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Abstract: Industrial robots typically perform a variety of tasks and occupy critical positions in modern
manufacturing fields. When certain failures occur in the internal structures of robots, it tends to result
in significant financial loss and the consumption of human resources. As a result, timely and effective
fault diagnosis is critical to ensuring the safe operation of robots. Deep learning-based methods are
currently being widely used by researchers to address some shortcomings of traditional methods.
However, due to realistic factor limitations, few researchers take the failure pattern of rotating
machinery and the location of fault joints into account at the same time, so the fault types of multi-
joint robots are not thoroughly investigated. In this case, we proposed a dynamic simulation method
that considers the effects of bearing failures at various faulty joint locations and makes it possible to
investigate more possible failure cases of multi-joint robots. In addition, we used LSTM and DCNN
to perform staged fault diagnosis tasks, allowing us to gradually locate faulty joints and investigate
detailed failure forms. According to the experimental results, distinguishable vibration signals
corresponding to various fault states are successfully obtained, and our implemented algorithms are
validated for their advanced performance in diagnosis tasks via comparative experiments.

Keywords: robot dynamics; fault diagnosis; rolling element bearing; deep learning; long short-term
memory; deep convolutional neural network

1. Introduction

Industrial robots have been widely used in the manufacturing system of the current
production process due to their high levels of efficiency, accuracy, and flexibility, and carry
out numerous critical tasks such as welding [1], polishing [2], assembling [3], spraying [4],
carrying [5], and so on. When certain industrial robots malfunction, it often results in a
stalled production line, the consumption of human and material resources, and even the
personal safety of employees. The rotating joints, as the main component of the mechanical
transmission system, are the critical structure for transferring motion and force for a multi-
joint robot. Rolling element bearings are the most likely to lose efficacy among the rotating
machinery included in the joints due to volatile loads and speeds. As a result, it is critical
to implement timely and effective fault diagnosis to monitor the running state of industrial
robots, particularly the health state of bearings located in rotating joints, in order to ensure
the long-term safe and reliable operation of mechanical equipment.

At present, the issue of fault diagnosis has attracted widespread attention from re-
searchers in engineering application fields, and more diagnostic methods have been pro-
posed. Wu et al. [6] proposed a dynamic model for squirrel-caged induction to analyze
broken-rotor-bar and turn-to-turn short faults. Song et al. [7] proposed a new heavy tail
degradation model for predicting rolling bearings’ useful life. Furthermore, machine learn-
ing is a technology that can automatically learn features from collected data and create
an intelligent prediction model. Jaber et al. [8] proposed a method for detecting gearbox
faults in the PUMA 560 robot that uses a discrete wavelet transform (DWT) to extract time-
frequency features and an artificial neural network (ANN) to realize fault classification.
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Hsu et al. [9] used multi-class support vector machines (SVMs) in conjunction with principal
component analysis (PCA) to diagnose several real aging-related faults on a six-axis robot,
and the experimental results validated their findings effectively. Lu et al. [10] designed
an enhanced k-nearest neighbor (KNN) embedded with a sparse filtering extractor that
can select the health state label of rotating machinery adaptively based on the optimized
correlation vectors. Fang et al. [11] used data dimension reduction and random forest (RF)
to detect loose screw faults in the SCARA robot, and the applied design shows a good
performance. However, the above-mentioned methods have limitations in complicated
feature extraction and insufficient generalization, so deep learning (DL)-based methods are
proposed to address these shortcomings.

DL is an important branch of machine learning that has expanded the field of artificial
intelligence applications. Because of its end-to-end characteristics and adaptive feature
extraction abilities, DL can significantly reduce reliance on human intervention and has
numerous successful application cases in the fault diagnosis field [12]. Jiao et al. [13] used
an improved D-S evidence theory and a deep belief network (DBN) to predict bearing
failure on the industrial robot’s joint, eventually achieving an average accuracy of about
98%. Pan et al. [14] developed a deep convolutional neural network (DCNN)-based
fused sensor and actuator fault diagnosis model for the robot joint and demonstrated
its effectiveness by achieving high fault recognition accuracy. Hong et al. [15] developed
an attitude data-based intelligent fault identification approach by training a deep sparse
auto-encoder network (DSAE), which has effective performance for multi-joint robot fault
identification. Xia et al. [16] proposed a novel deep perceptual adversarial domain adaptive
(DPADA) method for fault diagnosis of robot bearings under varying conditions, which
outperforms convolutional neural network (CNN) and conditional domain-adversarial
network (CDAN)-based methods.

