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Abstract: This study consists of constructing and analyzing gear mathematical models of torque split
systems for contact pressure distribution and dynamic transmission error at different gear positions
concerning phase angles. According to the method specified in the AGMA 927 standard, load
distribution is calculated by considering shaft torsion and bending deformations. Partial contact loss
may occur as a result of shaft bending with asymmetric gear positioning on a long shaft. The contact
separation can be decreased by reaction force balancing if the driven gears are in the opposite position
with respect to the drive gear. In the calculation of the dynamic transmission error of the torque
split model, a parametric phase difference for the gear positions is proposed using gear geometry
parameters. The variation of the dynamic response according to the change in the parametric phase
angle in the torque split system is analyzed for the same values of each gear. Small changes in the
phase values change the system response significantly. To obtain lower dynamic transmission error
amplitude, the phase difference and gear positions are examined. The contact pressure distribution is
validated by the finite element method, and the dynamic transmission error is compared with the
experimental study in the literature.

Keywords: spur gear; phase difference; torque split; nonlinear gear dynamics; shaft bending

1. Introduction

The gear system is a key element of power transmission systems in aerospace, auto-
motive, and rail applications in terms of achieving the required speed and torque ratio
from input to output. Gear vibration has an important place in drivetrain systems due to
noise and durability issues. Gear systems generate dynamic forces that are much higher
than static forces in the gear pair under operating conditions. These high-frequency dy-
namic forces are transmitted through the bearings, producing noise in the system. In
addition, variable forces reduce the fatigue life of transmission elements. For this reason,
gear dynamics are important in the design of a quiet and durable gear system. Most
studies in the literature have been performed on gear pairs. However, the effects of systems
such as torque split and idler gear in torque-transferred gear mechanisms should also
be considered.

Some studies involving the load distribution and gear pair stiffness for the gear
pair can be given as follows; Eritenel and Parker [1] investigated the force and torque
distribution, which is non-uniformly distributed along the gear width, in helical gear pairs,
taking into account the partial tooth contact loss. Elastic deformation components in the
system are not formulated in this study. Yuan et al. [2] used the Timoshenko beam theory to
find shaft bending along the width of the gear. The displacements at the gear pair contact
are investigated by considering the gear width in slices. The linear and time-dependent
gear pair stiffness modeling method finds the dynamic transmission error.

Yuan et al. [3] worked on a hybrid model with lumped mass parameters with loaded
tooth contact analysis in cylindrical gears. In addition to the effect of the error along the
face width on the loading, the effects of damping and helix angle in the gear pair are
investigated. Wang et al. [4] considered the gear in slices along the width, and the variation
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of gear pair stiffness with shaft misalignment and crowning is investigated. The stiffness
in the side slices against the relative motion along the face width is taken into account.
An iterative loop is established to determine whether there is tooth contact or not, by
defining an initial value for the deformation in the gear pair and comparing it with the
micro-modification and the misalignment value in the shaft. Thus, the contact status for
each slice is examined.

Some important studies on gear pair dynamics can be given as follows; Kahraman et al. [5]
developed a gear-rotor dynamics model for a gear pair taking into account the compliance
of the bearings and the axial loading of the shaft by inertia. Along with the determination of
the critical speed, the unbalanced load, geometric eccentricity, and transmission error drive at
the contact point are determined. The natural frequency transition due to bearing stiffness is
investigated for three different shaft lengths to evaluate rigidity and flexibility. Ma et al. [6]
examined the variation of the system dynamics with different addendum coefficients, amounts
of tip relief, and profile shifts. The system is modeled without backlash. In the system responses,
it is stated that while it is sufficient to minimize the static transmission error from peak to
peak in the gear pair operating at high frequencies, the tip relief at low frequencies should
be determined according to the gear parameters and system response. Dai and Parker [7]
established a hybrid model in which the tooth contact force is taken from the finite elements
and used in the analytical vibration model. The partial loss of the contact state is obtained
with finite elements, and the force deformation function is used for dynamic modeling. Han
et al. [8] worked on tooth contact analysis by taking the misalignment caused by the assembly,
production, and system deformations in the helical gear pair as variables along the gear width.
Optimization is conducted by a genetic algorithm to minimize the static transmission error and
variance of micro-modifications along the profile and width. Finally, the dynamic transmission
error in the system with 8 degrees of freedom is investigated at different contact misalignments.
Xiong and Gao [9] dynamically modeled the system by considering the non-linear bearing
motion, gear pair eccentricity, gear friction, and gear system motion in torsional and translational
planes. Gear pair stiffness is determined by the potential energy method. Inalpolat et al. [10]
investigated the variation of dynamic transmission error and dynamic gear pair force by giving
a certain ratio of pitch error to a tooth in a gear pair with the same number of teeth. The
measurement results are compared with the gear pair with relatively less pitch error. It is
observed that shaft harmonics increased, and harmonics are obtained in proportion to the
number of teeth of the harmonics in the gear pair. Profile errors caused by manufacturing
defects vary with processing quality. Therefore, the no-load transmission error is defined by
the gear quality. This can be simulated with some assumptions as the resultant of several sine
curves. In addition, statistical studies can be performed for deviations from the actual position
in profile error [11,12].

