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Abstract: At the conceptual design stage, it is critical to use appropriate structural analysis and
optimization methods. The thin-walled beam transfer matrix method (TBTMM) is adopted to
establish the mathematical model of the simplified vehicle body-in-white (BIW) structure in this
paper and compare it with the results of the finite element method (S-FEM) to verify the approach.
In addition, on the basis of the boundary simulation genetic algorithm (BSGA) and local search
procedure, a boundary hybrid genetic algorithm (BHGA) is proposed. BHGA is benchmarked on
20 test functions and is compared with current meta-heuristic algorithms to prove its effectiveness
and universality. Finally, considering the bending and torsional stiffness constraints, BIW conceptual
model is lightweight and designed with an optimizer.

Keywords: thin-walled beam transfer matrix method; BIW structure; boundary hybrid genetic
algorithm; lightweight design

1. Introduction

Compared with other stages, the conceptual design stage has a higher degree of
design freedom and various requirements that are easier to meet, which is crucial for
vehicle innovation, cost saving, and design cycle shortening [1]. The bending stiffness,
torsional stiffness, and NVH performance of the body-in-white (BIW) structure are critical
to the safety and comfortability of the vehicle, while the weight performance of the BIW has
an effect on cost saving. There is a direct correlation between these two performances; that
is, the reduction of vehicle weight requirement will lead to an overall reduction of stiffness
and NVH performance. In order to obtain the optimal BIW structure that meets various
requirements in the conceptual design, a lightweight design is selected to coordinate vehicle
weight (objective function) and its performance (constraints). The performance of bending
and torsional stiffness will be considered in this paper.

It is common to establish the mechanical model of the BIW by employing the finite
element method (FEM). Bai et al. [2] described a simplified finite element model to provide
early-stage predictions of a detailed model. A concept CAE modeling approach based
on FE models was presented by Donders et al. [1] to analyze and optimize the structural
behaviors of the vehicle BIW. In addition, Mundo et al. [3] proposed a similar approach for
replacing beam structures and joints in vehicle BIW. However, few CAD data are available
at the conceptual design stage. Meanwhile, most approaches to FEM require a time-
consuming FE model and can not obtain clear mathematical relationships between beam
section properties and structural performances. Therefore, Qin et al. [4] developed an object-
oriented MATLAB toolbox based on the exact transfer stiffness matrix method to calculate
the static and dynamic performances. Later, Liu et al. [5] developed a mathematical
method based on the reverberation ray matrix method to promote the conceptual design.
The vehicle BIW can be regarded as consisting of thin-walled beams, so the warping
deformation (longitudinal displacement) in the longitudinal direction of the beam due to
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torsion should be considered [6]. However, the aforementioned studies are all based on
the traditional beam theory, according to which the warping of the beam is not considered.
Zhong et al. [7] also pointed out that warping has a great impact on the performances of
thin-walled frame structures and developed the thin-walled beam transfer matrix method
(TBTMM). Therefore, the TBTMM is adopted in this paper to establish the relationship
between the section properties and structural mechanical performances so as to improve
the calculation accuracy.

In order to realize the lightweight design of vehicle body-in-white (BIW) at the con-
ceptual design stage, a boundary hybrid genetic algorithm (BHGA) was proposed to solve
the engineering-constrained optimization problems. In the next section, BIW mathematical
models for bending and torsional stiffness will be established. In Sections 3 and 4, the
development and validation of BHGA will be introduced. Finally, the lightweight design is
achieved by using BHGA.

2. Formulation of Vehicle BIW Mathematical Model
2.1. Formulation of Cross-Sectional Properties

In this paper, a simplified BIW model with rectangular thin-walled beams is adopted to
analyze the mechanical performances, as shown in Figure 1. Different from the cross-section
properties of general beam theory (the inertia moments Iy and Iz, the cross-sectional area A,
and the torsional constants J), the thin-walled beam theory involves fifteen cross-sectional
properties, i.e., the angle of roll φ, the cross-sectional area A, the shear areas Asy and Asz in
the y- and z-directions, the hybrid shear area of the cross-section Asyz, the sectorial static
moments Ssy and Ssz about the y- and z-axes, the warping torsion moment of inertia Ip, the
St.Venant torsional constant corresponding to Bredt’s shear stress IB, the St.Venant torsional
constant corresponding to St.Venant’s shear stress Is, the inertia moments Iy and Iz, the
sectional moment of inertia Iw, and the coordinates of the shear center ys and zs relative to
the centroid. Thus, the thin-walled beam cross-section is defined as in Figure 2, in which
the right-hand orthogonal coordinate system and the s-coordinate system are adopted, the
latter being along the midline of the cross-section. Moreover, the width (b), height (a), and
thickness (t) are defined as design variables. The rectangular thin-walled beam is used
in this paper; that is, the shear center S coincides with centroid C and φ is equal to zero.
The calculation formula for section properties has been deduced in detail in the previous
paper [7].
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Figure 1. The conceptual BIW model. Figure 1. The conceptual BIW model.
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Figure 3. The mathematic simulation model of BIW conceptual structure. 
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ber. 

The Laplace transform is used to solve Equation (1). 
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1()−L  denotes the inverse Laplace transform and X  is the Laplacian operator. 

Figure 2. The details of the cross-section.