Even though these DL-based methods have increased the practicability and gener-
alizability of the algorithm, there are still several issues and deficiencies that have not
been addressed. It has been discovered that researchers tend to investigate failures on a
few specific joints without considering the state of others in a multi-joint robot, resulting
in insufficient attention to the overall system’s running state. Furthermore, few works
simultaneously take the failure pattern of rotating machinery and the location of fault joints
into account so that the amount of identifiable failure patterns is limited. It is difficult
to collect characteristic signals corresponding to the fault state under more complicated
conditions due to the limitations of some realistic factors. Therefore, we proposed a novel
dynamic modeling method for multi-joint robots that can simulate rotating machinery
faults on different robot joints and allow us to investigate more types of faulty operating
states. Furthermore, we used DL-based methods to complete the diagnosis tasks in stages
and achieved high accuracies to validate the superior performance of the used models. In
summary, the following are the main contributions of this work:

1. The failure mechanism of rotating machinery is investigated, with the rolling ele-
ment bearing serving as the primary research object. The effects of bearing failures
corresponding to different faulty joint locations are considered in the multi-joint
robot’s dynamic simulation, so that more possible failure modes can be investigated
by collecting vibration signals from all joints.

2. We developed a staged workflow for detecting bearing failures in multi-joint robots.
The long short-term memory (LSTM) network is introduced in the first stage to
recognize the health status of each joint and lock the positions of faulty joints. In the
second stage, the signals of the faulty joint are extracted separately, time-frequency
imaging is implemented, and then DCNN is used to identify the detailed failure form
of the roller element bearings of the faulty joints. This allows for the determination of
both fault locations and causes.

3. In addition to LSTM and DCNN, other fault diagnosis methods such as back-propagation
neural network (BPNN), support vector machine (SVM), and naive Bayes classifier (NBC)
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are tested and used as comparing algorithms to provide a comprehensive performance
evaluation.

The remainder of this paper can be summarized as follows: Section 2 introduces the
research object and methods used in this work, such as the kinetic and dynamic analysis of
the multi-joint robot, the fundamental theories of the deep learning algorithms used, LSTM
and CNN, and the general procedure of the research workflow in this work. Section 3
explains the rolling bearing fault principle and demonstrates the dynamic simulation
process of a multi-joint robot with bearing failure. Section 4 focuses on the experimental
results obtained, including data visualization, the introduction of some experimental
details, algorithm performance validation, and result comparisons. Section 5 presents the
conclusions and future work.

2. Research Object and Methods
2.1. Brief of the Multi-Joint Robot

The multi-joint robot is essentially a mechanical arm with numerous connecting rods
and joints. The 6-axis robot has a broader range of applications in industrial production
due to its greater movement flexibility. In this study, a 6-axis multi-joint industrial robot
named “Gluon-6L3” is used as an analysis object, and the real product and simulation
model figures are shown in Figure 1, where the lower three joints primarily determine the
position of the end executor and the upper three joints affect the attitude. The driving and
transmission mechanisms in the robot are prone to failure during operation due to the
effect of load and torque, which can be expressed as changes in motion attitude. Hence,
it is worthwhile to figure out the kinematic and dynamic characteristics of the multi-joint
robot to analyze the fault principle of defective elements.
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Figure 1. The figure of the real product and the simulation model of the multi-joint robot.

To analyze the displacement and velocity relationship between the links of the ma-
nipulator, the Denavit-Hartenberg (D-H) parameter method [17] is adopted to describe
the relative translation and rotation of joints. After the establishment of a localized coordi-
nate system, the relationship and transformation mechanism of any adjacent links can be
obtained and expressed as the following homogeneous matrix:

i−1
iT =


cθi −cαisθi sαisθi aisθi
sθi cαicθi −sαicθi aisθi
0 sαi cαi di
0 0 0 1

 (1)

where i−1
iT represents the transfer matrix from the i − 1st frame to the ith frame, four

parameters ai, αi, di, and θi, denote the rod length, torsional angle, offset distance, and joint
angle, respectively. cθ and sθ are the shorthand form of cos θ and sin θ, respectively.
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The local coordinate systems are established on the motor centers of joints, and then
the rod parameters are measured for kinetic modeling, which is shown in Table 1.

Table 1. The rod parameters of the 6R-robot.

Rod θi/ ◦ αi/ ◦ ai/mm di/mm Range of θi/ ◦

1 θ1 90 0 158.5 −140~140
2 θ2 0 173 0 −90~90
3 θ3 0 173 0 −140~140
4 θ4 90 0 79.2 −140~140
5 θ5 −90 0 79.2 −140~140
6 θ6 0 0 41.7 −360~360

Furthermore, the relationship between joint torques and motions of the multi-joint
robot can be described as the following standard form:

τ = M(q)
..
q + C

(
q,

.
q
)
+ G(q) (2)

where τ is the generalized moment vectors on each joint, and q,
.
q, and

..
q are the vectors

of joint displacement, velocity, and acceleration, respectively. M(q) is the inertia matrix,
C
(
q,

.
q
)

is the centrifugal and Coriolis vector, and G(q) is the gravity vector [18]. By
implementing the abovementioned dynamic equations, the required driving torques of
each joint can be calculated according to the planned motion.

