limited, rendering
effect is difficult, and authenticity has to be further enhanced. Depending on the shader
technology, the rendering details of the graphics can be controlled by controlling the
rendering pipeline, so that more rich and realistic lighting effects can be expected. Since
shader technology improves light and shadow effects, research on shader technology is of
great significance to animation production, film special effects realization, virtual reality
product development, and other aspects. In addition, shader technology mainly uses
graphics processing unit (GPU) rendering, which brings users a more efficient rendering
solution, namely GPU rendering solution.

The digital twin has been the hottest topic that emerged in the past several
years [21,22,26–28]. It constructs a full lifespan situation of some industrial processes
and then monitors and makes some abductive analysis for the whole fault diagnosis. The
digital twin shading render can also prevent some fault happens at an early age. Recently,
digital twin technology has been applied to some specific domains [29–32]. For instance,
Liu et al. proposes a reuse and evaluation approach for smart process planning [31]. In [32],
a novel intelligent manufacturing model is proposed for the non-ferrous metal industry;
however, this is only a basic partnership of the digital twin; the applicability of the ironmak-
ing process has yet to be researched. Because iron production is a complicated industrial
process, it is impacted by several elements during the manufacturing process. Huang et al.
proposes a unified framework for the production validation of digital twin development,
it gives insight into the advanced manufacturing cutting-edge application [33]. He et al.
also reviewed the sustainable aspect of intelligent manufacturing, which motivates that the
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novel technology has a brilliant future [34]. Lopez et al. summarizes the event-triggered
platform with the real-time application [35]. Guo et al. utilized the digital twin technology
to promote the layout optimization for the discrete workshop [36]. Roy et al. gives a
comprehensive analysis of the digital twin development in the manufacturing process with
specific cases, their study greatly motivated our ironmaking work [37]. Liu et al. considered
the digital twin’s reuse and evaluation policy, and proposed the process planning method,
which can be significantly promoted [38]. Yu et al. evaluated the VR technology with the
industrial Internet of Things and its corresponding protection; however, their approach
is a theoretical analysis without practical verification [39]. Motivated by this literature,
this paper proposes a digital twin 3D shading to blast the ironmaking process. The main
contributions of this paper are given as follows.

• A digital twin model is proposed for observing the whole production process. The
presented method implemented the virtual reality and shading rending of the whole
ironmaking furnace process. The computation performance is further analyzed with
high accuracy and excellent computation cost. All the implementation is based on the
real-time data collected from the industry.

• A novel script animation and call particle system according to the motion mode
of different geometric objects to give the dynamic effect of geometric objects. The
proposed animation models the different motions and particle flow in the reaction
of the ironmaking process. It has the great advantage of simulating the practical
ironmaking process with the support of a high-resolution interface. The experiments
show that the average animation frame rate with high stability and robustness, and
has up to 75 FPS.

• All the vertex shaders are considered to use all kinds of coordinate space transfor-
mation and vertex output variables to improve the 3D shading performance. The
industrial blast ironmaking system modeling and application verifies the presented
method’s high performance.

• The presented digital twin model for the ironmaking furnace process provides a novel
real-time modeling and fault diagnosis method. It monitors dynamically the produc-
tion process and constructs an advanced 3D virtual reality model. The validation
and verification experiments prove that the presented framework has state-of-the-art
performance on our benchmark cases and other comparatives.

The remainder of the paper is organized as follows. In Section 2, the blast ironmak-
ing system is presented. The specific ironmaking design and experimental deployment
and implementation are given in Sections 3 and 4, respectively. Section 5 introduces the
system simulation and digital twin modeling procedures. Finally, Section 6 concludes the
whole paper.

2. Related Works

Blast furnace (BF), a vital and energy-intensive unit, consumes more than half of
manufacturing energy and cost in the whole iron and steelmaking processes. The real-time
virtual system is necessary and also the future trend in the manufacturing industry. This
section introduces some foundational technologies for the existing rendering, which covers
the lava rendering, Blinn–phong illumination model, and the noise generation method.

2.1. Lava Rendering

In terms of physics-based simulations, lava can be modeled as a liquid with an
exponentially increasing viscosity. It can be compared to a liquid, the viscosity of which
increases exponentially as the material cools. As the material cools, its viscosity increases
exponentially. Previous solutions include [40–42].

There are two types of liquid animation solutions. Eulerian methods [7,12], which
involve discretizing space into a fixed 3D grid and studying how the physical field evolves
across the grid nodes, and Lagrangian methods. Lagrangian methods involve tracking the
movement of punctual mass elements known as particles. For liquids, the motion of the
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elements, known as particles, is sampled. The second method appears to be more practical
in the case of lava flows because the use of particles allows us to attach deformable lava skins
to the lava flows without introducing additional tagged elements. Furthermore, particle
systems have been successfully used to simulate a wide range of behaviors, including
very viscous substances, as well as to animate transitions between solid and liquid states
using temperature parameters [28,29]. In particle systems, the smooth particle model was
introduced in [6,25]. The smoothed particle model introduced in [6,25] plays a unique role
in particle systems because the forces between particles are derived from the equation of
state that defines the macroscopic behavior of the material rather than being manually
tuned. This model has been used to simulate debris flows [11]. To the best of the authors’
knowledge, no attempt has been made to change its mechanical properties over time.