Previous studies on gear dynamics in systems with three or more gears are as follows:
Kahraman [13] designed three helical gears in two different models with a torque split and
an idle gear. He studied the torsional, axial, and oscillating motion of the system for fixed
gear pair stiffness and studied the effect of the natural frequency and helix angle and phase
difference, and the load on tooth contact and bearings. The static transmission error is
given to the system as a sine wave as an excitation. The responses of the system, which
indicate the phase angle change according to the odd—even number of teeth, are studied.
Chen et al. [14] developed a four-stage helicopter gear model with a hybrid approach
using the finite element method and the lumped mass method. Shaft parameters such as
the shaft’s inner diameter, outer diameter, and length are included in the dynamic model.
Nina [15] conducted an experimental comparison study by establishing the numerical
model of the noise levels in the spur, helical, and spiral bevel gear mechanisms in the
helicopter’s main gearbox as a quasi-static system. Dynamic responses are researched by
determining the phase angle in the torque split model. Brethee et al. [16] modeled the
helical gear pair using 18 degrees of freedom and examined the system responses both
analytically and with the experimental setup. In this study, the effects of torsional and
lateral movements, time-varying gear pair stiffness, time-varying friction force, and wear
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level on the system drive are investigated. As a result of the study, it is stated that there is a
correlation between analytical and experimental results. Spectral peaks at gear transition
frequencies and sidebands are investigated on wear. It is shown that there are significant
increases in the second and third harmonics and sidebands due to wear. Kahraman and
Al-shyyab [17] worked on the system, with two of the four gears on three shafts. Gear
backlash and static transmission error cause non-linear motion in the system. The stability
of the system is studied by reducing the degree of freedom of the system from three to
two, defining it from a semi-determined model to a fully definite model, and solving the
state space equations with the harmonic balance method. Yavuz et al. [18] found that two
of the three gears on three shafts work together. The degree of freedom of the system is
reduced to two degrees, taking into account the gear backlash and static transmission error.
The responses of the system for torque split and the use of an idle gear with the harmonic
balance method are investigated.

Walha et al. [19] modeled the two-stage gear system with 12 degrees of freedom. The
system consisted of an input and output load, three shafts, four gears, and bearings. After
modeling the system to match the non-linear time-dependent gear pair stiffness, the points
where tooth contact loss was studied. Rayleigh damping was used for damping the tooth
in the system. The results of the contact loss points in the frequency band were examined.
Shi et al. [20] investigated the dynamic conditions in drive, disengagement, and back-to-hit
conditions, taking into account friction, time-varying gear pair stiffness, and tooth backlash
to investigate system stability. Kim et al. [21] included the bearing deformation in the
translational motion to obtain the dynamic response of the system. Thus, the system
pressure angle and contact ratio become time-varying parameters in a dynamic model.
Gonzalez et al. [22] aimed to reduce the edge contact with the modification given in gear
production by determining the shaft misalignment.