2.2. TBTMM Mathematical Model of BIW Structure

As shown in Figure 3, the mathematical model of the BIW conceptual structure consists
of 53 beam members and 36 joints. The ith beam is identified by ‘ i©’, and the jth joint is
identified by ‘j’. According to thin-walled beam theory, the governing equations of beam
members can be expressed as follows

dS(x)k
dx

= HkS(x)k (1)

where the S(x)k is the state vector of kth member in the place of x containing seven dis-
placement fields and seven force fields. Hk is expressed as the state function of kth member.
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The Laplace transform is used to solve Equation (1).

S(x)k = L−1((XE−Hk)
−1)S(0)k (2)

where L−1() denotes the inverse Laplace transform and X is the Laplacian operator.
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Then, the transfer matrix Tk can be obtained by substituting the length of beam lk
into Equation (2), i.e., Tk = L−1((XE−Hk)

−1)
∣∣∣
x=lk

, and the equation can be rewritten as

Equation (3). The Tk is a constant matrix containing all fifteen cross-sectional properties.

S(lk)k = TkS(0)k (3)

When the transfer matrices of beams have been determined, the mathematical model
for each joint can be assembled as follows

¯
Ci

¯
Pi =

¯
f i (4)

where
¯
Ci denotes the ith joint coupling matrix;

¯
Pi contains all the state vectors defined at

ith joint;
¯
f i is the matrix about external forces and moments at the ith joint. In general, the

boundary conditions of the structures are homogenous; that is, each joint coupling matrix

has half as many rows as columns. Moreover, each state vector contained in
¯
Pi is one of the

previously defined state vectors S(lk)k or S(0)k.
The global mathematical model of the BIW conceptual structure can be assembled as

conventional FEM by combining joint coupling matrices.

CP = f (5)

where C is a 742 × 1484 matrix, and C = diag[
¯
C1,

¯
C2, . . .

¯
C36] denotes the global joint

coupling matrix; P = [
¯
P1,

¯
P2, . . .

¯
P36]

T

contains all the state vectors, and is a 1484× 1 matrix;

f = [
¯
f 1,

¯
f 2, . . .

¯
f 36]

T

is the matrix about external forces and moments, and is a 742× 1 matrix.
From Equations (3) and (5), P can be written as

P = RTglobalY (6)

where Y is a 742× 1 matrix, and Y = [S(0)1, S(0)2, · · ·S(0)53]
T contains all the input state

vectors defined at the left ends of the elements; R is a 1484× 1484 matrix used to rearrange
the order of the state vectors; Tglobal is the total transfer matrix and can be expressed
as follows

Tglobal =



T1
T2

. . .
T53

I1
I2

. . .
I53


(7)

where the transfer matrix Ti (i = 1, 2, . . . 53) is a 14× 14 matrix and Ii (i = 1, 2, . . . 53) is an
identity matrix, so the Tglobal is a 1484× 742 matrix.

Then, the complete description of the BIW structure with respect to the state vectors Y
and the external forces f can be rewritten as follows

CRTglobalY = f (8)
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The CRTglobal in Equation (8) is a 742 × 742 square matrix with respect to cross-
sectional properties. Moreover, the external forces are set as the known values with respect
to the boundary and load conditions. Then, Equation (8) may be formally solved by

Y = [CRTglobal ]
−1f (9)

2.3. Static Load Cases and Boundary Conditions

In this paper, the loads and boundary conditions of the BIW static analysis are shown
in Figure 4. For the bending condition, the external forces Fb are set as 1668 N along the
Z- direction act on joints 10 and 28, respectively, and the constraint points are set on joints
6, 13, 24, and 31, respectively. The digital 1, 2, and 3 in the triangle region represent that the
displacements in the global X-, Y-, and Z-directions are restrained to zero. For the torsion
condition, the external forces Ft are set as 1668 N act on joints 13 and 31, and the constraint
points are set on joints 6, 24, and 36, respectively.
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(b) torsion condition.

Substituting the load cases and the boundary conditions into Equation (9) would
yield the coupling equations of the whole structure. The maximum displacements of
load directions ∆lb (∆rb) and ∆lt (∆rt) can be obtained by solving the coupling equations,
respectively. And the bending stiffness Kb and the torsion stiffness Kt can be defined
as follows: {

Kb = − 4Fb
∆lb+∆rb

Kt =
Fb Lc

α

(10)

where Lc is the distance between the two load points; α is the twist angle which can be
calculated as follows:

α =
180(∆lt − ∆rt)

πLc
(11)

2.4. The Accuracy Verification

In order to verify the accuracy of the developed mathematical model of the BIW
structure, the results of bending and torsion stiffness obtained by TBTMM are compared
with the results obtained by FEM. The FEM analysis results are obtained by using the
program Hypermesh, while the TBTMM analysis results are obtained through the MATLAB
code. As listed in Table 1, it is reasonable to establish the vehicle BIW mathematical model
by using TBTMM, as the relative error values are much lower than 20% [8].
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Table 1. Material property of tread rubber.

