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Abstract: The research on rehabilitation robots is gradually moving toward combining human
intention recognition with control strategies to stimulate user involvement. In order to enhance the in-
teractive performance between the robot and the human body, we propose a machine-learning-based
human motion intention recognition algorithm using sensor information such as force, displacement
and wheel speed. The proposed system uses the bi-directional long short-term memory (BILSTM)
algorithm to recognize actions such as falling, walking, and turning, of which the accuracy rate has
reached 99.61%. In addition, a radial basis function neural network adaptive sliding mode controller
(RBFNNASMC) is proposed to track and control the patient’s behavioral intention and the gait of the
lower limb exoskeleton and to adjust the weights of the RBF network using the adaptive law. This
can achieve a dynamic estimation of the human-robot interaction forces and external disturbances,
and it gives the exoskeleton joint motor a suitable driving torque. The stability of the controller is
demonstrated using the Lyapunov stability theory. Finally, the experimental results demonstrate that
the BILSTM classifier has more accurate recognition than the conventional classifier, and the real-time
performance can meet the demand of the control cycle. Meanwhile, the RBFNNASMC controller has
a better gait tracking effect compared with the PID controller.

Keywords: lower limb exoskeleton rehabilitation robot; intent recognition; machine learning; RBF
adaptive sliding mode controller

1. Introduction

In recent years, stroke has become the leading cause of death and self-harm [1]. The
data show that 1.4 million new cases of stroke occur each year in Europe, while more than
800,000 additional strokes occur each year in the United States [2]. In China, there are more
than 2 million new cases of stroke each year, and the incidence is still increasing [3]. The
rehabilitation robot can use repetition, appropriate intensity, and different training modes
to motivate the patient and reshape the patient’s motor nerves [4].

The training method of the lower extremity rehabilitation robot focuses on performing
partial body-weight support treadmill training (PBWSTT) [5]. This requires the recognition
of the patient’s movements such as walking in a straight line, turning, falling, starting,
and stopping during the patient’s walking training. During lower extremity rehabilitation
training, human intent recognition technology can identify the patient’s movement status
in rehabilitation training, which in turn ensures patient safety and a good experience [6].
This is a crucial method used to enhance the experience of the human-robot interaction.

The kinematic and EMG sensors [7] are commonly used in lower limb motor behavior
recognition. Surface EMG sensors should be in contact with the skin of the human leg.
They are susceptible to sweating and muscle fatigue, which make them characteristically
unstable and noisy, and therefore limit their use [8,9]. The kinematic sensors have a wide
range of applications in practical human lower limb movement intention recognition due to
their high reliability, durability and accuracy, low price, and power consumption. Currently,
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IMU sensors are more commonly used to recognize gait events in the human lower limb,
while achieving a high recognition accuracy [10-12]. However, there is a contradiction
between sensitivity and specificity when only using the threshold values of a single sensor
for multiple behavior recognition [13]. In other words, when the threshold value is high,
the accuracy of recognition increases with the loss of timeliness, while a low threshold
value increases the error rate of recognition. Therefore, using data from multiple sources of
sensor information, the data are trained by machine learning or deep learning algorithms
to achieve a higher recognition accuracy [14].

Machine learning methods such as K-nearest neighbor (KNN), support vector machine
(SVM) [15], recurrent neural network (RNN), and long short-term memory (LSTM) are
commonly used for the recognition and classification of human lower limb movement
behavior [16]. For the classification problem of time series data, LSTM has some advantages
over traditional algorithms [17]. Lirong Qiu et al. used the BILSTM method for intent
recognition in user search engines, and their classification achieved 94.16%, optimizing
the user search experience [18]. Therefore, this paper uses BILSTM to fuse multiple source
sensors such as displacement, force, and velocity for time series data classification, which
can suppress the disadvantages of single sensor recognition [19].

The motion control strategy of the lower extremity exoskeleton rehabilitation robot
is closely related to intention recognition [20]. Once the human motion is recognized,
the control algorithm should follow the human motion intention [21], so that the robot
makes the motion in line with the human body [22,23]. The dynamical model, such as
PID and fuzzy PID algorithms, are not introduced in the traditional control strategies [24].
Some studies directly model the exoskeleton without introducing human-robot interaction
forces into the model, which is incomplete. To more accurately follow the human body’s
intentions, a more developed human-robot dynamical model should be developed [25].
Moreover, the learning algorithms should be combined with intelligent control, to adapt
to the training habits of different users and to achieve a better human-robot integration.
Sliding mode control is insensitive to external perturbations [26]. We use the RBF neural
network combined with sliding mode control, which can compensate and offset the human-
robot interaction force and external perturbations to achieve accurate following control of
the gait of the lower limb exoskeleton.