Many studies have been carried out on a gear pair in the literature such as friction
force, the effect of bearings, time-dependent gear pair stiffness, and damping force. The
studies on the gear pair are generally extended by increasing the degrees of freedom for
the multi-mesh gear systems. Gear systems with more than one gear pair are important to
examine the interactions of the gears with each other. The phase difference between gear
meshes is assumed to be a value of 7t [rad] in the previous studies. This study proposes
an exact value over the gear geometry for the dynamic model of the torque split systems.
The effect of shaft deflection on the contact load distribution in the gear pair is studied
in the literature. As a contribution to this work, load balancing based on the gear-shaft
position in the torque split model is proposed. This study is formed in detail by studying
the dynamic transmission error and pressure distribution in the torque split model. First,
the phase difference between the gear pairs according to the shaft positions is calculated
analytically according to the gear geometry. The dynamic transmission error is investigated
by establishing a time-dependent nonlinear gear dynamics model with three degrees of
freedom of rotation and six degrees of freedom of translational motions of gears, the effect
of friction, and three degrees of freedom of shaft rotational motion equations. The time-
varying gear pair stiffness previously calculated by Weber Banaschek is used in the model.
The transmission error is calculated by numerical integration, and the Runge-Kutta method
is used. In Section 2.1, the dynamic transmission error is modeled at different phase angles
and shaft positions using the gear parameters from the reference work [23]. The shaft
bending and torsional deformations of the gear body are given in Section 2.2, and the
load distribution algorithm in AGMA 927 [24] is used similarly. By creating a deformation
matrix, a third-degree curve is derived for each roll angle and the force is calculated along
the gear width according to the deformation rate. The torque transmitted from the gear
pairs causes shaft bending in the torque split model. The deflection direction, which occurs
after reaction forces in the pinion, is derived analytically directly depending on the gear
position angles. The contact pressure is obtained with half bandwidth according to AGMA
908 [25] standard. In Section 3.1, the dynamic transmission error is validated by comparing
the measured results [26] for the gear pair with our simulations. After that, the system
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dynamics result in the torque split model, and the effects of the phase difference on the
harmonics of each gear pair are studied. In Section 3.2, we aim to show the effect of shaft
bending on the torque split model using longer shafts for pressure distribution. Reaction
forces at different gear position angles are calculated. Each gear parameter in this study is
given the same to show the effect of phase difference in different gear position angles.

2. Modeling

The torque split model is investigated under two main headings, namely, system
dynamics and contact pressure distribution according to the phase difference. All 3 gears
used in the study have the same parameters. A longer shaft is used as in Figure 1b to
specifically observe the shaft bending effect in the contact pressure distribution.

(b)

Figure 1. Gear and shaft models for (a) dynamic transmission error and (b) contact pressure distribu-
tion studies.

2.1. Gear Dynamics Model

If only one gear pair was used in the system, the motion of each gear would be assumed
on the line of action. However, in the system consisting of three gears to be investigated
from different angles, the degrees of freedom are defined in the X and Y directions. When
shaft motions are included, 12 degrees of freedom are modeled in dynamic equations, as
shown in Figure 2. The degrees of freedom in the X direction are not shown in the figure to
avoid complexity. In addition, gear backlash, friction, and time-varying gear pair stiffness
are taken into account.

Figure 2. Schematic of the torque split model for 12 degrees of freedom.
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The steps given in Figure 3 are followed for dynamic transmission error calculation.
Gear pair stiffness and shaft stiffness according to the Weber Banaschek equation are
calculated by the finite element method according to the Timoshenko beam theory. The
value of 108 N/m is used for the bearing stiffness in the radial direction. An analytically
calculated phase difference according to the geometry is defined between the contact
points of both gear pairs. Thus, the time-dependent system response is obtained for both
gear pairs.

P Gear
Constant » Mesh Stiffness |~ Geometry
Torque
i R v '
— Phase
Friction Force > System Difference

Dynamics |—————————— -
Bearing > «— Timoshenko Beam :
Stiffness l : Theory I
| Shaft Stiffness | |
Dynamic - _ _____ _!

Transmission Error

Figure 3. Flow chart for dynamic transmission error calculation.

2.1.1. Calculation of Friction Force in the Gear System

Assuming that there is no power loss in the system, the relation between the theoretical
input and output powers can be written as in Equation (1).