2.2. Deep Learning-Based Algorithm
2.2.1. Long Short-Term Memory Network

LSTM is a deep learning algorithm that is commonly used to deal with time series
learning problems. The LSTM introduces a gating mechanism to control the forgetting and
updating of information. Several internal functions, such as the forgetting gate, the input
gate, and the output gate, can work together to regulate the information flow inside the
cell and make the LSTM selectively accept information from previous time steps. Figure 2
depicts the basic components of the LSTM network’s hidden node structure [19].
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In Figure 2, the parameters x(t), c(t), and h(t) represent the input vector, state vector,
and output vector, respectively. h(t) at time step t is the fusion of xt, forgetting gate f (t),
input gate i(t), output gate o(t), memory cell c̃(t), and h(t−1) from the last time step. The
calculating formulas are expressed as follows:

f (t) = σ
(

W f

[
h(t−1), x(t)

]
+ b f

)
(3)

i(t) = σ
(

Wi

[
h(t−1), x(t)

]
+ bi

)
(4)
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o(t) = σ
(

Wo

[
h(t−1), x(t)

]
+ bo

)
(5)

c̃(t) = tan h
(

Wc

[
h(t−1), x(t)

]
+ bc

)
(6)

c(t) = i(t) c̃(t) + f (t)c(t−1) (7)

h(t) = o(t)·tan h
(

c(t)
)

(8)

where W f , Wi, Wo, and Wc are weight matrixes of f (t), i(t), o(t), and c̃(t), respectively; b f , bi,
bo, and bc are corresponding bias terms; and σ is the sigmoid function.

2.2.2. Convolutional Neural Network

CNN is a commonly used deep learning algorithm in image processing. Because
of the characteristics of local receptive fields, weight sharing, and sparse connections, it
typically has fewer parameters than a fully connected network [20]. As shown in Figure 3,
the classical CNN structure consists of convolutional layers, pooling layers, and fully
connected layers.
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The convolutional layers are comprised of convolution filters with multiple kernels,
and they extract abstract features from input graphs. The pooling layers can reduce
the redundant information of feature data and improve the calculation efficiency of the
algorithm. Their mathematical calculations are as follows:

xl
j = f

 ∑
i∈Mj

xl−1
i ∗ kl

ij + bl
j

 (9)

xl
j = f

(
βl

jdown
(

xl−1
i

)
+ bl

j

)
(10)

where Mj represents the localized receptive area; kl
ij and bl

j are the weight and bias value of the

lth layer, respectively. xl−1
i is the pixel value of feature images, operator * represents convolution

operation, f (·) is the activation function, and down(·) indicates the subsampling operation of
maximum pooling. After the multiple convolutional and pooling operations, the fully connected
layers receive the extracted features and output predicted results as a classifier.

2.3. General Procedure of Diagnosis Process

To achieve the accurate fault diagnosis of rotating machinery failure in joints, the
vibration signals are needed to reflect the running state of the multi-joint robot. On account
of the difficulties to acquire data corresponding to the failure state in reality, the virtual
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prototype of a 6-axis multi-joint industrial robot was built in the simulation environment to
explore the influence of joint failure.

The related parameters used for dynamics modeling are measured in Solidworks,
and the required driving torques of each joint are calculated by the robotics toolbox [21]
in MATLAB. By importing driving torques and adding fault excitation into robot joints,
the running state of the multi-joint robot with bearing failure occurring in the joint can be
simulated through the dynamic analysis in ADAMS. The vibration signals collected by
acceleration sensors are selected as the feature variables to be used in fault diagnosis.

The fault diagnosis of the multi-joint robot is divided into two stages. The first stage
is implementing LSTM to investigate the whole state of the robot. The collected vibration
signals of all joints are merged as the multi-channel time series to build a fault dataset for
training LSTM so that it can recognize the health state of all joints at once. If there is an
anomaly discovered, like some abnormal shakes or noises, LSTM should preliminarily lock
the approximate scope by pointing out which joint is anomalous.