In this study, a wheel-legged lower limb exoskeleton rehabilitation robot is designed
to enable patients to stand through a weight-reducing mechanism and to achieve walk-
ing rehabilitation training of human lower limbs by lower limb exoskeleton actuation to
improve the lower limb walking motor function of patients. After an in-depth study of
the shortcomings of conventional rehabilitation robots, this study uses machine learning
methods based on multi-source sensor information to recognize human walking, turning,
and falling behaviors to facilitate decision making on control methods. In addition, we es-
tablished a lower limb dynamics model, combined with sliding mode control, proposed the
RBFNNASMC control law, and used RBF neural networks to compensate for the unknown
part of the model. Finally, the rationality of the lower limb exoskeleton rehabilitation
robot system is verified by a human motion intention recognition experiment and gait
tracking experiment.

The main contributions of this paper are summarized as follows.

A pioneering design of a rehabilitation robot with a weight reduction system and a
mobile lower limb exoskeleton system is presented.

A BILSTM neural network method is proposed to identify the states of human walking
training, such as walking in a straight line, turning, falling, starting, and stopping, using
information such as force, displacement, and rotation speed.

In the lower limb exoskeleton control system, an adaptive sliding mode controller
based on the RBF neural network is first proposed. The RBF is then used to estimate
the human-robot interaction torque and external disturbance online, and the dynamic
model is force compensated. Compensating the human-robot interaction force through
the algorithm can reduce the use of four force sensors, which can reduce the information
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redundancy and the complexity of the hardware control system, as well as reduce the cost
of the robot. Finally, the preset gait curve is tracked and controlled by sliding mode control,
and the stability is demonstrated by the Lyapunov stability theory.

2. Robot System Design
2.1. Hardware Control Platform

The mobile lower extremity exoskeleton rehabilitation robot (MLLERR) consists of a
gantry structure, weight reduction system, lower limb exoskeleton system, sensor system,
and two-wheel drive system, as shown in Figure 1a. The area circled by the red line is the
weight reduction mechanism. The weight reduction mechanism controls the up-and-down
movement of the weight reduction arm, using a motor to retract and release the wire rope
in order to achieve different masses of weight reduction for the patient. The lower limb
exoskeleton system consists of two mechanical legs, each with disc motors at the hip and
knee joints in order to drive each joint. Two servo motors are used as drive wheels in the
middle of the bottom of the robot, in order to drive its whole movement. This allows the
patient to reduce weight while completing the walking training. The design parameters of
MLLERR are shown in Table 1.

The MLLERR's propriety control system includes two Stm32 controllers, displacement
sensors, force sensors (NOS-L10D), speed sensors, and encoders. The drive units are servo
motors for the weight reduction system, exoskeleton motors, and wheel motors. The
arrangement of each device is presented in Figure 1b.

The displacement sensors are shown in Figure 1c. Two displacement sensors are
installed in the upper end of the weight reduction arm. When the human body moves,
the displacement sensor value changes, and the drive wheel and exoskeleton move in the
direction where the displacement sensor value becomes smaller, so that the robot and the
human body move in the same state. When the displacement sensor value returns to within
the threshold value, the robot is in a relatively stationary state.

When the human body is walking forward, turning, or performing other actions, the
slider connected to the displacement sensor on the slide rail through the weight-bearing
suit monitors the respective displacement of the two sensors and the relative displacement
between them, in order to perform the human motion posture recognition. The travel
distance of the displacement sensor is 20 cm. It is connected to the Stm32 microprocessor
using a R5485 communication, in order to ensure real-time information and accuracy.

Two force sensors are used for human fall behavior monitoring. The force sensor
shown in Figure 1c is located at the middle of the robot rear end, and it is connected to the
wire rope of the pulley set, which is a crucial part of the weight reduction system. When the
human body falls, the value of the force sensor steeply increases, and the weight reduction
motor holds, so that the weight reduction suit protects the human body from falling. The
force sensor can also accomplish the need for different weight reductions of different
patients. A single force sensor can detect 50 kg weight, and 0-5 V output voltage, as well as
S5tm32 through AD sampling in order to complete the tension information acquisition, and
the acquisition period is 1000 HZ.