Tows = Tywy 22 + Tawy 2 M
Al Z3

Considering the direction change, the X and Y components of the friction force should
be determined as positive or negative according to the reference axis. The friction coefficient
is usually defined as between 0.03 and 0.07 in the literature. The friction coefficient value of
0.05 is taken as a constant for this study. Equation (2) is taken as an even number before the
reference axis and an odd number after the reference axis. Fsj, represents the tooth that
is in contact and Fsy}, represents the following tooth. The directions of Fsy, and Fsy, will
always be opposite each other.

Fsl,Z = (_1>p . W W1,2 (2)

We assume that the input torque in the system is constant. The new torque output
value at the output is found by taking the difference from the torque value caused by the
friction force. First, there is the normal force transmitted in the system. Afterward, the
normal force in the transmitted gear is considered to be equal and opposite to the pinion.
The new torque value in Equation (3) is obtained for each gear in the torque split model
by subtracting the friction force. The equation for the pinion gear takes into account the
frictional torque generated by two pairs of gears at the same time. The direction and contact
point of the friction force depending on the rotation in a gear pair are shown in Figure 4.
The following abbreviations are used for Figure 4: SAP is the start point of the active profile,
LPSTC is the lowest point of the active profile, HPSTC is the highest point of the active
profile, and EAP is the end of the active profile.
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Fs,, moment arm:r,,.sin 6,
Fs;, moment arm:r5y,.sin 6,

Figure 4. Determination of friction torque relative to the contact point.

The directions of the friction force in the torque split model are given in Figure Al
in Appendix A. In addition, the horizontal and vertical angle components are given in
Figure A2 so that the components of the loads in the X and Y directions can be taken
according to the line of action direction in the torque split model. Only operating pitch
circles are specified in the gears for simplicity. The direction of friction force of each tooth
pair changes after the centerline along the line of action. Using three gears in the system
requires separating force components into X and Y directions. Friction force magnitude
peaks in the single tooth region due to force distribution along the line of action and
becomes zero at the centerline point. Sliding velocity directly depends on the contact point
location on the line of action and its direction also changes going through the centerline.
Sliding velocity reaches the maximum value at the start of the active profile point and the
end of the active profile points.

Ty = Frpey - T2 + FSpa - 124 . sin(02,) + Fspp - 1pp - sin(03p)
Frinew Ibl = T1,0, + FS2a - I1a - 8in(01,4) + Fspp, .11 - sin(61p) 3)
Frew- b3 = T30, + FS2a - 132 . 5in(03,) + Fsypp . r3p . sin(O3p)

2.1.2. Equations of Motion

The friction force in the gear system is modeled by considering the time-dependent
gear pair stiffness and the nonlinear effect caused by the backlash. Since the angle between
the three gears is also considered, the X and Y directions should be taken separately.
Dynamic equations are established by taking into account the rotation of the gears in the X
and Y components and the shaft degrees of freedom in the rotational motion.

In gear pairs, it is named angle y as in Equation (4) to show the angle the line of action
makes with the horizontal plane more simply.

Y1 =1 — o —7/2
Y2 =Wy — Xo3w

(4)
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The dynamic transmission error equations, in which the axial displacements are also
included in the RZ direction, are obtained as in Equation (5) for two gear pairs.

P1 = 1202 — 1101 —e1 + (y; —yy) sin(v1) + (x2 —x1) cos(v1) 5)
Py = 1202 — 1303 — €2 + (y, — y3) cos(v2) + (xa — x3) sin(y2)

The equations of motion in the X and Y directions of each gear-shaft mass,

my X1 + Kpp (x1) + cp1 (x1) —c1( py) cos(vq) — kigy cos(y1) =0
myy; + kp1(y;) +Cbl( 1) *Cl(Pl) Sm(Yl) kig;sin(y;) =0
myXp 4 kpo (X2) + o ( X2) + €1 ( P1) cos(v1) +kigy cos(vq) + c2( p,) sin(vs)
+kog, sin(y;) = (

. . 6
my¥, + kua(y,) + w2 (¥,) + 1 ( py) sin(y1) + kigy sin(yy) + 2 ( p,) cos(yz) ©)
+kog, cos(y,) =0
m3X3 + kp3(x3) + cp3 ( X3) — c2( P,) sin(v2) — kog, sin(y,) =0
m3¥; + Ky (y3) + b3 (¥3) — c2( Pa) cos(v2) — kag, cos(yz) = 0
The equations of motion in the RZ direction for the 3 shafts,
JsinOsin + Csin (ésm —02) + ksin2(8sin — 82) = T2
Jsout185outt + Csoutt ( Osout1 — 01) + Ksout1 (Osouts — 01) = —T1,0 )

]SoutZeSoutZ + csout2 | Osoutz — 03 ) + kSoutZ(eSoutZ - 63) = _T3new

Considering the gear equations T; and T3 output torques are not constant due to friction,
time-varying output torque values are included in the dynamic model in Equation (8).