Then, in the second stage, DCNN will be adopted to separately diagnose the detailed
fault pattern of this faulty joint, such as a scratch or wear occurring on the surface of
the inner race or outer race of the motor bearing in this robot joint. DCNN can only
recognize the state of one joint due to its function, and the form of its input data are
two-dimensional images transformed from single-channel vibration signals of the faulty
joint through continuous wavelet transform (CWT). In this way, the staged fault diagnosis
process can be achieved from whole to part, and the workflow chart of the abovementioned
procedure is summarized in Figure 4.
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3. Dynamic Simulation of Fault States
3.1. Contact Deformation of Bearing Failure

The bearing failure accounts for about 40% of mechanical failures according to the sur-
vey, and over 90% of the faults in rolling bearings occur in the inner and outer raceway [22].
Therefore, the types of bearing faults analyzed in this work are mainly single-point faults
occurring in the inner and outer rings of bearings.

It is assumed that the inner race keeps rotating at a constant speed and the outer ring
is stationary under the external radial load. Each ball performs pure rolling without slip,
and the effect of weight is ignored. The scratch defect model of the raceway surface of the
inner and outer race of the bearing is shown in Figure 5.
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At the early stage of the scratch formation, the defect is usually localized so that
the roller elements will pass through the defect area without touching the bottom [23].
When the roller element is in contact with the damaged point on the raceway surface, an
additional elastic deformation will be generated. Due to the Hertz theory, the additional
contact force P caused by the defect is calculated as follows [24]:

P = πκE

√
2εRδ3

9F3 (11)

δ =
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2

(
1− cos

wb
d

)
± d
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(
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)
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where δ is the additional contact deformation caused by failure; E is the parameter deter-
mined by the elastic modulus and Poisson ratio; R is the effective radius of curve; ε and F
are the complete elliptic integral of the first and second kind, respectively; d denotes the
diameter of the raceway where the defect is located; wd represents the width of the failure;
and “+” and “−” correspond to the scratch located in the inner and outer race, respectively.

3.2. Excitation Signals of Bearing Failure
3.2.1. Outer Race Fault

As the roller elements keep rotating, a series of impacts will occur at a certain frequency,
and different fault locations correspond to different characteristic frequencies. When a fault
occurs in the outer ring of the bearing, the magnitude and direction of the impulse force
caused by the fault point will not change because of the fixed position of the outer ring. A
series of impacts generated by outer race fault (OF) can be expressed as [25]:

∆o(t) =
∞

∑
k=1

Poδ

(
t− k

fo

)
(13)

fo =
Z
2

fr

(
1− db

Dm
cos α

)
(14)

where Po is additional contact force caused by OF; δ(t) represents the impulse function
occurring when t = 0; fo is the OF characteristic frequencies and determines the interval
between the two adjacent impacts; k represents the positive integer number; fr is the shaft
frequency; Z is the number of rolling elements; α is the contact angle, for a deep groove
bearing α = 0; Dm is the pitch diameter; and db is the diameter of a rolling element. The OF
excitation signal and response signal are shown as Figure 6.
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3.2.2. Inner Race Fault

When the fault point is located in the inner ring, the fault point will move with the
continuously rotating inner race, and the sensor is usually fixed on the shell that remains
stationary. Therefore, when the fault point and the sensor orientation have an angle, the
sensor can only receive the component force of the pulse force, and a series of impacts
generated by inner race fault (IF) can be expressed as:

∆i(t) =
∞

∑
k=1

Piδ

(
t− k

fi

)
|cos(2π frt)| (15)

fi =
Z
2

fr

(
1 +

db
Dm

cosα

)
(16)

where Pi is additional contact force caused by IF, and fo is the IF characteristic frequencies.
The IF excitation signal and response signal are shown as Figure 7.
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Figure 7. IF Excitation signal and response signal. (a) The excitation signal of IF; (b) The response
signal of IF impact.

The geometrical parameters of the deep groove ball bearing, whose designation is 6205-
2RS, are taken to obtain the characteristic frequencies of bearings, where Dm = 39.04 mm,
db = 7.94 mm, and Z = 9. Additionally, the material attributes of bearing steel GCr15 [26]
are used to calculate the additional contact load caused by failures, where the elastic modu-
lus is 207GPa and the Poisson ratio is 0.29. Therefore, when wd = 0.5 mm and fr = 30 Hz,
the OF characteristic frequency and contact force are fo = 107.54 Hz, Po = 0.4311 N, respec-
tively, and for IF, fi = 162.46 Hz, Pi = 0.7950 N.

3.3. Simulation of Joint with Bearing Failure

The fault states of the robot joint are simulated through the dynamics analysis in the
ADAMS environment. First of all, the driving torques of all joints and fault excitation
signals of bearing outer and inner race faults are imported as spline functions to the data
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units, and they will be used as the applied load to affect the running states of joints. The
process of applying torques and excitations is achieved by setting general forces in the
robot joints.