The lower limb exoskeleton system is the core of the lower limb rehabilitation robot.
It is used to drive the patient’s legs for walking training. Disc motors are installed in the
hip and knee joints of the lower limbs. The continuous torque of the motor is 48 Nm and
the rotational speed is 57 rpm. They receive gait trajectory control commands from the
controller through the CAN bus and collect four-way angle and torque information of
the left hip, right hip, left knee and right knee joints. Once the angle and torque of each
joint produce a sudden change or abnormality, the exoskeleton enters the stop state. The
Stm32 sends speed commands via a controller area network (CAN) bus to control the
two-wheel motors at the bottom of the robot and receives speed information back from
the motors.
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The signal flow diagram of the robot is shown in Figure 1d. The Stm32 collects the
information of multi-source sensors and transmits the data to the Labview interface through
the WIFI module using TCP protocol and then calls the Matlab program in Labview to
perform the algorithm calculation. Finally, the calculation results are passed to the Stm32
controller through WIFI communication to execute commands.

Master Stm32

Slave Stm32

Displacement
Sensor

Force Sensor

motors

Servo Motor

(b) Hardware control system
Stm32

Displacement
transducer 1

Displacement
transducer 2

Force sensorl

Force sensor2

Filter
Angle sensorl  —
Angle sensor2  — ¢
Angle sensor3  — Labvi
Angle sensor4d  — ADVIEW
Left wheel speed —
Matlab
Right wheel speed —

(c) Multi-source sensor information system

Figure 1. Cont.



Machines 2022, 10, 1125

50f19

Obtain sensor data,
Ad transfer

Labview data acquisition

Lower limb kel rehabilitation robot upper comp

XF,V

RBF Adaptive Sliding
[ PILETM ] Mode Controller ]

(d) Signal flow diagram
Figure 1. Structure and hardware control platform of lower limb exoskeleton rehabilitation robot.

Table 1. Mechanical motion properties of the lower limb exoskeleton.

Hip Joint Knee Joint
Rated torque 65 Nm 45 Nm
Rotational Speed 20 rpm 25 rpm
Range of motion PE': —10-25° PE: 0-65°

1 FE: flexion/extension.

2.2. Data Acquisition

Using machine learning methods to recognize human motion intent requires informa-
tion acquisition, feature labeling, construction of datasets, and model training to complete
the work of classifying human motion features. Therefore, sensor data acquisition is
needed first to lay the foundation for data feature labeling. In this section, the process of
implementing the experimental multi-source sensor information acquisition is described.
After the robot collects the patient’s training data using the multi-sensor information
system, it packages the pull sensor, displacement sensor, speed information of the drive
motor, and angle information of the exoskeleton on the left and right sides of the program.
It also sends the data to Labview on the computer side for display through the WIFI
communication module.

Six healthy volunteers participated in sensor data collection (including five males and
one female, age 25 £ 4, weight 60 & 10 kg). All the volunteers signed an informed consent
form, are informed how to put on and operate the robot, and completed the prescribed
movements of walking straight, turning, and falling on a predefined walking route. The
data acquisition period of the experiment is 30 ms. During the acquisition of the dataset,
the exoskeleton system of the robot is in a deactivated state and can move freely with the
movement of the human legs.

An informed consent was provided to them before the experiment. Figure 2 presents
a complete set of training data. During the training process of 200 s, the actions such as
left turn, stop, straight ahead and fall are experienced at one time, while each action can be
matched with the corresponding sensor information. Note that the fall state described in
the text is that the legs are flexed and lose support, and do not fall to the ground, because
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the weight reduction mechanism can give the body a certain amount of support, as shown
in Figure 2c. This is decent for performing feature extraction and calibration.
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Figure 2. Exercise events in walking training: (a) turning right, (b) stop, (c) fall, (d) straight walking,
(e) turning left, (f) stop, (g) fall. The red and green lines represent the tension values of the left
and right weight loss arms, respectively. The blue and black lines represent the left and right
displacements, respectively.