J101 + Csoutt (91 - éSoutl) + ksout1 (01 — Osout1) — ric1p; — rikigy
= —Fs1a 11a sin(01a) — Fsyp 1qp sin(O1p)
J202 + Csin (92 - ésm) + ksin (02 — Bsin) + 1201 Py + 12k1g; + 1200p, + 12k2 g, ®)
= Fsq, 124 sin(024) + Fsyp, 1o sin(65y,)
J303 + Csoutz (93 - eSoutZ) + ksout2 (03 — Osout2) — r302p, — 13k28,
= —Fspq 134 8in(03a) — Fsgp 13p sin(03p)

The right-hand side of the equation indicates the time-varying friction losses in the
gears. ], represents the mass moment of inertia of the pinion and the mass moments of
inertia of the J; and J; driven gears. It is similar to other indices.

There should be some backlash between the gear pair so that it does not jam during
the system motion. As the torque in the system increases, tooth contact loss in the line of
action decreases. If the torque is not high, tooth contact may be lost and the tooth may hit
the following tooth or not contact the mating gear. The nonlinear displacement factor can
be obtained as given in Equation (9) with gear dynamic modeling. The nonlinear dynamic
factor includes the gear mesh stiffness and backlash. The nonlinear displacement functions
g, and g, for two gear pairs are defined as follows.

pi—bi, p;>b
21 0, _bl < P1 < bl

P1 + by, P < —b1

9
po—b2, ppy>bo ©)
9]

0/ _bz S p2 S b2
P> + b2/ p2 < *bz
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2.1.3. Phase Difference

In the torque split model, the difference when the two gear pairs come into contact
needs to be calculated analytically. Two gear pairs always have the same certain phase
difference between them. The position of the first gear pair is assumed to be on the
centerline. Afterward, a phase difference in radians is defined at which position the second
gear pair is between the contact start and endpoints, and the angle difference between the
mesh stiffness inputs is given in the simulation. The radius on the base circle is found by
multiplying the radius at any point with the cosine of the pressure angle of that point, as in
Equation (10).

Ip = Ij COS &

(10)
Ip COS & = TI'y COS Oy = T},

The pitch amount is equal to the multiplication of the pi number of the module on the
reference circle. It is desired to find the pitch length at any point on the gear as in Figure 5,

27 27
ﬁl‘p COS & = Nrw COS Xy

m cos & = P’ cos oty (11)
,  TUMCOoSs o

COS Oy

Pitch at reference circle

Pitch at any point

Figure 5. Obtaining pitch at any point.

Vibration damping of gears on each other can be achieved by adjusting the phase
angle. As the phase angle changes, torsional vibration decreases, while lateral vibration
increases or vice versa. For this, optimization should be performed between 2 planes [27].

The working pressure angle between gears 2 and 3 is

Tpy + 1
COS 03 w = %270;33 (12)

The working pressure angle between gears 1 and 2 is

b1 + Ib2
COS X120 w — W

(13)
N’ is the pitch number between the 1st contact and the 2nd contact, and ¢ is the phase
difference [rad]. The number of the pitch from the first gear pair contact point to the second
gear pair contact point as shown in Figure 6 is found in Equation (14) and this number

should be rounded down. N
N = { : “’J (14)

27
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04

Z3

Reference Circle
Endpoint

T
b2
Figure 6. Contact status before centerline.

Equation (15), depending on the angle ¢, is obtained by establishing a relation at the
pitch endpoint, not the second gear pair contact point.

. . a7 M .COS &p
121 w- [((P — 03w + 023 any) + (mv X23 any — 1NV 01 w)] =N YT (15)
o = atan( N/Z-2-C0%1c 1 4 xpg o +tan op w — o1 w)
23 any — oS0 w  Tw P 23 w 21w 21 w

If the instantaneous pressure angle in gears 2-3 is smaller than the pressure angle
in the SAP where the contact starts, the number of pitches is increased by one and the
algorithm is repeated starting from the step in Equation (14).