The general force is a type of force vector with multi-components, including X-force,
Y-force, and Z-force as the 3 component forces, and X-torque, Y-force, and Z-force as the
3 component torques, as shown in Figure 8. Due to the X-axis being prescribed in the same
direction as rotation axis of joint, the X-torque is assigned the value of driving torque by
the AKISPL function. When this joint is healthy, other components of general force should
be zero.
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Figure 8. Diagram of the general force set in robot joint.

If the fault state of this joint needs to be investigated, for example, if the bearing inside
has an OF, the periodical impacts will occur in the radial direction of the bearing which
is perpendicular to the X-axis, so the Y-force or Z-force can be assigned the value of the
excitation signal of the outer race fault. In fact, any vector through the origin in the yoz
plane can be taken as the direction of excitation signals, and that is determined by the
orientation of the fault point in the outer raceway. The case of IF is a similar case. However,
the direction of excitation will continuously change due to the rotation of the inner race, so
the inner race fault should be synthesized by two variational components (Excitation_C1
and Excitation_C2). The set principles of the joint state are listed in Table 2.

Table 2. The set principle of the joint health state.

Component Health State OF in Y-Axis OF in Z-Axis IF

X-force 0 0 0 0
Y-force 0 OF Excitation 0 IF Excitation_C1
Z-force 0 0 OF Excitation IF Excitation_C2

X-torque Driving Torque Driving Torque Driving Torque Driving Torque
Y-torque 0 0 0 0
Z-torque 0 0 0 0

By exerting different impacts on different joints, the running statues with different
fault locations or different fault types are simulated. In this way, the data can be acquired
corresponding to different labels, which will be predicted by the diagnosis algorithms.
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3.4. Vibrational Data Acquirement

To achieve the movement of the robot, the driving torques of the joints are calculated
according to the planned motion. The motion is comprised of the angular displacements
of six joints, and there are two different groups of motions taken as analysis examples,
which are substituted into dynamics equations to solve the corresponding joint torques. It
is assumed that the robot in realistic industrial applications tends to work with a group of
planned actions repeatedly, and the length of their motion cycle is assumed to be 10 s. In
this way, the curves of applied motions of one cycle are shown in Figure 9.
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The sample interval is 0.01 s so that one second includes 100 data points finally. The
acceleration data measured on the outer sphere of the six joints are collected to establish
the six-channel datasets, which represents the state of the whole robot system.

Several collected vibration signals in joint 2 with different running states are shown in
Figure 10. It can be observed that the different fault locations have different impacts on the
running state of the robot. Because the generation of failure is related to the motion state of
each joint, the fault impacts from various locations usually occur when the corresponding
joint is moving, and are accompanied by apparent trembles.
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4. Fault Diagnosis of Multi-Joint Robot
4.1. Diagnosis of Faulty Joint Location Based on LSTM
4.1.1. Description of Fault Datasets

The section is the first stage of the diagnosis procedure, and the LSTM network is
adopted to figure out which joint is at fault. To evaluate the performance of the algorithm
more comprehensively, the collected vibrational signals are assembled as single-joint failure
(SF) datasets and multi-joint failure (MF) datasets. Each of them includes a health state and
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six types of fault states, for a total of seven states marked as label number 0~7, where label 0
represents that all joints are healthy. Each failure state contains 1000 samples in the training
set and 200 samples in the testing dataset after data augmentation. The detailed information
about SF and MF datasets is listed in Table 3. This table shows the health states of each joint of
different label, where “0” represents this joint is health and “1” means this joint has a failure.
Moreover, these datasets are further divided into two parts corresponding to two different
groups of motion so that the influence of different planned actions can be observed.

Table 3. The overview of SF and MF dataset.

Dataset Label
Health State of Each Joint (0: Healthy, 1: Faulty)

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

SF

SF1 1 0 0 0 0 0
SF2 0 1 0 0 0 0
SF3 0 0 1 0 0 0
SF4 0 0 0 1 0 0
SF5 0 0 0 0 1 0
SF6 0 0 0 0 0 1

MF

MF1 1 1 0 0 0 0
MF2 0 1 1 0 0 0
MF3 1 1 1 0 0 0
MF4 0 1 1 1 0 0
MF5 1 1 1 1 0 0
MF6 1 1 1 1 1 0

Each sample is an array constituted by multiple one-dimensional time series with
six channels, where each data channel corresponds to the vibration signal of a joint. Each
sequence is composed of 1000 data points intercepted in the time period, so each sample is
a two-dimensional array of size (1000, 6), where the first dimension is the sequence length
corresponding to 1000 data points in the time dimension, and the second dimension is the
feature vector length corresponding to six data channels.