2.2. Blinn–Phong Illumination Model

Blinn–Phong is the default shading model used in OpenGL and Direct3D’s fixed-
function pipeline (before Direct3D 10 and OpenGL 3.1), and is carried out on each vertex
as it passes down the graphics pipeline; pixel values between vertices are interpolated
by Gouraud shading by default, rather than the more computationally expensive Phong
shading. Now suppose that the object is “shiny”. If it were a perfect mirror, then all of
the light from the source would be reflected in the pixel only if they are perfectly aligned;
otherwise, no light would reflect at all. Such full reflection would occur if v and ` form the
same angle with respect to n. What if the two angles are close, but do not quite match? The
Blinn–Phong shading model proposes that some amount of light is reflected, depending on
the amount of surface shininess and the difference between v and ` [32]. The bisector b is
the vector obtained by averaging ` and v:

b =
`+ v
‖`+ v‖ (1)

Using the compressed vector notation, the Blinn–Phong shading model sets the RGB
pixel values as:

L = dImax(0, n · l) + sImax(0, n · b)x (2)

This additively takes into account shading due to both diffuse and specular compo-
nents. The first term is just the Lambertian shading model. The second component causes
increasing amounts of light to be reflected as b becomes closer to n. The exponent x is a
material property that expresses the amount of surface shininess. A lower value, such as
x = 100, results in a mild amount of shininess, whereas x = 10,000 would make the surface
similar to a mirror. This shading model does not correspond directly to the physics of the
interaction between light and surfaces. It is merely a convenient and efficient heuristic but
is widely used in computer graphics.

2.3. Noise Generation Method

In this part, two kinds of noises are introduced. Blue noise textures are useful for
providing per-pixel random values to make noise patterns in renderings. Blue noise
textures are harder to see and easier to remove than the noise made by either random
number generators or hashes, both being white noise. To use a blue noise texture, you
tile it across the screen, read the texture with nearest neighbor point sampling, and use
that as your random value. A notable limitation of blue noise textures is that they work
best in low-sample-count, low-dimension algorithms. For high sample counts or high
dimensions found in algorithms such as path tracing, you would likely want to switch to
low-discrepancy sequences to remove the error, instead of trying to hide it with blue noise.

Perlin noise is a popular procedural generation algorithm invented by Ken Perlin. It
can be used to generate things such as textures and terrain procedurally, meaning without
them being manually made by an artist or designer. The algorithm can have 1 or more
dimensions, which is basically the number of inputs it has. In this article, we use two
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dimensions because it is easier to visualize than three dimensions. There is also a lot of
confusion about what Perlin noise is and what it is not. It is often confused with value
noise and simplex noise. There are basically four types of noise that are similar and that
are often confused with one another: classic Perlin noise, improved Perlin noise, simplex
noise, and value noise. Improved Perlin noise is an improved version of classic Perlin noise.
Simplex noise is different but is also made by Ken Perlin. Value noise is also different. A
rule of thumb is that if the noise algorithm uses a (pseudo-)random number generator, it
is probably value noise. This article is about improved Perlin noise. Perlin noise is most
commonly implemented as a two-, three-, or four-dimensional function, but can be defined
for any number of dimensions. An implementation typically involves three steps: defining
a grid of random gradient vectors, computing the dot product between the gradient vectors
and their offsets, and interpolation between these values.

3. System Description

In this part, the system of blast ironmaking process and shader framework are intro-
duced, which is the foundation for the system design and application.

3.1. The Overall System Framework

The ironmaking system under consideration consists of real-time data, geometric
models, animation effects, and human–computer interaction modules. The real-time data
comes from the field database and is transmitted to the simulation system through the
data communication module. The relationship between the parts is shown in Figure 1.
Geometric model and animation effects together constitute virtual objects in the simulation
system. Some characteristics of virtual objects depend on real-time data changes. Virtual
object animation effects are classified as motion effects and rendering effects. Script anima-
tion and particle animation are used to create motion effects, while shader technology is
used to create rendering effects. Hardware and software make up the human–computer
interaction module. When the user operates, the hardware module of human–computer
interaction produces signals, and the software module of human–computer interaction
collects the user’s operation information, which is transformed and communicated to
the PC’s virtual reality simulation system. Virtual objects in the simulation system make
corresponding feedback according to the user’s operation, and the user decides the next
operation according to the feedback information of the simulation system.

 

Figure 1. System structure block diagram; the interaction of the dynamic rendering and shader
process is given with this illustrative examples. The main procedure covers human–computer
interaction and three-dimensional virtual objective modeling.

3.2. The Shader Framework

The rendering pipeline is often separated into three phases: application, geometry,
and rasterization [28]. Each level can be broken further into smaller pipeline phases.
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The vertex shader is the first programmable shader in the rendering pipeline. The main
task of the vertex shader is to transform vertex coordinates. By adding time parameters in
vertex coordinate transformation, the function of vertex animation can be realized, so as to
achieve a dynamic rendering effect. Vertex shaders also perform vertex-by-vertex lighting
calculations.