3. Motion Intent Recognition Model
3.1. Feature Extraction

In order to construct a dataset for the machine learning algorithm to train on, the data
of displacement, tension, and wheel speed should be labeled with features. In order to
simplify the calibration task, a fast calibration is performed by segmenting the events with
displacement, tension and wheel speed data. When the patient walks in the rehabilitation
robot, the force sensor can detect the up and down fluctuation of the human body’s center
of gravity. When the left and right force sensors’ tension values steeply increase, the human
body’s gravity is applied to the force sensor. The human body is judged to be in the falling
state, as shown in the orange dotted box of Figure 3. The sudden change of the tension
value outside the orange circle is related to the change in the center of gravity of human
walking and the walking state, the center of gravity floats up, the tension value decreases,
the center of gravity sinks, and the tension increases, but these values are near or less than
the set weight loss value, and there is no steep increase over the weight loss value; thus, it
does not affect our extraction of the fall features.
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Figure 3. The fall event calibration. The abrupt increase in the tension value indicates that the body
is in a fall state.

It can be seen from Figure 4 that when the human body walks and turns, the shoulders
drive the movement of the displacement sensor above. When the left displacement value
is greater than a certain threshold value of the right displacement value, then a right turn
is considered, as shown by the blue rectangular box. When the left displacement value is
similar to the right displacement value, a straight-line walking is considered, as shown
by the orange rectangular box. When the left and right displacement values are less than
3 cm, the body is in a stop state, as shown by the purple rectangular box. When the right
displacement value is greater than a certain threshold value of the left displacement value,
the human body is in a left-turn state, as shown by the light-yellow rectangle. In addition,
when the left and right displacement values are greater than 10 cm, the human body is in a
fast-training state. Therefore, the displacement values can reflect the patient’s willingness
to train.

Turning ~ Straight
right walkin Stop  Turning left

Left displacement
Right displacement

1zommw MM pars 1

100 - 1

Displacement(cm)

40t a

L e T

ok L L I 4
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Figure 4. Turning characteristics.
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3.2. LSTM Intent Classification Model

The RNN is widely used in the classification field. It is very efficient for data with
sequential properties and can effectively mine the temporal information in the data [27].
However, RNN produces gradient explosion and disappearance when dealing with long
sequence data [28]. The LSTM has a high performance when dealing with long sequence
data [29]. Therefore, the deformation structures of RNN, LSTM, and BILSTM are introduced
in the sequel.

LSTM is a variant of RNN [30], which introduces memory units based on RNN. It has
great advantages in processing large amounts of long-term data. In this paper, the more
traditional LSTM model is used (cf. Figure 5). The LSTM model consists of three parts, f; is
the forgetting gate, i; represents the input gate, and o; denotes the output gate. The role of
the forgetting gate f; is to discard the previous information, the input gate i; is to convert
the current new information as input. C; is the internal memory cell of the LSTM cell,
which is the combined state of the previous cell and the current cell. C; is the candidate cell
state. hi; denotes the hidden cell at the current moment. The three gates work together in
order to allow the model to control and update the information. ¢ is the Sigmoid function
that decides whether to memorize the information or not, Wy (k = f, 1,0, c) represents the
weights of the different gating units, and by (k = f,i,0,c) denotes the bias vectors of the
different gating units, and current step input x;. The formula of the LSTM model can be
defined as follows:

fe=0(Wehi1 + Wpxt + by), @™
ir = c(Wihi—1 + Wix¢ + b;), 2
0y = U'(Wol’ltfl + WOXt + bo)/ (3)
Ci= tan h(Wch_q + Wexs + be), )
Cr = o(fiCi_1 +itCe), @)
ht: Ot tanh(Ct), (6)
C!—I ;® :/]\
A
e
| |
| £
| |
| |
| |
| |
||?'|||G| |tanh|
h/-l | T J
X

Figure 5. The LSTM unit.

The LSTM network contains five layers: the sequence input layer, LSTM layer, fully
connected layer, softmax layer, and output classification layer. The sequence input layer
and the LSTM layer are the core of the LSTM network. The role of the input layer is to input
the multi-sensing information (displacement, force, rotational speed, and other temporal
information) into the LSTM network. The last LSTM module of the LSTM layer is then
connected to the Softmax layer and the classification output layer, which finally completes
the classification.

3.3. BILSTM Intent Classification Model

BILSTM can use historical information and future contextual information for deep
mining of the underlying features through forward and reverse neural network layers,
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and the output of each BILSTM layer is determined by the two LSTM, which is better
than the traditional LSTM network for multi-feature recognition [31]. The structure of
BILSTM is shown in Figure 6, where the input layer of the BILSTM network inputs data
sequences containing force, displacement, and wheel speed to each LSTM unit, which
are recognized by the bidirectional LSTM network, and the human motion feature results
with the highest probability are selected in the softmax layer and output to the output
layer, where Box A represents a single LSTM unit. xg ... x; denotes a signal source with
multi-sensor information. hy ... hy is the class of the output. The model uses a five-layer
structure with 100 implicit layers and a learning law of 0.001.