4.1.2. Related Settings of LSTM

The LSTM network is built by Keras, an open-source neural network computing
library in the deep learning framework Tensorflow. The input dimension of the LSTM layer
is set to (None, 1000, 6), the memory vector length is 500, and the output of the last time
step is returned by default. The LSTM layer is regarded as a feature extractor, so it needs
to be followed by a dense layer as a classifier. The number of the neurons in the dense
layer is set to 7, which is the same as the number of label types contained in the dataset.
The activation function softmax is used in the multi-classification problem to return a set
of probability distributions predicting the probability that a sample belongs to each label
category. The finally formed LSTM network is the architecture consisting of two layers and
1,007,006 trainable parameters.

The layers of completed LSTM network is encapsulated into an overall network model
through the network container “Sequential” provided by Keras. Only the instance of the
network model needs to be called to complete the sequential propagation calculation of
data from the first layer to the last layer. The “model.pile()” function is applied to specify
the optimizer, learning rate, error function and evaluation index used by the network, and
then send the training dataset to the network and set the number of epochs through the
“model.fit()” function so that the network model can start to be trained. Table 4 summarizes
the relevant parameter settings for training LSTM network.
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Table 4. The relevant parameter settings for LSTM network.

Parameter Item Value

Learning rate 0.01
Loss function Cross-entropy loss

Optimizer Adam
Epoch 20

Batch size 50
Validation ratio 0.1

4.1.3. Diagnosis Results of Comparative Experiments

Table 5 shows the recognition results obtained by LSTM on SF and MF datasets, which
involve several evaluation criteria like precision, recall, and F1-score. Precision is the ratio
of truly predicted positive samples in all predicted positive results, recall is the ratio of
truly predicted positive samples to all actual positive samples, and F1 is the comprehensive
consideration of them. From these indexes, the details of the misjudgment of the algorithm
can be learned. For example, for the MF dataset of “Motion 2”, the recall of “MF3” and the
precision of “MF5” are relatively low, so the LSTM is likely to misjudge the “MF3” samples
as “MF5” samples. Beyond that, the possibilities of the misjudgment of other situations are
very low.

Table 5. The recognition results of LSTM on SF and MF dataset.

Dataset Label
Motion 1 Motion 2

Precision Recall F1-Score Precision Recall F1-Score

SF

Norm 0.9780 1.0000 0.9889 0.9950 0.9950 0.9950
SF1 1.0000 0.9975 0.9987 0.9950 0.9975 0.9963
SF2 0.9895 0.9450 0.9668 0.9852 0.9975 0.9913
SF3 0.9901 0.9975 0.9938 0.9975 1.0000 0.9988
SF4 1.0000 0.9925 0.9962 0.9975 0.9925 0.9950
SF5 0.9513 0.9775 0.9642 1.0000 0.9975 0.9987
SF6 0.9774 0.9750 0.9762 0.9949 0.9850 0.9899

MF

Norm 0.9707 0.9950 0.9827 0.9974 0.9525 0.9744
MF1 0.9973 0.9175 0.9557 0.9515 0.9800 0.9655
MF2 0.9875 0.9900 0.9888 0.9779 0.9950 0.9864
MF3 0.9366 0.9975 0.9661 0.9602 0.8450 0.8989
MF4 1.0000 0.9825 0.9912 0.9975 0.9975 0.9975
MF5 1.0000 1.0000 1.0000 0.8753 1.0000 0.9335
MF6 0.9925 0.9975 0.9950 0.9872 0.9625 0.9747

In order to more comprehensively verify the effectiveness and advancement of the
LSTM network, multiple comparison algorithms are set up in the experiment process
to carry out the same experiment, and finally the recognition accuracy on the test set
is used as an index for comparative evaluation. The comparative algorithms include
naive Bayes classifier (NBC) [27], support vector machine (SVM), back-propagation neural
network (BPNN), and simple RNN. Among these algorithms, RNN and LSTM can directly
take multi-channel time series as input, so there is no additional processing for collected
vibration signals except simple data normalization when RNN or LSTM is implemented.
However, only one-dimensional arrays can be accepted as input ports in BPNN, SVM,
and NBC, so the original signals need data dimension reduction to be conducted when
these algorithms are used. The wavelet packets decompose (WPT) [28] is applied to
achieve feature extraction by decomposing the signals into several sub-bands with different
frequencies and calculating the corresponding energy entropies. In this way, the results can
be integrated into low-dimensional vectors as input data space.