Fragment shaders are another very important programmable shader in the rendering
pipeline. The chip shader performs texture sampling, illumination model calculation, and
so on. The chip shader outputs one or more color values or other chip metadata.

Geometry shader is an optional programmable shader that sits between the vertex
shader and the fragment shader in the rendering pipeline. Geometric shaders operate on
primitives. The geometry shader receives one or a group of vertices from the vertex shader
and can then transform them, either by outputting new and different types of primitives or
by increasing the number of vertices. This property can be used to achieve the effect of the
particle system geometry shader.

4. The System Design

In this section, the Unity shader written by the ShaderLab language is used to illustrate
the role of shader technology in the virtual reality simulation of the experimental system
for blast furnace ironmaking by taking the rendering method of the iron pool and material
layer as an example.

4.1. Iron Pool Special Effect Implementation Method

According to the morphological characteristics of molten iron, this work adopts the
lava rendering method with a similar effect to render the iron pool. Based on the above
analysis, the morphology characteristics of the iron pool are as follows: there is dynamic
fluid movement in the iron pool, in addition, there are also small eddy currents randomly
distributed on the surface of the molten iron. The color of molten iron is affected by
temperature, and its color is mainly produced by the spontaneous luminescence of molten
iron itself at high temperatures.

Data preparation is needed before we can start designing shaders for iron Pool render-
ing. In the vertex shader program, define a structure of type AppData to contain vertex
coordinates in world space, normal vectors in world space, and texture coordinates (includ-
ing main texture coordinates and noise texture coordinates). This structure is sent into the
vertex shader.

The vertex shader transforms vertex coordinates using Unity’s built-in matrix variables
and matrix transformation functions. In order to achieve the effect of molten iron flow, the
texture coordinates are offset and transformed in the X-axis and Y-axis directions of world
space with time as the independent variable:

(x′, y′) = (x, y) · TILING + OFFSET+
VELOCITY · t (3)

where (x, y) is the texture coordinates before transformation, (x′, y′) is the texture co-
ordinates after transformation, TILING is the scaling coefficient, OFFSET is the offset
coefficient, VELOCITY is the movement speed of the texture coordinates in the X-axis
and Y-axis directions, and t is the elapsed time since the current scene started running,
respectively. There is no need to scale the coordinates in the iron pool effect realization
procedure, merely offset, as seen above. TILING is equal to (1,1). In addition to texture
coordinate transformation, the following work needs to be completed: converting normal
vectors in local space to world space; converting vertex coordinates in local space to world
space. Both of these tasks can be achieved with Unity’s built-in matrices or functions.

Blinn–phong illumination model is used to calculate illumination in the chip
shader [41–43]. Blinn–phong illumination model is divided into four parts: (1) self-
illumination part, cemissive; (2) specular reflection part, cspe; (3) diffuse reflection, cdi f f use;
(4) environmental light cambient. The part of spontaneous light is taken from the color of
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spontaneous light of material, and the part of ambient light is taken from the color of global
ambient light under the scene, which is generally sunlight. The calculation of specular
reflection is as follows:

cspe = (clight ·mspe)max(0, v̂ · ĥ)mgloss (4)

In Formula (1), clight is the light source color,
_

h is the highlight reflection color of the
material, mspe is the angle of view direction, and mgloss is the glossiness of the material (also
known as the reflectance). The normalized calculation can be obtained by adding the angle
of view direction and the light source direction variables of v̂, and l̂, respectively.

The diffuse reflection part is calculated as follows:

cdi f f use = (clight ·mdi f f use)max(0, n̂ · l̂) (5)

In Formula (3), mdi f f use is the diffuse color of the material and n̂ is the surface normal.
After completing the illumination calculation of the four parts, overlay the above equation;
then, we can rewrite it as:

COLOR = cemissive + cspe + cdi f f use + cambient (6)

The hash function is then used to generate random variables, which are used to obtain
the random values or random vectors required in the process of noise generation. These
random values and random vectors are used to construct the following two types of noise:
Perlin noise and value noise. If there is only one noise, the two-dimensional random
distribution sequence will be somewhat monotonous. One solution is to superimpose
multiple noises. By stacking the noise in a loop (one octave at a time) and continuously
increasing the frequency by some lacunarity, while reducing the amplitude of the noise
by some proportion (gain), the final result is more detailed. The technique is called fractal
Brownian motion, or fBM, or fractal noise. The technique is widely used to construct
programmed landscapes [44–48]. After the Perlin noise and value noise are constructed,
the two kinds of noise with different frequencies and different gains are superimposed
according to the Brownian motion model, and the irregular temperature distribution in the
molten iron is simulated.