Stiffness Type FEM Analysis TBTMM Analysis Error

Bending stiffness (N/mm) 6515.3846 5963.5323 −6.9%
Torsion stiffness (N.m/◦) 2642.9129 2697.2338 2.1%

3. The Development of BHGA

GA is a traditional evolutionary algorithm, which is a stochastic search technique
based on a series of possible solutions. Proposed by Holland in 1975 [9], GA has been exten-
sively used in engineering and industry problems related to linear inequality constraints,
nonlinear inequality constraints, equality constraints or unconstraints. Thus, it is reasonable
to solve the constrained nonlinear optimization problem in equation (9) by using GA. As an
unconstrained search technique, constrained problems have traditionally been challenging
problems for GA. Several techniques of constraint handling have been developed: special
representation and operator methods, penalty methods, separation of objective and con-
straint methods, repair methods, and hybrid methods. The most common way to introduce
constraints in genetic algorithms is the penalty method, which punishes infeasible solutions
by reducing their fitness values. Ersavas et al. [10] and Paszkowicz [11] use the static
penalty method and dynamic penalty method for constraint optimization, respectively.
However, as it is difficult to set the penalty coefficient properly, its performance is not
always satisfactory. Considering this obstacle, Lin [12] came up with a rough penalty GA
for constraint optimization; nevertheless, it requires another set of parameters to tune the
penalty coefficients automatically. The main idea of the special representation and operator
methods is to develop special representation schemes to tackle a certain problem for which
generic representation schemes might not be appropriate. Koziel and Michalewicz [13]
proposed a ‘homomorphous map’, in which they transformed the whole feasible region into
a different shape that was easy to optimize. However, the implementation of the algorithm
is more complex, and the experiments reported require a large number of fitness function
evaluations. Although it is efficient for some intended applications, it can sometimes be
difficult or even impossible to develop a special representation. The separation of objective
and constraints methods treats the constraints as an objective function so that the original
single-objective constraint optimization problem becomes a multi-objective unconstrained
optimization problem, to which we can apply any multi-objective optimization techniques.
Zhou et al. [14] developed a ranking procedure in accordance with the Pareto strength
concept for the bi-objective problem, but with the constraints increasing, the objective func-
tion becomes complicated. As pointed out by Runarsson and Yao [15], the multi-objective
techniques are difficult to find feasible solutions since most of the time is spent searching
infeasible regions. While GA is coupled with another technique (e.g., another heuristic
or a mathematical programming approach) to form hybrid methods, the new methods
generally require several parameters to work properly, just like penalty methods. The main
idea of the repair methods is to transform an infeasible solution into a feasible one, which
can reduce the search space by using a repair technique. Furthermore, no special operators
or modifications of the fitness function need to be considered in this case. Salcedo et al. [16]
proposed a concept of a hybrid genetic algorithm in which the local search (LS) procedure
is used as a constraint-handling technique. Later, Li et al. [17] proposed a boundary simula-
tion genetic algorithm (BSGA) to address inequality constraints for GAs and developed a
series of genetic operators that would abandon or repair infeasible individuals produced
during the search process. However, it was not specified whether the infeasible solutions
were abandoned or repaired, and it may not work properly for problems with disconnected
feasible regions. Coello [18] has emphasized that a desired constraint-handling technique
should be general and incorporate knowledge about the domain, efficiency, etc. Based on
the BSGA and hybrid genetic algorithm, a boundary hybrid genetic algorithm (BHGA)
that could be applied effectively to engineering is proposed in this paper. In general, the
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method proposed in this paper has several features, which will be discussed in detail in the
following chapters.

1. The BHGA randomly selects individuals from the boundary point set as the feasible
initial population and performs a global search (GS) using the GA;

2. Perform the elitist strategy and adaptively tune crossover and mutation operators;
3. The LS procedure is used to handle constraints.

3.1. Generate the Initial Population

In this paper, we mainly concentrate on the problems of inequality constraints. Thus,
the mathematical form of the optimization problem could be formulated as the following
minimum optimization problem:

Minimize: f (x)
Subject to: {

gi(x) ≤ 0, i = 1, 2, . . . , m
xl

j ≤ xj ≤ xu
j , j = 1, 2, . . . , n (12)

where x = (x1, x2, . . . xn) is the vector of design variables; m and n are the number of
constraints and design variables, respectively; xl

j and xu
j denote the lower and upper

bounds of xj, respectively.

3.1.1. The Calculation of Boundary Points

Isaacs et al. [19] indicated that the optimal solutions to the constrained optimization
problems are usually spread along the constraint boundary. The BSGA [18] is proposed to
solve the constrained optimization problem based on the binary search method, but the
binary search method would not search the maximum constraint boundary and may fall
into the local optimum in the constraint boundary. Therefore, the reverse binary search
method and LS strategy are developed in the BHGA, and it will be discussed in detail
later. The flowchart for the main process of the generation of feasible regions is illustrated
in Figure 5.
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The first step is to generate FP feasible points. Compared with unconstrained and
simple constrained problems, it becomes relatively complicated to generate feasible points
for complex constraints. In order to improve the search efficiency, the GA method is
still used to generate the feasible points, and the main process is illustrated in Figure 6.
Moreover, a real coding representation scheme is adopted in this paper. Initially, an empty
set is developed for storing the feasible points and then generates the initial population,
including PS individuals, randomly. The initial individuals satisfying the constraints
are put into the feasible set, and the number of feasible points NP is recorded. The new
populations are generated by selection, crossover, and mutation operators of GA [20], and
the feasible points set is updated based on the feasible points in the new populations until
the number of feasible points reaches FP.
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Since the GA is used to obtain a set of feasible points instead of an optimal solution,
the fitness function needs to be modified. The aim is to reduce the differences between the
individuals but not convergence, and the constraint violation status for each individual
is expressed as Equation (13). The fitness value of every individual can be calculated by
summing the constraint violation degree for each of them.

qi(x) =
{

gi(x) i f gi(x) > 0
0 i f gi(x) ≤ 0

(13)

where qi(x) represents the ith constraint violation degree, while gi(x) represents the
ith constraint.