The final results are shown in Figure 11, where the scenarios, such as different groups
of motions, are illustrated separately. The recognition accuracies are used to evaluate the



Machines 2022, 10, 1215 13 of 18

capabilities of algorithms. It is clear that LSTM shows the most outstanding performance,
achieving the highest accuracy levels across the board, while the simple RNN model
performs slightly worse. The experiments may also reveal that different motions have a
negligible impact, demonstrating that the diagnosis approach is applicable to the general
movements of a multi-joint robot. Based on the results of other algorithms, it is possible
to conclude that diagnosis accuracy decreases as the datasets contain more faulty joints,
owing to the increased recognition difficulties caused by more complicated interference.
The accuracy achieved by BPNN, SVM, and NBC appears to be lower than the first two
algorithms, demonstrating that shallow architectures perform poorly when dealing with
problems with larger data scales. Finally, even in complex situations, LSTM networks can
greatly accelerate fault diagnosis tasks to locate the joint failure of a multi-joint robot.
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4.2. Diagnosis of the Joint Failure Type Based on DCNN
4.2.1. Description of Fault Datasets

Following the precise location of the faulty joint, the next step is to determine the
causes of the failure in order to complete a more specific diagnosis. The running state of
the entire robot is not addressed in this section. Instead, the faulty joint is the primary
analysis object, and the single-channel vibration signals from the faulty joint are used as the
recognition algorithm’s input dataset. According to the fault excitation signals composited
in the previous section, we can simulate several fault patterns, including IF and OF, and
detailed information about general force settings on different joint fault types (JF) is shown
in Table 6. The changes of setting only exist in Y-force and Z-force, so Table 6 only shows
information about these two components. Moreover, these datasets are further divided into
two parts according to SF and MF: the two different cases, namely the two situations that
only this joint has a failure or another joint is also faulty are investigated separately.

In order to obtain sufficient samples, we did manage to collect the vibration signals
from faulty joints from more channels and conduct an overlap sampling method. As a result,
there are 500 samples in the training set and 100 samples in the testing set for each running
state. Subsequently, continuous wavelet transform (CWT) is implemented to transfer
one-dimensional vibration signals into time-frequency images which can simultaneously
represent the feature information of the time-domain and frequency-domain. Each sample
is a matrix with the shape (140, 140, 3), which means each image is 140 × 140 in size and
has 3 RGB color channels. In this way, DCNNs, which are applicable to image recognition,
are used to conduct fault diagnosis in this stage.
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Table 6. The overview of joint fault types.

Label Failure State
Settings of General Force

Y-Force Z-Force

Norm Normal 0 0
JF1 IF IF Excitation_C1 IF Excitation_C2
JF2 OF in Z-axis 0 OF Excitation
JF3 OF in Y-axis OF Excitation 0
JF4 IF + OF OF Excitation + IF Excitation_C1 IF Excitation_C2
JF5 OF + OF OF Excitation OF Excitation

4.2.2. Applications of DCNNs

DCNN is suitable for learning hierarchical representation from images. It can usually
extract general image features such as edges and curves from lower-level layers, which is
suitable for most image classification tasks. Additionally, higher-level images tend to learn more
abstract representations, which is suitable for a few special tasks. Therefore, DCNNs can be
conducted to transfer learning (TL) by transferring weights in the lower level and fine-tuning the
weights of the higher hidden layers. In this way, some powerful DCNNs for image recognition
can be applied to other fields, such as the fault diagnosis problem in this work. In the previous
section, the feature data representing the running states has been transformed to the same data
form as images by CWT, so the relationship between image recognition and fault diagnosis is
established, and TL should be applied under this precondition.

There are multiple DCNNs are available to be called from the Keras library, whose
advanced performance has been verified on a large-scale image recognition dataset named
“ImageNet”, and their weights trained according to it are open-source and available to be
loaded. Hence, the researchers can use them to solve new problems based on these previous
achievements. The DCNNs used in this work include Xception [29], MobileNet [30],
DenseNet121 [31], Resnet50 [32], InceptionV3 [33], and InceptionResNetV2 [34]. These
DCNNs are loaded by removing top layers and replacing them with global average pooling
(GAP), and they are also followed by fully connected layers with softmax regression as
classifiers. Table 7 shows the relevant parameter settings for training DCNNs, and their
performance achieved on the SF fault dataset is shown in Table 8. All of them achieve high
precisions over 99% both on the training set and testing set, and DenseNet121 is selected as
the DCNN model used in comparative experiments by both taking accuracy and model
size into account.

Table 7. The relevant parameter settings for DCNN network.

Parameter Item Value

Learning rate 0.001
Loss function Cross-entropy loss

Optimizer Adam
Epoch 15

Batch size 20
Validation ratio 0.1

Table 8. The recognition accuracies of DCNNs applied on SF dataset.