As we work our way up octave after octave, the curves look more and more detailed,
and the self-similarity becomes more and more obvious. If you zoom in on the curve, part
of the curve looks very similar to the whole, and you can pick two different parts of the
curve that look somewhat similar. This is an important property of mathematical fractals,
which we simulated in the loop above. The presented framework is not trying to create a
real fractal, because it cannot stack up after a couple of cycles, but in theory, if the presented
method keeps going through the cycle, adding noise up and up, a more real mathematical
fractal will be achieved. In computer graphics, there is always a limit to how much detail
we can handle, such as when an object is smaller than a pixel, so there is no need to keep
superimposing it to create fractal shapes. Sometimes we do need to stack many times, but
not indefinitely. In Perlin noise and value noise, the following equation of relaxation curve
is used to calculate the weight:

s(t) = 6t5 − 15t4 + 10t3 (7)

where t is the two-dimensional coordinate input on the planar grid for noise generation.
The random temperature distribution obtained by typing Brownian motion cannot be

used directly. In order to form a mapping relationship between temperature distribution
and color distribution, the iron pool can be approximately regarded as a black body, and
the conversion from temperature value to RGB color value can be realized according to
the relationship between color and temperature in the black body trajectory. First, the
temperature is converted to uniform chromaticity coordinates, chromaticity coordinates,
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and tristimulus values successively, and finally, the tristimulus values are converted to
RGB color values. In the bold body trajectory, the relationship between temperature and
color value is as follows:

u =
0.86 + 1.54× 10−4t2 + 1.29× 10−7t4

1 + 8.42× 10−4 × t2 + 7.08× 10−7 × t4

v =
0.32 + 4.23× 10−5t2 + 4.20× 10−8t4

1− 2.90× 10−5t2 + 1.61× 10−7t4

(8)

where u and V are uniform chromaticity coordinates, t is the temperature value (unit: K).
CIE 1931 XYZ color space is one of the first color spaces to be defined mathematically.

It was established by the International Commission on Lighting (CIE) in 1931.CIE 1931
color spaces typically give trichromatic stimulus values for colors, expressed in terms of X,
Y, and Z. In CIE 1931 color space, color chromaticity only depends on the ratio of X, Y, and
Z, so the relative coefficients (also called chromaticity coordinates) X, Y, and Z chromaticity
coordinates XYZ and uniform chromaticity UV coordinates have the following relationship:

x =
3u

2u− 8v + 4
y = 2v

2u−8v+4
z = 1− x− y

(9)

The tri-stimulus values of the ci-RGB spectrum were obtained by a specialized color
mixing and matching experiment with 317 normal visual subjects using the red, green, and
blue primary colors and equivalent energy spectral colors from 380 nm to 780 nm specified
by CIE. In the experiment, the number of red, green, and blue primary colors corresponding
to the equal energy spectral color of λ for each wavelength of the spectrum is called the
spectral three stimulus value. The relative luminance curve of isometric spectral colors is
the same as that of bright vision spectral photo efficiency of human eyes. The conversion
relationship between tristimulus value XYZ and chromaticity coordinate XYZ is as follows:

Y = 1
X = Y

y × x

Z = Y
y × z

(10)

The specific conversion relationship between RGB color space and tristimulus values
is as follows:  R

G
B

 =

 3.24 −1.54 −0.50
−0.97 1.88 0.04
0.06 −0.20 1.06

×
 X

Y
Z

 (11)

The rendered iron pool effect is shown in Figure 2a. Through vertex animation in
the vertex shader, dynamic fluid movement in the iron pool is realized. Through the
superposition of Perlin noise and value noise by Brownian motion, the fine eddy current
and temperature state of random distribution on a hot metal surface are generated.
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                                     （a）

                                    （b）

 Figure 2. Shaders render renderings of ironmaking blast furnace process. It is a three-dimensional
rendering of the whole iron pool and the material layer with high-resolution textures. (a)The rending
of the inner ironmaking pool; (b) Three-dimensional dynamic material layer rending effect.

4.1.1. Special Effect Realization Method of Material Layer

After the above analysis, the morphological characteristics of the material layer are as
follows: with the feeding process, the material surface will be on the rise. In addition, the
surface of the layer model should be rough and uneven.

The first priority in our proposed digital twin shader system is to prepare an abundant
furnace dataset[49–54]. To illuminate the solid backlit surface of the material layer, we
add several additional light sources to the Unity scene, setting the intensity, radius, and
position of the light source relative to the solid layer. The intensity, radius, and position of
the light source are set on the basis that the side of the solid model of the entire material
layer can be evenly illuminated, and the brightness is moderate, not too dark to look down
on the solid side model details of the material layer, nor too bright to be too dazzling
during operation. Since several additional light sources have been added to the Unity
scene, the pass with the original render path forward base can only calculate parallel lights
in the scene. Therefore, additional passes should be added to the Unity shader program
to calculate additional light sources. In this special effect realization method, the type of
light source we choose is a point light source. The range of illumination of a point source is
limited. A three-dimensional sphere in world space defines a point light source. A point
light source represents light emitted from a spot in all directions. After you have added a
few point lights to the scene, you need to add another pass to the shader with the render

Figure 2. Shaders render renderings of ironmaking blast furnace process. It is a three-dimensional
rendering of the whole iron pool and the material layer with high-resolution textures. (a) The rending
of the inner ironmaking pool; (b) Three-dimensional dynamic material layer rending effect.