Output layer @ m

softmax

Fully Fully Fully
connected connected connected
¥ y Fy
1 1 1
Backward layer +—— A" l#1 A [+ Alle——
'y 'y 7y
Forward layer — A ——t A h A L

Input layer iy @f

Figure 6. The net structure of the BILSTM network.

4. Robot Control System
4.1. Control Architecture

The lower limb rehabilitation robot uses a three-layer control architecture, as shown
in Figure 7. The upper control layer is used for information acquisition and training, the
middle control layer is used for decision making, and the lower control layer is used for
execution. In the upper-level control, the sensor information such as displacement, tension,
and rotation speed are fed into the BILSTM network that has been trained offline for motion
intent classification. In the middle-level control layer, three modes are set: follow training,
enhanced training, and assistance training. Follow training represents the exoskeleton
driving the human body to move. Enhanced training denotes the human body bearing
a certain damping and drives the exoskeleton to move. Assistance training represents
the exoskeleton providing a certain amount of assistance to move with the human body.
The displacement sensor detects the displacement value in the process of human body
movement and can obtain the willingness of human body movement. The displacement
and force sensor information are used to classify the human motion events, in order to
determine whether the human body is in straight walking, turning left, turning right,
falling, or stopping. In the lower-level control, the movement of the exoskeleton and robot
drive wheels are controlled according to the human intention events. In addition, the RBF
adaptive sliding mode control algorithm is used to follow the trajectories of the hip and
knee joints of both legs.
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Figure 7. Control architecture.

The gait curve of the human body when walking straight, turning left, and turning
right is input into the exoskeleton controller. When the BILSTM model outputs the pa-
tient’s movement type, the exoskeleton activates the appropriate movement mode, such
as output activation, the exoskeleton activates the movement, the output stops, and the
exoskeleton stops.

4.2. Dynamical Model

The gait motion of the human lower limb can be divided into two phases: the support
phase and swing phase [32]. The swing phase kinetic model contains the exoskeleton
kinetic component and the human lower limb exoskeleton interaction force component.
This paper uses a general lower limb exoskeleton kinetic model, which does not consider
the influence of the human-robot interaction forces in the kinetic modeling. Moreover, the
effect of the human-robot interaction force is introduced to improve the developed sagittal
plane oscillation phase dynamics model. The lower limb exoskeleton dynamics model can
be expressed as:

M(6)6+C(0)0+G(6) + Ty = T, )

where 6 is the joint rotation angle, 6 represents the angular velocity of the joint rotation, 6
denotes the angular acceleration of the rotation, M(0) is the inertia matrix, C(0) represents
the centrifugal force, G(6) denotes the gravitational force matrix, and T, is the introduced
human-robot interaction force.

M(6) = I + mld% + mzL% + m2d§ 4+ 2mpLydycos 0> mgd% 4+ myL;dycos 65 ®)
mzd% + mpL;dycos 6, I, + 1’1’12(71% !
_ —mledzsin 92 —2m2L1dzsin 92
C(G) o |: mledzsin 92 0 ! (9)
d; +mpgL; ) sin6; + mygd, sin(6; + 6,)
G(0) = (mygd; 2811 Y1 2 1
() [ mpgd, sin(6; + 62) ! (10)

where I; is the moment of inertia of the thigh bar, I, the moment of inertia of the calf bar,
L, the length of the thigh bar, L the length of the calf bar, d; the distance from the hip joint
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to the center of mass of the thigh bar, d; the knee joint to the calf bar the distance from the
center of mass, m; the mass of the thigh, and mj the mass of the calf bar.

4.3. Controller Design
4.3.1. PID Control

PID controllers are widely used in robot control, and we use PID controllers as a
reference to compare the effect of gait tracking. The PID algorithm is as follows:

1

G(S) = kp +kig

+kyS, (11)
where ky, k;, and k; are the proportional, integral, and differential parameters, respectively.

4.3.2. RBF Adaptive Sliding Mode Control

The gait trajectory tracking error is given by:

e(t) = 0(t) — 04(t), (12)

where 6,;(t) is the gait reference trajectory and 6(t) represents the actual joint motion angle
fed by the exoskeleton motor encoder. The sliding mode function is then constructed as:

s=ce+ec>0. (13)

RBF neural networks have a higher generalization ability and simpler network struc-
ture, which eliminates unnecessary redundant computations [33]. The RBF neural networks
are widely used due to their ability to approximate any nonlinear function with an arbitrary
accuracy [34].