If (0t23any < xsap3, N', N’ +1) (16)

If the pressure angle obtained by Equation (16) is greater than the pressure angle in
the SAP, it is taken as the angle of rotation as in Equation (17).

023 any = tan «z3 any (17)

Thus, the contact between gears 1-2 and 2-3 is obtained by the phase difference in
Equation (18).
@ =02 w— 023 any (18)

2.2. System Deformation

The contact pressure distribution calculation algorithm for the gear pair is given in
Figure 7. Parametric relations depending on the angle are proposed in this section for
the change in contact force at different gear position angles using the same shaft and
gear parameters.
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Constant
Torque

Mesh

Stiffness

Gear

Geometry

d_____ Lo

Load Distribution | Phase
| Difference
|

Timoshenko : |
Beam Theory | |
|

Shaft Stiffness :

Shaft Bending

Torsional | Bearing
Deformation Stiffness

___l____l

Contact
Force

\ 4

Contact
Pressure

Figure 7. Flow chart used for the pressure distribution of the torque split model.

Bending and torsional displacements of the shaft are calculated by Timoshenko beam
theory using the finite element method. The assumptions are as follows:

The axial direction is not included in spur gears because the axial load is too small.
The gear shaft is specified with a single stiffness matrix, assuming that it fits tightly on
the shaft or is produced in one piece. The gear diameter is assumed as the increase in
the diameter of the shaft with the pitch circle.

K is the stiffness matrix with 3 degrees of freedom at each node created for the shaft
and gear body. By defining more finite elements along the width of the gear, displacements
due to deflection are obtained more precisely. The total number of elements is determined
by the shaft length and gear width.

Ky, is the stiffness matrix of the bearing as point support with axial spring values in
Xand Y directions, and only the diagonal elements are taken into account. The assembly
of the joint points of the bearing and shaft in the stiffness matrix is given in Equation (19).
Other elements are ignored, and the bearing is assumed to have no clearance [28].

K=K+ Ky (19)

2.2.1. Torsional Deformation in the Gear Body

The torsional angle is obtained by iterating the applied load distribution along the
gear face width. As shown in Figure 8, the relation of the deformation angle along the gear
face width for the uniform load distribution is obtained in Equation (20).

G- (20)

L
o0 / Fnfr, xdx  Fprpx®
J GJp 3GJ, L

Torsional deformation,
dtorsional = Tany 0 [mm] (21)
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Figure 8. Finding the torsional deformation in the RZ direction with uniform loading,.

Primarily, torsional deformation is calculated with a uniformly distributed load. Here,
the contact force will be non-uniformly distributed due to elastic deformation. After
the load distribution is obtained on the surface, the torsional deformation calculation is
repeated. The updated torsional deformation angle is found according to the contact status,

L

F,, 0t x dx

N e @)
p

The torsional deformation along the face width is interpolated with a third-order
function in Equation (23).
fo = ax® +bx?> +ox+d (23)

where a, b, ¢, and d are the function coefficients, and these parameters can be found by
deriving the curve. The deformation angle in the RZ direction along the gear width is

L L
= _ T 4 3 2
Ogist G]p 0/ F, (x) X dx G]p 0/ (ax 4+ bx” + cx” + dx) dx (24)

The amount of deformation of the gear body in the RZ direction obtained by iteration
is
5torsiona1new = Tany 0 [mm] (25)

2.2.2. Shaft Bending

The gear-shaft stiffness matrix is formed by determining the number of elements
according to the distance to the bearing center from the gear. The resulting shaft stiffness
matrix is inverted and multiplied by the load vector matrix to obtain the displacement at
each node as in Equation (26).

q; = [Kil} [Frew] (26)
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when calculating the deflection of the shaft caused by the load on the line of action, the
difference in the nodes along the gear width from the minimum to the maximum is taken
as in Equation (27).

6bending = (qi - qmin) (27)

The deformation on the tooth caused by the load is the same at each node without
the system deformation component. Contact separation components such as torsional
deformation of the gear body and shaft bending need to add up linearly along the line
of action to obtain the deformation matrix. While the bending on the shaft shown in
Equation (28) causes a loss of contact between the gear surfaces, the torsional deformation
of the gear body changes according to the position of the gear on the shaft.