Special Effect Realization Method of Material Layer

After the above analysis, the morphological characteristics of the material layer are as
follows: with the feeding process, the material surface will be on the rise. In addition, the
surface of the layer model should be rough and uneven.

The first priority in our proposed digital twin shader system is to prepare an abundant
furnace dataset [49–54]. To illuminate the solid backlit surface of the material layer, we
add several additional light sources to the Unity scene, setting the intensity, radius, and
position of the light source relative to the solid layer. The intensity, radius, and position of
the light source are set on the basis that the side of the solid model of the entire material
layer can be evenly illuminated, and the brightness is moderate, not too dark to look down
on the solid side model details of the material layer, nor too bright to be too dazzling
during operation. Since several additional light sources have been added to the Unity
scene, the pass with the original render path forward base can only calculate parallel lights
in the scene. Therefore, additional passes should be added to the Unity shader program
to calculate additional light sources. In this special effect realization method, the type of
light source we choose is a point light source. The range of illumination of a point source is
limited. A three-dimensional sphere in world space defines a point light source. A point
light source represents light emitted from a spot in all directions. After you have added a
few point lights to the scene, you need to add another pass to the shader with the render



Machines 2022, 10, 1122 10 of 19

path set to forward add. The presented framework adds the following statement to the
code: #pragma multi-compile-fwd base. This directive ensures that light variables such as
light attenuation are assigned correctly in the 3D shader. This directive is indispensable
when adding a pass with a render path of ForwardAdd. In addition, to mix the colors of the
two passes, you need to turn on the add blend mode and set the blend factor. The formula
for additive mixing is as follows:

Orgb = SrcFactor× Srgb

+DstFactor× Drgb
(12)

Oa = SrcFactorA× Sa

+DstFactorA× Da
(13)

where O is the output color after blending, S is the source color, D is the target color (colors
already in the color cache), DstFactor and SrcFactor are the blending factor of the source
and target colors, SrcFactorA and DstFactorA are the blending factors of the alpha channel
of the source and target colors. SrcFactor, DstFactor are added with Blend One-One to
pass with the render path ForwardAdd is given as follows:

Orgb = SrcFactor + DstFactor (14)

That is, the result of the output color is the addition of the source color and the
destination color already stored in the color cache.

The rising material layer can cause an effect on the vertex shader implementation idea.
The dynamic fluid movements on the surface of the molten iron effect are also similar, but
the material layer position TILING = (1, 1) changes usually only in one direction, so the y
direction in world space, with time as the independent variable, to offset texture coordinates
transformation OFFSET.x = 0, VELOCITY.x = 0, namely in the implementation of the
material layer of special effects, and type (1).

In the chip shader, we only need to calculate the illumination model. In addition, in
order to simulate the effect of the uneven material layer, we need to add normal texture and
carry out the corresponding calculation. Since the component range of normal is [−1, 1],
while the component range of pixel value is [0, 1], transformation is required, usually using
the following mapping:

pixel =
normal − 1

2
(15)

which requires that after the normal texture is sampled in the slice shader, the sampling
result should be reflected once to obtain the original normal direction:

normal = pixel × 2− 1 (16)

In practice, the obtained normal texture stores normal data in the model space. To
facilitate subsequent illumination calculation, normal data under tangent space is often
used. Compared with the normal data in the local space, the calculation of the normal data
in the tangent space requires several steps of coordinate transformation, and the obtained
normal data are not as intuitive as the normal data in the local space. At the seams and
sharp corners of the texture, the edges are rough and there are visible mutations or gaps;
however, using normal data in tangent space at the same time has the following advantages:

1. The presented method builds the 3D ironmaking model with a high degree of freedom.
In the local space, the normal map records absolute normal information, which means
that the normal information obtained in the local space can only be used for a single
model, and if this information is applied to other models, it may obtain the wrong
bump effect. Normal texture in tangent space preserves relative normal data, which
implies that even if the normal texture information is applied to a completely different
model grid, a good result is then produced.
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2. The presented digital twin framework achieves a superior UV animation effect. When
we obtain the normal texture information in tangent space, we can move the UV
coordinates of a texture to achieve a bump shift effect; however, if the normal texture
information is obtained from the local space, it will obtain the completely wrong effect
of movement. The reason for this difference is the same as above.

3. The proposed method can be reused for normal textures. For a hexahedron or more
polyhedral, the presented digital system only needs one normal texture instead of six
to obtain the desired bump effect. The principle of reuse is the same as above.

4. The complexity can be compressed. In local space, it is possible for a normal texture
to store normal information in every direction, so a normal texture in local space must
store normal component values in three directions and be in-compressible. In tangent
space, the normal z component of a normal texture is always greater than 0 (positive
direction), so when using a normal texture in tangent space, only the XY direction
can be stored, and the Z direction can be derived from the XY direction.