The following step is to generate the infeasible points. Define the expansion region and trans-
form the feasible region (S f easible = {x ∈ Rn

∣∣∣|xl
j ≤ xj ≤ xu

j and gi(x) ≤ 0, f or j = 1, 2, . . . , n} )

into infeasible region S’:

S’ =
{

x ∈ Rn
∣∣∣x̃l

j ≤ xj ≤ x̃u
j , f or j = 1, 2, . . . , n

}
(14)

The x̃l
j and x̃u

j are the lower and upper extension region bounds of the jth design
variable and are defined as Equation (15).{

x̃l
j = xmin

j − (xu
j − xl

j)

x̃u
j = xmax

j + (xu
j − xl

j)
(15)

where xmin
j and xmax

j are the minimum and maximum values of jth variable about the
feasible point, respectively.
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As shown in Figure 7, generate IP individuals in the extension region and set one of
the variables in each individual to its lower or upper bound.
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Figure 8 illustrates the feasible point a moves to the constraint boundary by a large
step size in the binary search method of BSGA, and the process ignores the possibility that
there is a constraint boundary between the infeasible points c and d. Thus, in order to
increase the search range of the feasible points (i.e., to find the maximum boundary of the
feasible points) and reduce the step size, the reverse binary search method is proposed
to find the boundary of the feasible region shown in Figure 8. Compared with the binary
search method, the latter method requires ε and ∆ parameters to control the search accuracy.
Moreover, the specific steps of the reverse binary search method are as follows:

Step 1: Choose a feasible point a and an infeasible point b, then go to step 2.
Step 2: Calculate the middle point c between a and b, then go to step 3.
Step 3: If c is feasible, a = c, then go to step 6; otherwise, calculate the middle point d
between c and b, then go to step 4.
Step 4: If d is feasible, a = d, then go to step 6; otherwise, go to the next step.
Step 5: Calculate the distance between b and d; if it ≤ ∆, b = d, then go to step 2; otherwise,
c = d, then go to step 3.
Step 6: Calculate the distance between a and b; if it ≤ ε, terminate; otherwise, go to step 2.
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3.1.2. The Initial Population

A set of boundary points have been generated in the previous section, and then
the initial population is randomly selected from the boundary points in the following
steps. Initially, popsize individuals are randomly generated in the extension region, and
the distances from each individual to all boundary points are calculated. Then the nearest
boundary points are selected as the initial population individuals.

3.2. The Definition of GA Operators

The GA operators are mainly selection, crossover, and mutation operators. The
selection operator is utilized to select some good individuals from the current population
as parents to generate offspring. In this paper, the well-known roulette wheel selection
operator is adopted [20]. Due to the randomness of the selection strategy, the elitist strategy
is implemented by reinsertion to prevent the good individuals from being abandoned.

In the crossover and mutation operations, the setting of the crossover probability (Pc)
and the mutation probability (Pm) is crucial to the generation of new individuals. In the
BSGA method, the use of fixed crossover and mutation probabilities may lead to local
optimum. The higher the value of Pc, the quicker the new individuals will be introduced
into the population. However, as Pc increases, individuals can be disrupted faster than
selection can exploit them. Similarly, if the values of Pm are too small, it is not easy to
generate new individuals. However, the larger values of Pm transform the GA into a pure
random search algorithm. In order to improve the performance of the BHGA, the fixed
values of Pc and Pm can no longer meet the dynamic performance of the algorithm, so the
adaptive crossover and mutation probabilities are proposed in this paper.

Pc =

{
Pc1 −

(Pc1−Pc2)( f ′− favg)
fmax− favg

, f ′ ≥ favg

Pc1 , f ′ < favg
(16)

Pm =

{
Pm1 −

(Pm1−Pm2)( f ′− favg)
fmax− favg

, f ′ ≥ favg

Pm1 , f ′ < favg
(17)

where fmax is the maximum fitness value of the current population, while favg is the average
fitness value of the population and f ′ is the individual fitness value; Pc1 and Pc2 represent
the upper and lower limits of the crossover probability, while Pm1 and Pm2 represent the
upper and lower limits of the mutation probability.

3.3. The LS Strategy

There are two main operators proposed to handle the infeasible individuals during the
search process of BSGA: one is to regenerate it again until a feasible individual is obtained,
but this will change the characteristics of the original individual; the other is to repair the
infeasible individuals with the binary search method, but this will also cause the algorithm
to converge to the boundary local optimum.

Thus, the LS procedure occurs as a method of constraint handling in the process of
infeasible offspring approaching the feasible boundary in the BHGA. The current parent
Pr and the infeasible individuals Or generated by the crossover or mutation operation

are selected to perform a nonlinear search along the
→

PrOr direction and are defined as
Equation (18). As shown in Figure 9, the dashed blue box represents the process of feasible
individual Pr searching for the boundary, while the red dashed box is the process of
searching for the discrete feasible domain by the reverse binary search method. The main
LS procedure is as follows:

Step 1: Select the current parent Pr and the infeasible individual Or, then go to step 2.
Step 2: Generate the repaired individual Po by Equation (18), and operate as follows

• If the Po is feasible, calculate the objective function value of Po and the distance
between Po and Or. If the current objective function value of Po is optimal compared
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to other individuals or the distance ≤ the set value ∆, then Po is output as the repaired
individual; otherwise, Pr = Po, and then go to step 2.

• If the Po is infeasible, then repair the infeasible individual with the reverse binary
search method and go to step 2.