Ty 1S the human-robot interaction force between the lower limb exoskeleton and the
human leg, which is not yet directly detectable in the existing sensor systems. In this paper,
the RBF neural networks are used to estimate 7,,; online, which can compensate for the
human-robot interaction force.

=gl
hj = exp( T , (14)
]
i (6)= Wh(6), (15)
where x = [e é]T is the input of the network, j represents thejth node of the network

hidden layer, i =[h;] denotes the output of the Gaussian basis function of the network,
and W* is the ideal weight of the network, c is the coordinate vector of the centroid of
the Gaussian basis function of the neurons in the hidden layer, and b is the width of the
Gaussian basis function of the neurons in the hidden layer. We determine the weights of
the RBF network by the gradient descent method, and we define the error metric of the
network approximation as:

2
I~

2
) - (16)
2b]2

E(6) = 5 | () — W} (

According to the gradient descent method, in order to minimize the error indicator
function, the weights are adjusted using the following Equation:

AW; ()= —1[Thri (0) — Turi (6) 1. (17)
The network output is as follows:

i (0) = WTR(0), (18)
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Kinematic
controller

where W is the estimated weight of the network.
The trajectory tracking controller is expressed as:

T = M(—ce+ 84+ yysgn(s)) + C(6,0)0 + G(6) + T (19)

The Lyapunov function is defined as:

_1 2 1 TVARTY
V=35t WIW, (20)

where W = W — W* and 7 > 0. The derivative of the Lyapunov function is given by:

V = s{ce-+M [t — tg — C(6,6)0 — G(6)] — 64} + %WTW, 1)

the control law is then substituted into V.

V. =s[ysgn(s) +e— WTh(6)] + %WTW

s (22)

=es—1ls| + WT(%W —sh(0))

by considering 17 > |€|max, the adaptive law is expressed as:
W = sh(6), (23)

and therefore: V = s — 11|s| < 0. The control system is asymptotically stable, according to
the LaSalle invariant set principle.

The robot control system is shown in Figure 8. The input of the system is the preset
joint angle curve, while its output of the system is the control torque required by the
motor. The input of the RBF neural network is the error of the system and the derivative
of the error, while its output is the human-robot interaction force that is estimated online.
Using the sliding mode controller combined with the dynamic equation of the lower limb
exoskeleton, the torque of each joint of the lower limb is obtained, and the actual torque
required by each motor is obtained by adding the human-robot interaction torque and the
torque of the dynamic equation. RBF is used to estimate the interaction torque between
human and machine and the influence of uncertain factors online. In addition, the adaptive
sliding mode control is used to increase the robustness of the control system.
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Figure 8. RBF adaptive sliding mode control block diagram for lower limb exoskeleton robot.
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5. Experiments and Results
5.1. Motion Intention Recognition Experiment

The machine learning algorithm was performed in matlab2021a with a computer
consisting of an AMD R7 5800H and an NVIDIA GeForce RTX3060 laptop GPU. The
experiments included intention classification experiments and gait trajectory tracking
experiments. For the intention classification experiment of MLLERR, we collected 6144 sets
of training data from six healthy student volunteers (including five male and one female,
age 25 £ 4 and weighing 60 + 10 kg), imported and loaded the data into Matlab, and used
the BILSTM, LSTM and GRU (gated recurrent unit) classification models to evaluate the
classification accuracy of human behavioral intention. Data from five volunteers were
randomly selected as model training data, and data from one volunteer were used as
test data.

The average accuracy of the proposed three classification models in lower limb motion
intention recognition is presented in Table 2. The average precision is calculated by using
the ratio of the number of all correct test samples to the total number of samples. BILSTM
achieves 99.61% accuracy in classifying the test data, while GRU and LSTM achieve 95.90%
and 96.77%, respectively. In terms of the loss of classification, the time loss of all three
classification algorithms is between 0.05 and 0.07 s. The classification accuracy is the most
important index pursued under the premise of insignificant classification time loss. In
addition, because the control period of the exoskeleton is 10 Hz, the time loss of intention
classification does not affect the control of the exoskeleton.

Table 2. Accuracy and elapsed time of the three algorithms for human activity events.