Because of the benefits listed above, we frequently employ normal data recorded
via normal texture in tangent space. Figure 2b depicts the material surface effect after
rendering.

5. Specification of Implementation
5.1. Particle System Special Effect Implementation Method

In the proposed framework, the geometry shader is used to implement the particle
dynamic system deployment. The geometry shader is positioned in the rendering pipeline
after the vertex shader and before the fragment Shader. Geometric shaders, introduced in
DirectX 10, take all vertices in the same region as input, generating new vertices, or regions.
In addition, the data stream output copies the vertex information output by the geometric
shader into four consecutive subsets of the output buffer; therefore, a geometry shader is
a novel technology that is specially designed to deal with geometry in 3D scenes. Vertex
shaders can append additional information to input primitives. At the same time, geometry
shaders can also be used to access the information of adjacent vertices of primitives. In
the days before geometric shaders were introduced, vertex shaders could only process
information for a single vertex at a time, and output results for only one vertex at a time. If
it is placed in the scene of the entire simulation system, then the amount of work to draw
the geometry will be very large, and it will be very inefficient to rely only on the vertex
shader to complete this work.

The geometry shader may batch-process geometry based on the vertex data generated
by the previous stage’s vertex shader and perform data processing and geometry processing
on the information next to the vertex to swiftly build new polygons. Through data streams,
the results of geometry shaders are passed to other shaders or caches, freeing the CPU from
complex and bulky geometry operations. Explosions, particle effects, waterfalls, and other
complex and related scenes can all be rendered realistically with geometric shaders. The
realization method of particle system special effects lies in the design of geometric shaders;
however, Unity has now integrated the particle system, and Unity is now a full-fledged
functional module that can be modified directly to achieve various effects. Unity’s particle
system module is described in detail in Figure 2.

5.2. Shader Optimization Method

The number of CPU draw calls is one of the performance bottlenecks for shaders.
The draw call numbers are directly reflected by the numbers of batches and SetPass calls.
Batching is a common optimization technique, which is mainly used to reduce the number
of draw calls. Batch processing is divided into dynamic batch processing and static batch
processing. The basic idea behind dynamic batching is to mix the batchable grids for each
frame, send the combined model data to the GPU, and render with the same material.
The goal behind static batching is to combine the models that require static batching into
a new grid structure only at the beginning of the run. Considering the convenience of
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operation, the optimization method of this system is static batch processing. Our proposed
method is rendering based on high-performance GPU, in the experiments, we choose
two RTX 3090 devices to model our scenarios and make the computation. We divide the
industrial image into multiple batch sizes, after we obtain the result, we can output our
results to the platform, which can be performed in a real-time interactive way. In contrast,
the high computation load is allocated to the back workstation, so the whole computation
process is a ‘statistic’ process, which finishes the optimization process and back to the
global rendering coefficient. To implement static batch processing, simply check the static
check box in the Unity 3D Geometry panel.

As for the dynamic simulation implementation, a real-time cloud database is connected
to the experimental platform so that all the practical operation variables are transferred to
the digital twin system in an online interactive way. Then, the digital twin system prepro-
cesses these collected data resources in a static batch way, which means all the rendering
process and shading is implemented in the GPU-based server, and the whole process can
be finished in a static way. The rendering result can be fed back to the monitoring and then
give the intuitive expression for the whole process; the specific evaluation and performance
of this algorithm are based on the rending performance and GPU running time, which has
been given in Table 1 and Figures 3 and 4.

Table 1. Comparison specification of performance parameters before and after static batch processing.

Indexes BSBP ASBP

Average frame rate (FPS) 15.0 75.0
Batches 18,000 3000

SetPass Calls 7500 2500
CPU usage 80% 25%
GPU usage 25% 25%

Memory usage 45% 30%

Machines 2022, 1, 0 12 of 19

operation, the optimization method of this system is static batch processing. Our proposed
method is rendering based on high-performance GPU, in the experiments, we choose
two RTX 3090 devices to model our scenarios and make the computation. We divide the
industrial image into multiple batch sizes, after we obtain the result, we can output our
results to the platform, which can be performed in a real-time interactive way. In contrast,
the high computation load is allocated to the back workstation, so the whole computation
process is a ‘statistic’ process, which finishes the optimization process and back to the
global rendering coefficient. To implement static batch processing, simply check the static
check box in the Unity 3D Geometry panel.

As for the dynamic simulation implementation, a real-time cloud database is connected
to the experimental platform so that all the practical operation variables are transferred to
the digital twin system in an online interactive way. Then, the digital twin system prepro-
cesses these collected data resources in a static batch way, which means all the rendering
process and shading is implemented in the GPU-based server, and the whole process can
be finished in a static way. The rendering result can be fed back to the monitoring and then
give the intuitive expression for the whole process; the specific evaluation and performance
of this algorithm are based on the rending performance and GPU running time, which has
been given in Table 1 and Figures 3 and 4.

Table 1. Comparison specification of performance parameters before and after static batch processing

Indexes BSBP ASBP

Average frame rate (FPS) 15.0 75.0
Batches 18,000 3000

SetPass Calls 7500 2500
CPU usage 80% 25%
GPU usage 25% 25%

Memory usage 45% 30%

(a)                                                                               (b) 

                               (c)  
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renderings of ironmaking production plant.