PO = Pr + cr(Or − Pr) (18)

where c is used to tune the LS step and r is the random number which is uniformly
distributed in the interval [0, 1].
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4. Experimental Study and Discussion

In order to verify the numerical efficiency of the BHGA, 20 benchmark functions
(6 unconstrained, 11 constrained, and 3 engineering-constrained problems, all of which are
minimization problems) are adopted. The algorithm is running under Windows 7 Ultimate,
and the code is programmed and compiled in MATLAB R2014a. All the details of the
benchmark functions are listed in Table 2, where N is the number of design variables; LI and
NI are the number of linear inequality and nonlinear inequality constraints, respectively;
ρ is the estimated ratio between the feasible region and the search space; BO represents
the ratio between the number of constraints at the boundary with the total number of
constraints. It can be seen from Table 2 that the optimal solution is easily located at the
constraint boundary, so it is meaningful to propose the BHGA and start searching from the
boundary point. All the used corresponding parameters of the BHGA are listed in Table 3.

Table 2. Details of benchmark functions.

Prob. N Type of Function LI NI ρ (%) BO

CF1 10 nonlinear 0 0 100 -
CF2 10 nonlinear 0 0 100 -
CF3 10 nonlinear 0 0 100 -
CF4 10 nonlinear 0 0 100 -
CF5 10 nonlinear 0 0 100 -
CF6 10 nonlinear 0 0 100 -
G01 13 quadratic 9 0 0.0111 6/9
G02 20 nonlinear 0 2 99.9971 1/2
G04 5 quadratic 0 6 52.1230 2/6
G06 2 cubic 0 2 0.0066 2/2
G07 10 quadratic 3 5 0.0003 6/8
G08 2 nonlinear 0 2 0.8560 0/2
G09 7 polynomial 0 4 0.5121 2/4
G10 8 linear 3 3 0.0010 6/6
G12 3 quadratic 0 1 4.7713 0/1
G19 15 nonlinear 0 5 33.4761 5/5
G24 2 linear 0 2 79.6556 2/2
Eg01 3 nonlinear 1 3 0.7514 2/4
Eg02 4 cubic 2 5 2.6627 4/7
Eg03 4 cubic 3 1 75.9150 2/4
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Table 3. The configurations of optimization.

Prob. FP Pc1 Pc2 Pm1 Pm2 c ε ∆ Popsize MaxGen

CF1 40 0.95 0.85 0.2 0.01 1 0.1 1 30 1000
CF2 40 0.95 0.85 0.2 0.01 1 0.1 1 30 1000
CF3 40 0.95 0.85 0.2 0.01 1 0.1 1 30 1000
CF4 40 0.95 0.85 0.2 0.01 1 0.1 1 30 1000
CF5 40 0.95 0.85 0.2 0.01 1 0.1 1 30 1000
CF6 40 0.95 0.85 0.2 0.01 1 0.1 1 30 1000
G01 40 0.95 0.85 0.2 0.01 1 0.0001 0.1 200 1200
G02 40 0.95 0.85 0.2 0.01 1 0.0001 0.1 200 1200
G04 40 0.95 0.85 0.2 0.01 1 0.0001 0.1 200 1200
G06 40 0.95 0.85 0.2 0.01 1 0.0001 0.1 200 1200
G07 40 0.95 0.85 0.2 0.01 1 0.0001 0.1 200 1200
G08 40 0.95 0.85 0.2 0.01 1 0.0001 0.1 200 1200
G09 40 0.95 0.85 0.2 0.01 1 0.0001 0.1 200 1200
G10 40 0.95 0.85 0.2 0.01 1 0.0001 0.1 200 1200
G12 40 0.95 0.85 0.2 0.01 1 0.0001 0.1 200 1200
G19 40 0.95 0.85 0.2 0.01 1 0.0001 0.1 200 1200
G24 40 0.95 0.85 0.2 0.01 1 0.0001 0.1 200 1200
Eg01 40 0.95 0.85 0.2 0.01 1 0.0001 0.1 100 200
Eg02 40 0.95 0.85 0.2 0.01 1 0.0001 0.1 100 200
Eg03 40 0.95 0.85 0.2 0.01 1 0.0001 0.1 100 200

4.1. Benchmark of Unconstrained Functions

For the unconstrained problem, six composite benchmark functions with several
randomly located global and deep local optima of CEC’2005 [21] are considered in this
paper. Considering these unconstrained optimization problems is mainly to verify whether
the BHGA is more advantageous than the BSGA for optimal local problems and whether it
can be used to deal with unconstrained optimization problems.

The statistic of optimization results of the BHGA and the comparison algorithms are
plotted in Table 4. 10 comparison algorithms are adopted, which are BSGA [17], IGA [22],
SSA [23], GOA [24], WOA [25], GWO [26], PSO [27], GSA [28], MVO [29], and HS [30]. For
all the algorithms, the same population size and iteration number equal to 30 and 1000 have
been utilized, and all algorithms run 30 times. The optimization results of the comparison
algorithms use the results of the literature [22].

Table 4. Statistical results of composite benchmark functions.