GRU LSTM BILSTM
Accuracy 95.90% 96.77% 99.61%
Elapsed time 0.053 s 0.059 s 0.066 s

Table 3 presents the classification accuracy of the three classification models for each
motion event. It can be seen that the highest classification accuracy for the turning left
motion is 100.00% for LSTM, 99.68% for straight walking motion, 100% for turn right
motion, 97.83% for fall events, and 100% for BILSTM. The highest classification accuracy
for stop events is 100% for BILSTM. The BILSTM classification model outperforms the
other two models in terms of recognition accuracy, for all the activities. The classification
effect of the BILSTM algorithm on the test data is presented in Figure 9, where the blue line
indicates that the BILSTM classifier classifies the test data into different activity events.

Table 3. Accuracy of the three algorithms for human activity events.

GRU LSTM BILSTM
Turn left 99.30% 100.00% 99.30%
Straight walking 99.36% 99.52% 99.68%
Turn right 83.33% 86.46% 100%
Fall 93.48% 93.48% 97.83%
Stop 84.21% 94.74% 100%

Presents the classification accuracy of the three classification models for each motion
event. It can be seen that the highest classification accuracy for the turning left motion is
100.00% for LSTM, 99.68% for straight walking motion, 100% for turn right motion, 97.83%
for fall events, and 100% for BILSTM. The highest classification accuracy for stop events is
100% for BILSTM. The BILSTM classification model outperforms the other two models in
terms of recognition accuracy, for all the activities. The classification effect of the BILSTM
algorithm on the test data is presented in Figure 9, where the blue line indicates that the
BILSTM classifier classifies the test data into different activity events.
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Figure 9. Classification results. The vertical axis represents the actions and events of the human body
during training, while each action refers to the corresponding data segment.

5.2. Tracking Control Experiments

In the simulation experiments, we continuously adjusted the parameters of the PID
controller to make the overshoot of the control curve smaller and the rapidity enhanced, and
we tuned the parameters of the PID controller to the optimal state with k;, = [500 0; 0 500],
k; =[50 0; 0 50]. In the RBENNSAMC algorithm,y =490, 7 = 0.5,¢; = [-2—1012], and
b; = 2; the initial value of the network weights is 0.1.

Aiming at the tracking problem of the joint gait trajectory of the lower limb exoskeleton
of MLLERR, a simulation experiment of joint gait is designed to determine the parameters
of the system, and the control effect of the proposed RBFNNSAMC controller is compared
with the PID controller. The exoskeleton drives the human leg to move according to the
gait curve, during the walking process of the human wearer robot. The torque information
calculated using the RBFNNASMC and PID controller is the input of each joint motor,
while the output is the joint angle. The joint feedback angle is collected using the encoder
at the joint, in order to compare the tracking effect of the two control algorithms for
each joint.

Figure 10 presents the results of the gait trajectory following the hip joint. It can be
seen from the blue line that the PID controller shows a large amount of overshoot in the
first 1.8 s of the gait start. It then continuously spikes in the remaining gait curve cycles,
due to the inability to cope with the external disturbance and thus the motor stalling. In
addition, it can be seen from the red line that the RBENNASMC controller is in converging
motion and generates errors in the first 1.2 s. However, it can accurately follow the black
reference curve in the remaining gait cycle.

Figure 11 illustrates the results of the gait following control experiment of the knee
joint. It can be observed that both the PID controller and the RBFNNASMC controller show
a maximum error close to 3° in the first 1.5 s. In the remaining gait cycles, the PID controller
shows a significant lag in the following process, and the error does not achieve a perfect
convergence, while the RBFNNASMC controller reaches a sliding mode and the error is
retained. The RBFNNASMC controller achieves a sliding mode with the error constantly
converging to zero. Therefore, it achieves the purpose of tracking the gait. In summary, the
analysis of Figures 10 and 11 verifies the efficiency of the proposed RBF neural network
adaptive sliding mode controller for curve tracking.
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Figure 11. Results of the gait trajectory following the knee joint.

It can be seen from the error curves of the hip and knee joints in Figures 12 and 13
that the error curve of PID presents a large spike-like fluctuation, and the trend of error
fluctuation is periodic. This indicates that the PID algorithm cannot adaptively cancel the
influence of human-robot interaction force and disturbance, and this kind of high-frequency
jitter is unbearable for the motor.
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Figure 13. The knee gait error curve.