Model Training Accuracy Training Accuracy Parameters

Xception 1.0 1.0 22,190,480
MobileNet 0.9911 0.9983 3,538,984

DenseNet121 0.9967 0.9983 8,062,504
Resnet50 0.9967 1.0 25,636,712

InceptionV3 0.9959 0.9967 23,851,784
InceptionResNetV2 0.9937 0.9967 55,873,736
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4.2.3. Diagnosis Results of Comparative Experiments

Table 9 illustrates the precisions, recalls, and F1-scores obtained by DCNN both on
SF and MF datasets, and the different motions of multi-joint robots are also separately
treated in this stage. Here, the SF dataset is acquired by setting different excitations of joint
2, and the MF dataset is acquired based on the SF dataset by additionally applying fault
excitations on joint 3. The cases of other joints are available to be observed in a similar way.
It can be seen that DCNN has outstanding performance in most cases, even though the
results of MF are slightly inferior to SF. In addition, the difference in results obtained under
motion 1 and motion 2 is negligible, which further verifies that different motions have little
influence on diagnosis results.

Table 9. The recognition results of DCNN on SF and MF dataset.

Case Label
Motion 1 Motion 2

Precision Recall F1-Score Precision Recall F1-Score

SF

Norm 1.0000 1.0000 1.0000 0.9901 1.0000 0.9950
JF1 0.9900 0.9900 0.9900 1.0000 1.0000 1.0000
JF2 1.0000 0.9900 0.9950 1.0000 0.9800 0.9899
JF3 0.9900 1.0000 0.9950 1.0000 0.8900 0.9418
JF4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
JF5 1.0000 1.0000 1.0000 0.8929 1.0000 0.9434

MF

Norm 0.9588 1.0000 0.9789 1.0000 0.9892 0.9946
JF1 1.0000 1.0000 1.0000 0.9688 0.9300 0.9490
JF2 1.0000 1.0000 1.0000 0.9891 0.9579 0.9733
JF3 0.9787 0.9583 0.9684 1.0000 0.9479 0.9733
JF4 1.0000 0.9811 0.9905 1.0000 0.9151 0.9557
JF5 1.0000 1.0000 1.0000 0.8333 1.0000 0.9091

DCNN is also compared to other algorithms, the results of which are shown in Figure 12.
Among these algorithms, BPNN, SVM, and NBC follow the same principle as described in
the previous section, and the comparative algorithm ‘CNN’ refers to a conventional CNN
architecture that differs from the DCNN implemented in this work in that it only has two
convolutional layers and uses one-dimensional convolution kernels. DCNN has the highest
accuracies of each fault state, and other algorithms have errors under certain conditions.
Most algorithms perform better on SF than MF, but in a few cases, the results may differ.
This phenomenon is most likely caused by the instability of algorithm performance and
the randomness of data. Furthermore, the difference in accuracies on SF and MF in motion
2 appears to be greater than in motion 1, which could be due to different recognition
difficulties in different motion trials. However, anyway, DCNN has been validated as a
suitable algorithm for recognizing the various fault types of rolling bearings.
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5. Conclusions

We conducted a complete procedure in this work, from dynamics modeling to fault
diagnosis, for potential failures likely to exist in the rotating machinery of robot joints,
and several valuable conclusions were obtained through this research process. First of all,
the proposed simulation method is validated as feasible to simulate complex and diverse
fault situations of the multi-joint robot due to the successful acquisition of vibration signals
representing different failure features. Second, the LSTM is certified compatible with high
accuracy in recognizing multi-channel vibration signals in diagnosis tasks such as locating
faulty joints. Third, when time-frequency imaging is used, the DCNNs, which perform
excellently in image recognition, can also be used to diagnose faults in rotating machinery.
As a result, our proposed method for dynamics modeling and fault diagnosis is a feasible
way to develop programs that recognize various types of failure in a mechanical system.

However, all our work is based on data acquired in a virtual simulation environment
that differs from reality and does not take into account the effects of numerous external
disturbance factors. It may cause performance reduction of our trained algorithms when
they are directly used in reality. Therefore, some transfer learning ideas, such as domain
adaptation, are probably necessary for future works to compensate for the difference
between simulation and reality, which requires combining data collected from the real-
world scene.
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SVM Support Vector Machine
DL Deep Learning
DBN Deep Belief Network
DCNN Deep Convolutional Neural Network
CNN Convolutional Neural Network
LSTM Long Short-Term Memory
BPNN Back Propagation Neural Network
NBC Naive Bayes Classifier
D-H Denavit-Hartenberg
OF Outer Race Fault
IF Inner Race Fault
SF Single-Joint Failure
MF Multi-Joint Failure
JF Joint Failure
RNN Recurrent Neural Network
WPT Wavelet Packet Transform
CWT Continuous Wavelet Transform
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