Algorithm Statistic F1 F2 F3 F4 F5 F6

BHGA
Ave. 43.67 96.27 198.42 417.13 64.99 535.21
Std. 68.20 84.20 58.13 78.65 75.18 91.25

Rank 3 3 4 6 2 1

BSGA
Ave. 66.67 123.75 205.02 572.80 410.51 819.30
Std. 118.42 150.46 75.75 140.74 83.57 162.49

Rank 5 4 6 10 11 8

IGA
Ave. 46.67 89.10 191.15 344.55 90.21 544.26
Std. 77.61 4.10 61.34 54.47 57.41 68.40

Rank 4 2 2 2 4 2

SSA
Ave. 36.67 303.35 240.79 334.99 28.18 608.64
Std. 55.56 373.25 86.51 30.45 33.28 18.42

Rank 2 11 7 1 1 3

GOA
Ave. 120.00 261.49 341.83 516.50 195.43 846.43
Std. 121.48 121.63 132.22 166.93 191.41 13.79

Rank 10 10 10 8 9 9

WOA
Ave. 120.92 173.93 417.50 610.51 141.62 673.17
Std. 129.64 91.30 157.50 138.71 122.15 196.52

Rank 11 7 11 11 7 4
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Table 4. Cont.

Algorithm Statistic F1 F2 F3 F4 F5 F6

GWO
Ave. 82.19 146.49 200.72 430.56 93.48 860.55
Std. 115.17 93.06 72.71 125.21 102.17 123.24

Rank 6 6 5 7 5 11

PSO
Ave. 113.33 124.15 191.89 346.67 131.98 751.69
Std. 107.42 96.56 79.37 102.83 106.71 194.32

Rank 9 5 3 3 6 5

GSA
Ave. 3.33 186.67 157.14 410.00 195.43 814.97
Std. 18.26 50.74 55.12 156.06 191.41 113.47

Rank 1 9 1 5 10 6

MVO
Ave. 86.68 177.41 299.11 392.93 86.15 815.65
Std. 81.72 118.18 154.94 126.35 112.38 16.17

Rank 7 8 9 4 3 7

HS
Ave. 93.25 75.29 273.79 524.60 193.47 846.86
Std. 44.60 255.75 101.48 138.01 128.06 12.77

Rank 8 1 8 9 8 10

From the ranking of the average results in Table 4, it can be seen that although the
BHGA has not obtained an optimal solution, the stability of the solution for different
unconstrained problems is generally acceptable. Moreover, the BSGA is more likely to
fall into the optimal local solution for composite functions, and the proposed BHGA is
more effective.

4.2. Benchmark of Constrained Functions

The 11 constrained problems (G01, G02, G04, G06-G10, G12, G19, G24) selected from
the CEC’2006 [31] are adopted to verify the constrained optimization ability of the BHGA.
The optimal results (best, worst, average, and standard deviation) obtained by the BHGA
are listed in Table 5, and the algorithm runs 30 times with 240,000 function evaluations. The
exact/near-optimal results calculated by the BHGA are highlighted in boldface, and 8 of
the 11 benchmark functions (G01, G02, G04, G06, G08, G09, G12, G24) obtained the known
optimal results. Only G10 did not obtain the exact/near-optimal result, but it is also hard
for G10 to get the optimal result through other algorithms. Table 6 shows the comparative
results of benchmark functions obtained by the BHGA and other comparison algorithms
(d-DS [32], BSGA [17], HTS [33], BBO [33], TLBO [33], GA [34], PSO [35], DE [36], and
ABC [37]). As an algorithm that mainly solves constraint problems, the BHGA has a great
improvement in computing ability compared with GA, and it has better computing stability
than the BSGA.

Table 5. Results obtained by the BHGA algorithm for 11 benchmark functions over 30 independent
runs with 240,000 function evaluations.

Prob. Opti. Best Worst Mean SD

G01 −15 15.0000 −15.0000 −15.0000 1.9 × 10−6

G02 −0.8036 −0.8036 −0.7926 −0.8008 4.5 × 10−3

G04 −30,665.5387 −30,665.5387 −30,665.5387 −30,665.5387 4.5 × 10−6

G06 −6961.8139 −6961.8139 −6961.8139 −6961.8139 4.5 × 10−6

G07 24.3062 24.3078 24.9419 24.4864 1.9 × 10−1

G08 −0.095825 −0.095825 −0.095825 −0.095825 3.1 × 10−11

G09 680.6301 680.6301 680.6626 680.6408 8.1 × 10−3

G10 7049.2480 7114.8305 7795.3801 7354.5570 1.2 × 10−2

G12 −1 −1.0000 −1.0000 −1.0000 6.1 × 10−13

G19 32.6556 32.8912 38.8550 35.3045 1.5
G24 −5.5080 −5.5080 −5.5080 −5.5080 3.7 × 10−8
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Table 6. Comparative results of benchmark functions obtained by different algorithms.

Prob. BHGA d-DS BSGA HTS GA PSO DE ABC BBO TLBO

g01

Best −15.0000 −15 −14.9999 −15 14.44 −15 −15 −15 −14.977 −15
Worst −15.0000 −13 −14.9996 −15 −13 −11.828 −15 −14.5882 −6
Mean −15.0000 −12.3 −14.9997 −15 −14.236 −14.71 −14.555 −15 −14.7698 −10.782

SD 1.9 × 10−6 1.8 × 10−2 6.7 × 10−5 - - - - - - -

g02

Best −0.8036 −0.803518 −0.8036 −0.7515 −0.796321 −0.669158 −0.472 −0.803598 −0.7821 −0.7835
Worst −0.7926 −0.7743 −0.7215 −0.5482 − −0.299426 - −0.749797 −0.7389 −0.5518
Mean −0.8008 −0.7880 −0.7669 −0.6437 −0.788588 −0.41996 −0.655 −0.792412 −0.7642 −0.6705