Figure 3. Particle animation renderings of the ironmaking blast furnace process. (a) The whole
dripping effect of the molten iron which is the main reaction; (b) Airflow renderings; (c) Flame
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Figure 4. Schematic of HTC VIVE controller. (1) Menu button; (2) Trackpad; (3) System button;
(4) Status light; (5) MiroUSB port; (6) Tracking sensor; (7) Trigger; (8) Grip button.

In addition to shader design, the system also involves the design of a geometric model,
and the design of motion effects, which are introduced to these three parts of the design.
The geometric model and motion effect design are given in the following stages.

Geometric model design: The geometric model is the most basic physical component
of the virtual reality simulation system, and it is an important bridge connecting the blast
furnace ironmaking system and the virtual reality simulation system. Considering the
complete reconstruction of ironmaking equipment, the need for rapid modification, and
the file format used by the development engine, this paper adopts a model design method
based on geometric modeling and uses 3D Studio Max modeling software.

The process of geometric model design is as follows: (1) decompose the model accord-
ing to the appearance information of the model; (2) choose the best modeling method for
different parts of the model; (3) material production, rendering test, and model optimiza-
tion; (4) import the Unity 3D platform and debug the model on the Unity 3D platform.

The steps of bf geometric model design include white model construction, material
mapping, model rendering test, and import test.

Sports special effects: On the basis of geometric model design, it is necessary to add
dynamic effects in the scene, that is, motion effects design. Motion effects design is divided
into two parts: script animation and particle animation. This article’s scripted animation
is a frame-by-frame transformation of certain attributes (such as position, size, and angle)
of the objects in the scene (including camera, geometric model, text, etc.) by writing C#
scripts.

Particle animation is implemented through Unity 3D’s own particle system. Unity
3D particle system has been a relatively mature tool module, commonly used functional
modules include an emitter, particle change, collision, light and shadow effects, and
rendering. Through the particle system, hot metal, flame, airflow, and other animation
effects can be realized, as shown in Figure 3.

Virtual interaction digital twin approach: The virtual interaction method adopted in
this color is HTC VIVE as a head-mounted display device, HTC VIVE’s matching laser
locator as a positioning device, and HTC VIVE’s matching handle as a human–computer
interaction device. In order to establish the connection between hardware devices and
virtual content, VRTK is used as a software development tool.

VRTK toolkit contains two functional modules: scene roaming and gamepad inter-
action. VRTK provided the laser firing script VRTK_StraightPointerRenderer and the
controller script VRTK_ControllerEvents. Using the above two scripts to modify the corre-
sponding function events, the default parabolic roaming mode of VRTK is improved, that is,
through the handle operation, it can be transmitted to any position in the three-dimensional
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space. The improved roaming mode is more suitable for observing the inside of the furnace,
iron pool, and other objects. In order to realize the automatic roaming of scenes in a virtual
reality simulation system, the camera control function is also designed.

6. System Simulation and Digital Twin Modeling

The operating environment of this system simulation system is as follows: CPU Intel
Core I9-9980XE 3.00GHz, GPU NVIDIA GeForce RTX 2080 Ti, memory 32G.

HTC VIVE control handling is shown in Figure 4. In the simulation process, the user
mainly operates by the trigger on the handle. The presented method considers that the
roaming mode is manual, the operator operates the trigger button on the handle to fire
the linear laser, and the linear laser’s endpoint is the transmission point. Pressing the
trigger button automatically increases the laser length, while the handle vibrates until the
user believes the landing point is acceptable. Release the trigger button to teleport to the
destination. So, when the virtual reality wandering scene moves to the charge’s surface,
depth information of each location on the charge’s surface may be intuitively retrieved by
drawing lines on the handle. The simulation of this function is shown in Figure 5. When
the roaming status is automatic roaming, the handset interaction logic supports camera
control and can realize functions such as pause, play, and prompt. The interface of the
simulation system is shown in Figure 6.

 

 

 

Figure 5. The schematic diagram of material surface depth information acquisition for ironmaking
process. The shaders for the highest point are set as accurately 1.542 m for the iron reaction process.

Figure 6. 3D virtual reality digital twin system interface of the iron blast. The main element of the
large-scale blast furnace digital twin system has been tagged.

In terms of system performance, the average operating frame rate before static batch
processing is stable at about 15 fps, and the number of batches is about 18,000. After a static
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batch operation, the average operating frame rate is about 75 fps (the number of batches is
about 3000) and may be over 100 fps in some scenarios. Figure 7 and Table 1 illustrate a
comparison of rendering statistics, CPU consumption, GPU usage, and memory utilization
of the simulation system before and after static batch processing at the same time. Figure 8
depicts a normalized comparison of render data. The presented framework implemented
that the average frame rate has been improved by 60 fps, high to 75 fps after the static batch
processing. Other advantages such as memory usage and CPU usage can also be illustrated
in Table 1.