Error analysis is performed on the gait curves of the two algorithms, as shown in
Table 4. The performance of the PID controller and RBFNNSAMC controller is analyzed
from three aspects: maximum error, average error, and standard deviation. The analysis
of the maximum error reflects the amount of error in the starting stage of the motor. Both
controllers show a large overshoot in the hip and knee joints. The control effects are similar,
and the control error of RBENNSAMOC is slightly smaller. It can be deduced from the
analysis of the average error and standard deviation, which reflects the overall error in
the whole gait cycle, that the RBFINNSAM controller has a clearly superior performance.
The average errors of the hip and knee joints are respectively 0.197° and 0.037°, while
the average errors of the PID controller at the hip and knee joints are 1.405° and 1.822°,
respectively. From the standard deviation point of view, the control curve errors of the PID
controller are also larger than those of the RBENNSAM controller. In summary, the PID
controller is clearly not suitable for time-varying systems, and the RBENNSAM controller
can make adaptive adjustments to the disturbance, thereby reducing the error.



Machines 2022, 10, 1125 17 of 19
Table 4. Accuracy and elapsed time of the three algorithms for human activity events.
Maximum Error Average Error Standard Deviation
Hip Knee Hip Knee Hip Knee
PID 16.718° 4.556° 1.405° 1.822° 2.235° 1.497°
RBFNNSAMC 16.628° 2.996° 0.197° 0.037° 1.486° 0.269°

The experiments in Section 5.1 verified the effectiveness of our proposed algorithm
for the recognition of human motion features. The recognition of human movements
such as turning, walking, stopping, and falling is achieved, which allows patients to walk
more naturally according to their wishes and achieve better human-robot coordination.
In Section 5.2, the gait tracking experiment enables the exoskeleton to drive the human
leg movement more precisely, so that the patient can restore the leg muscle strength and
enhance the walking ability.

6. Discussion

As can be seen in Tables 1 and 2, the results of the proposed BILSTM network in
this paper for the recognition of the motion intention of human lower limb walking using
multi-sensor information show that the BILSTM algorithm has advantages in multi-feature
and repetitive motion. The BILSTM algorithm can be promising for human gait, posture
and other aspects of recognition in the future. However, it also has some limitations. Firstly,
the training of data such as force, displacement and wheel speed from the experiments
takes a lot of time. Although our training data sample is small, only six volunteers’ training
data can support the above experimental results, because the force, displacement, and
wheel speed sensor data are periodic and repetitive in the rehabilitation training process,
and each sensor only cycles through a specific range, and the data of six volunteers have
fully covered these ranges. Therefore, the above experimental results are convincing. In
the future, we will optimize the hyperparameters of the model online through advanced
optimization algorithms to improve the deficiencies of the BILSTM model in terms of real
time and adaptiveness.

In the gait trajectory tracking experiments, it can be seen from Table 3 that the errors
of the RBENNSAMUC algorithm are smaller than those of the PID algorithm in the results
of maximum error, average error, and standard deviation. This proves that our proposed
RBFNNSAMC algorithm has some advantages over the PID algorithm in gait tracking. In
the future, we will enrich our sensor information system by adding human-robot interac-
tion sensors such as force sensors or EMG sensors. We will use these sensors to directly
measure human movement data to achieve a more flexible human-robot interaction effect.

Robot-assisted therapy is already widely used in the field of rehabilitation. Robotic
therapy is no longer concerned with only the medical field, but also, e.g., special education
and other fields [35,36]. These are also the direction of our research in the future.

7. Conclusions

In this paper, we conduct rehabilitation training research on both human motion
intention recognition and gait trajectory tracking of MLLERR, and we propose a BILSTM
classifier to recognize five activity behaviors of human lower limbs. Through the com-
parison of experimental data, BILSTM shows superior performance in terms of average
error and accuracy of recognition of each activity event compared with traditional machine
learning classifiers, and the real-time performance meets the requirements of the control
system. In the lower limb exoskeleton control system, we designed an RBF adaptive sliding
mode controller to estimate the human-robot interaction forces and perturbations online
through RBF networks, and we performed stability proof of the human-robot interaction
dynamics system using Lyapunov theory. In the simulation experiments, we introduced
perturbations to the hip and knee joints, and the simulation results showed that the position
tracking effect of the RBF adaptive sliding mode controller was better than that of the PID
controller. Moreover, the bucket vibration of the sliding mode control is suppressed by
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the compensation of the disturbance through the RBF network. However, we still have to
continue to improve the real-time nature of machine learning models and control systems,
which will enable more coordinated human-robot interaction. In future work, we will
focus on human wearing and walking sensations and optimize the lower limb exoskeleton
control system using gait planning and flexible drive algorithms.
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