SD 4.5 × 10−3 7.0 × 10−4 2.3 × 10−2 - - - - - - -

g04

Best −30,665.5387 −30,665.539 −30,665.5385 −30,665.5387 −30626.053 −30,665.539 −30,665.539 −30,665.539 −30,665.539 −30,665.539
Worst −30,665.5387 −30,665.6475 −30,665.5380 −30,665.5387 − −30,665.539 −30,665.539 −30,665.539 −29942.3 −30,665.539
Mean −30,665.5387 −30,665.8862 −30,665.5383 −30,665.5387 −30590.455 −30,665.539 −30,665.539 −30,665.539 −30411.865 −30,665.539

SD 4.5 × 10−6 1.2 × 10−1 1.3 × 10−4 - - - - - - -

G06

Best −6961.8139 −6961.8139 −6961.6025 −6961.814 −6952.472 −6961.814 −6954.434 −6961.814 −6961.814 −6961.814
Worst −6961.8139 3.6128E+07 −6959.5077 −6961.814 − −6961.814 −6954.434 −6961.805 −5404.4941 −6961.814
Mean −6961.8139 1.8436E+06 −6961.1706 −6961.814 −6872.204 −6961.814 −6954.434 −6961.813 −6181.7461 −6961.814

SD 4.5 × 10−6 8.1 × 106 4.5 × 10−1 - - - - - - -

g07

Best 24.3078 24.315 24.3250 24.3104 31.097 24.37 24.306 24.33 25.6645 24.3103
Worst 24.9419 25.5336 36.3810 25.0083 - 56.055 24.33 25.19 37.6912 27.6106
Mean 24.4864 24.7153 25.3126 24.4945 34.98 32.407 24.31 24.473 29.829 24.837

SD 1.9 × 10−1 3.1 × 10−2 2.2 - - - - - - -

g08

Best −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825
Worst −0.095825 −0.09582 −0.095825 −0.095825 - −0.095825 −0.095825 −0.095825 −0.095817 −0.095825
Mean −0.095825 −0.0958 −0.095825 −0.095825 −0.095799 −0.095825 −0.095825 −0.095825 −0.095824 −0.095825

SD 3.1 × 10−11 0 7.2 × 10−11 - - - - - - -

g09

Best 680.6301 680.630 680.6321 680.6301 685.994 680.63 680.63 680.634 680.6301 680.6301
Worst 680.6626 681.1324 680.7393 680.644 680.631 680.631 680.653 721.0795 680.6456
Mean 680.6408 680.7132 680.6587 680.6329 692.064 680.63 680.63 680.64 692.7162 680.6336

SD 8.1 × 10−3 1.1 × 10−3 2.6 × 10−2 - - - - - - -

g10

Best 7114.8305 7056.76 7479.5547 7049.4836 9079.77 7049.481 7049.548 7053.904 7679.0681 7250.9704
Worst 7795.3801 7846.7898 10074.6906 7252.0546 - 7894.812 9264.886 7604.132 9570.5714 7291.3779
Mean 7354.5570 7350.3449 8945.5845 7119.7015 10003.225 7205.5 7147.334 7224.407 8764.9864 7257.0927

SD 1.2 × 10−2 2.0 × 101 8.0 × 102 − - - - - - -

g12

Best −1.0000 −1 −1 −1 −1 −1 −1 −1 −1 −1
Worst −1.0000 −1 −1 −1 −0.994 −1 −1 −1 −1
Mean −1.0000 −1 −1 −1 −1 −0.998875 −1 −1 −1 −1

SD 6.1 × 10−13 0 6.0 × 10−13 - - - - - - -

g19

Best 32.8912 32.6556 33.5364 32.7132 - 33.5358 32.6851 33.3325 39.1471 32.7916
Worst 38.8550 46.1658 47.2062 33.2140 - 39.8443 32.9078 38.5614 71.3106 36.1935
Mean 35.3045 32.8047 37.4585 32.7903 - 36.6172 32.7680 36.0078 51.8769 34.0792

SD 1.5 2.8 3.3 - - 2.04 6.28 × 10−2 1.83 1.12 × 101 9.33 × 10−1

g24

Best −5.5080 −5.5080 −5.5080 −5.5080 - −5.5080 −5.5080 −5.5080 −5.5080 −5.5080
Worst −5.5080 −5.4661 −5.5080 −5.5080 - −5.5080 −5.5080 −5.5080 −5.4857 −5.5080
Mean −5.5080 −5.5080 −5.5080 −5.5080 - −5.5080 −5.5080 −5.5080 −5.4982 −5.5080

SD 3.7 × 10−8 3.4 × 10−6 3.5 × 10−6 - - 9.36 × 10−16 9.36 × 10−16 9.36 × 10−16 6.75 × 10−3 9.36 × 10−16

4.3. Benchmark of Constrained Engineering Functions

In this section, the BHGA was also tested with three constrained engineering problems [26]: a
tension/compression spring (Eg01), a welded beam (Eg02), and a pressure vessel (Eg03).

The comparison of the BHGA optimization results with literature for the engineering
problem is listed in Tables 7–9, where the bold number indicates the best results. Inspecting
the results of the algorithms on those problems makes it evident that the BHGA managed
to show very competitive results compared to IGA [22], BSGA [17], GA [38], GA [18], and
TLBO [39], and obtains a better result on the pressure vessel problem. As an improved
GA, the BHGA obtains better results than GA with fewer evaluations and also has a great
improvement in computing ability compared with the BSGA. Taken together, the BHGA is
efficient as a constrained handling method, especially for engineering constraint problems
and constrained problems.
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Table 7. Comparison of the BHGA optimization results with literature for the tension/compression
spring problem.