(a) (b)

Figure 7. Render statistics after static batch processing. (a) BSBP render statics; (b) ASAP render
parameters.

(a) (b)

Before After

Figure 8. Comparison of performance parameters before and after static batch processing after
normalization. The blue histogram depicts before static batch processing, whereas the red histogram
shows after processing.

According to the comparison in Table 1 and Figure 8, the number of batches and
SetPass calls before static batch processing is large, which reflects a large number of
draw calls, resulting in a low average frame rate and high CPU usage. After static batch
processing, the number of batches and SetPass calls decreases significantly, that is, the
number of draw calls decreases, the average frame rate increases significantly, and the CPU
usage drops sharply. However, the GPU usage and memory usage hardly change before
and after static batch processing.

Table 2 gives the different system performance evaluations, the corresponding index
includes the memory usage, robustness, and stability, which demonstrates that the iron
blast furnace systems follow the simulation results very well. The real operation results
are coordinated with the system simulation. The rendering time in real operation is
83 ms, which is higher than the simulation, which is caused by the time delay in the data
transmission process. Both the algorithm is the digital twin system test and real operation
are stable, and also feasible in the robustness consideration. The algorithm computation
is based on the analysis of the shader process, the digital twin system is 37 ms, and the
real-test is 44 ms, which is a satisfactory solution.
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Table 2. System evaluation performance comparisons.

Performance Real Operation Digital Twin System

rendering time 83 75.0
Batches 2590 3376

response time 30 ms 25 ms
Stability feasible feasible

Robustness feasible feasible
GPU usage 26% 25%

Memory usage 45% 30%
computation time 44 ms 37 ms

7. Concluding Remarks
7.1. Problem Still to Be Solved

Although the performance of the suggested platform is good, much more research is
required. For example, the final shader rendering must still be optimized. On the one hand,
the aesthetic effect still enhances the space; on the other hand, rendering performance may
be improved.

In the iron pool effect, although there is a dynamic effect and a small eddy rotat-
ing effect on the surface of the molten iron, there is a problem: the lack of a dynamic
three-dimensional impression. The solution is to add a normal map or other bump map
calculation into the chip shader of iron pool special effect rendering by referring to the
realization method of bump effect of material layer surface, and the UV coordinates of the
normal map can be dynamically calculated. It is also possible to add a sinusoidal wave
effect to the vertex shader in the Iron Pool effect rendering. Due to the massive number
of customizable factors involved in the special effect, the human–computer interaction
interface of the iron pool can be considered in the future, in addition to the enhancement of
the visual effect of the iron pool. The design of the human–computer interaction interface
can be realized by C# script.

When the layer surface rises in the layer effect, the rising surface is totally horizontal.
The rising state is too perfect; in actuality, the material surface of the feeding process should
be uneven, higher in the center and lower on both sides of the feeding state. Therefore, in
the animation design of the rising vertex of the material surface, each vertex’s different
rising speeds should be considered. In addition, in the design of concave and convex effect,
this system uses the method of adding several point light sources around the solid model of
the material layer to illuminate the whole solid model, but there are no multiple point light
sources in the material layer area of the blast furnace, so the design method of multi-point
light source does not conform to the actual situation. This problem is mainly caused by
the calculation of a normal map. In fact, there are other ways to implement bump textures
besides normal mappings, such as height mapping, etc. More concave–convex texture
implementation methods should be considered to test and compare the layer solid model
rendering.

In terms of shader optimization, the system only uses Unity’s own static batch opti-
mization method. There are several more shader optimization approaches, such as dynamic
batch processing, model LOD technology, shared material technology, occlusion removal
technology, multi-level fading texture (MIPMAP) technology, texture compression tech-
nology, resolution scaling technology, and so on. In addition to employing existing shader
optimization technology, we need to evaluate various system performance bottlenecks and
rendering characteristics and research more appropriate rendering optimization technology.

7.2. Summary and Prospect

Using blast furnace ironmaking as an example, this article contributes to the iron
and steel manufacturing business by proposing an advanced digital twin virtual reality
technology. It also builds a novel intelligent virtual reality simulation system of blast
furnace ironmaking based on the Unity 3D engine. The geometric model and animation
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effects constitute the physical basis and core part of the system. The human–computer
interaction module, which uses the HTC VIVE hardware device and the VRTK tool library
as the theme, connects people to the system. The virtual reality blast furnace ironmaking
simulation system allows the real-time parameters in the ironmaking reaction process to be
visualized, the ironmaking process to be truly and vividly displayed, and the site operation
to be safely and reliably simulated, allowing for further observation and exploration of the
internal reaction mechanism related to blast furnace ironmaking. Thus, in blast furnace
ironmaking this process promotes the progress of the iron and steel smart manufacturing
production industry. Due to its effectiveness, this approach can be further researched
and help more enterprises to improve working efficiency and reduce the production
and energy costs. The study findings may be pushed and applied to other sections of
the iron and steel production industry, as well as other associated metallurgy, chemical
industry, manufacturing and other industries, in addition to simulating the blast furnace
ironmaking process.
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