Algorithm
Design Variables

Optimum Result Max. Eval.
x1 x2 x3

BHGA 0.051702 0.357034 11.270455 0.012665 20,000
IGA 0.051760 0.358421 11.191034 0.012667 50,000

BSGA 0.052499 0.376505 10.216692 0.012677 20,000
GA (2000) - - - 0.012822 900,000
GA (2002) 0.051989 0.363965 10.890522 0.012973 80,000

TLBO - - - 0.012665 10,000

Table 8. Comparison of the BHGA optimization results with literature for the welded beam problem.

Algorithm
Design Variables

Optimum Result Max. Eval.
x1 x2 x3 x4

BHGA 0.205711 3.470841 9.036781 0.205729 1.724893 20,000
IGA 0.205218 3.481537 9.036823 0.205731 1.725597 50,000

BSGA 0.191842 3.802379 9.023441 0.206332 1.749193 20,000
GA (2000) - - - - 1.748309 900,000
GA (2002) 0.205986 3.471328 9.020224 0.206480 1.728226 80,000

TLBO - - - - 1.724852 10,000

Table 9. Comparison of the BHGA optimization results with literature for the pressure vessel problem.

Algorithm Design Variables
Optimum Result Max. Eval.

x1 x2 x3 x4

BHGA 0.789938 0.390530 40.9293 191.683131 5905.9633 20,000
IGA 0.815752 0.403932 42.248583 174.814712 5957.9898 50,000

BSGA 0.8074 0.3990 41.8153 180.1774 5939.1857 20,000
GA (2000) 0.812500 0.434500 40.323900 200.000000 6288.7445 900,000
GA (2002) 0.812500 0.437500 42.097398 176.654050 6059.9463 80,000

TLBO - - - - 6059.714335 10,000

5. Lightweight Design Based on BHGA

In this chapter, the BHGA method is adopted to lighten the BIW mass. As the symme-
try of the BIW structure, the design variables of beam members (1, 2, 3, 4, 5, 8, 9, 10, 48)
are defined to have the same properties as beam members (17, 18, 19, 20, 21, 24, 25, 26, 49).
Take the bending stiffness and the torsion stiffness as the constraints, and set the allowable
limit values of constraint condition with respect to bending stiffness and torsion stiffness
are 6000 N/mm and 2500 Nm/deg, respectively. The configurations of the BHGA are listed
in Table 10.

Table 10. The configurations of BIW optimization.

Prob. FP Pc1 Pc2 Pm1 Pm2 c ε ∆ Popsize MaxGen

BIW 20 0.95 0.85 0.2 0.01 1 0.0001 0.5 40 200

The mass convergence curve for the optimization process is obtained, as depicted
in Figure 10. Moreover, the optimized values of the cross-sections are listed in Table 11,
where the initial and bounds values of design variables are also listed. According to the
optimized and initial values of the cross-sections, it can be seen that the mass of the auto-
body decreases by about 14.8 kg (from 111.6 kg to 96.8 kg). Consequently, the results
indicate that it is effective to use the BHGA for the lightweight design of the BIW structure.
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Table 11. The initial bounds and optimized values of the design variables.

No.

Design Variable

a (mm) b (mm) t (mm)

Initial LB UB Optimum Initial LB UB Optimum Initial LB UB Optimum

1 80 70 90 70.0091 50 40 60 40.3296 2 1 3 1.2210
2 50 40 60 40.0002 60 50 70 50.0298 2 1 3 1.1240
3 50 40 60 58.9283 60 50 70 50.3071 2 1 3 1.5336
4 50 40 60 43.0401 100 90 110 90.0902 2 1 3 1.4500
5 50 40 60 40.0000 140 130 150 130.0087 2 1 3 1.1200
6 50 40 60 59.0542 80 70 90 70.3845 2 1 3 1.6700
7 50 40 60 50.4979 80 70 90 77.0980 2 1 3 1.7085
8 50 40 60 40.0013 80 70 90 70.7770 2 1 3 2.2068
9 50 40 60 50.8359 60 50 70 50.0000 2 1 3 1.1000

6. Conclusions

The TBTMM is used to establish the relationship between the section properties and
structural mechanical performances to improve the calculation accuracy. The bending and
torsional stiffness errors of the mathematical simulation model and the finite element model
are 6.9% and 2.1%, respectively, which are within the reasonable error range. Moreover,
as the optimal solutions of the constrained optimization problems are usually distributed
along the constraint boundary, a more general and simpler constrained optimization algo-
rithm BHGA is proposed based on a hybrid genetic algorithm and LS. Twenty problems
(six unconstrained, eleven constrained, and three engineering-constrained problems) are
benchmark tested and compared with well-regarded algorithms, which proves the effec-
tiveness of this algorithm. Finally, BHGA is used in the lightweight design of vehicle BIW,
providing initial design parameters for the vehicle conceptual design stage.

This paper only considers the static performances of BIW with single-cell thin-walled
beams and describes its lightweight design as a single objective optimization problem.
In further studies, we will focus on two aspects. On the one hand, we will improve
the mechanical model of the BIW, such as establishing the static transfer matrix and
dynamic transfer matrix of thin-walled beams with arbitrary cross-sections, improving
the joint mechanical transfer model of the thin-walled beam, and establishing the transfer
matrix of the curved thin-walled beam. On the other hand, we will combine other genetic
operators and diversity-maintaining strategies to improve the BHGA and develop its
parallel processing capability.
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