6total(i,]-) = iétorsion(ilj) - 6bending(i/]-) (28)

After finding the total deformation in the gear pair, the load distribution depending
on the roll angle is calculated in Equation (29), similar to in AGMA 927 [24].

Lsi — Lsj = (8 — &)Cym (29)

where Ls; is the load density [N/mm], §; is the total deformation of the ith slice in the
tooth [um], and Cyn is the contact stiffness. After finding the amount of load at each roll
angle, the contact pressure distribution is calculated using the contact half width and load
distribution as given in AGMA 908 [25].

2.2.3. Tooth Contact Analysis in Torque Split Model

In the torque split model, the angle of the line of action with the horizontal plane
in two gear pairs is specified more simply by giving A; and A; in Equation (30). The
reaction forces in the 1st and 3rd gears, where torque is transferred, change as positive or
negative according to the positions of the gears. In addition, the direction of the line of
action changes according to the position of the gear pair. Therefore, the deflection of the
shafts is calculated according to the direction and angle at each position. The same gear
parameters are used for each gear in the torque split model to better determine the effect of
the phase difference.

A=V —apw— 73
Ay =75 =y — azw (30)

The reaction forces in the torque-transferred gears are divided into X and Y compo-
nents in Equation (31). Considering that gravity is in the -Y direction, m;) g, the weights of
gears and shafts are also taken into account.

R1X = —Fnyp cos(Aq)
R1Y = —Fnjp sin(A1) — myg
R3X = —Fny3 cos(Ay)
R3Y = Fnypj3 sin(Ap) — mzg

(31)

The reaction forces in the pinion are in the opposite direction of the reaction forces of
the other two driven gears as given in Equation (32).

R2X = —R1X — R3X

R2Y = —R1Y — R3Y + myg + m3g — mypg (32)

While the reaction force in the gear is on the line of action, the reaction force in the
pinion is in the opposite direction with the balancing in the two gear pairs. It is used in the
shaft bending calculation by taking into account the component of the reaction force in the
pinion on the line of action of each gear pair. Thus, the contact pattern with the balancing
effect of the system is studied. The angle of the reaction force at the pinion is
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¢ = atan <§§;) (33)

Equation (34) can be used for the component of the reaction force between gears 1-2.
If R2X is a positive value, n is taken as an odd number; otherwise, it is an even number.
From this relationship, the component ratio of the reaction force of the pinion in the 1-2
line of action direction is obtained.

Ifd <0
R21; = cos(m — Ay + ¢)(—1)"
It >0
R2jp = cos(¢p — Ay)(—-1)"

(34)

Shaft bending for the gear pair is multiplied by R21, to find the deflection in the torque
split considering the balancing effect as in Equation (35).

Bbendingipions; = (i — dmin) R212 (35)

The total deflection of the gear pair is obtained in Equation (36) as the sum of the
deflections of the pinion and driven gear shafts. This value is taken into account for the
deflection in tooth contact analysis of the torque split model.

6bending12 = 5bendingpinion12 + 6bendinggear12 (36)

If R2Y is positive, n is taken as an even number; otherwise, it is an odd number. The
component ratio of the reaction force of the pinion in the 2-3 line of action direction is

Ifp <0
R2;3 = cos(Ax + &) (—1)"
Ife >0
R2p3 = cos(mt+ ¢ — Ap)(—1)"

(37)

The total deflection in the gear pair can be obtained by Equation (38) as in the deflection
calculation between 2 and 3.

6bendingpini(m23 = (qi - qmin) R253 (38)
The total amount of shaft deformation caused by shaft bending in the gear pair is
6bending23 = ‘SbendingpmmnB + ‘Sbendinggead?, (39)

3. Numerical Analysis

In this section, the dynamic response of the torque split model and the variation of
the load distribution is given at different gear position angles. Since the phase difference
between the two gear pairs in the system dynamic response is affected by small-angle
differences between LPSTC and EAP in the contact region, different gear position angles
with small increments are used. The gear position angle difference is directly converted to
the radian difference between gear pairs and reflected in the dynamic model as a phase
difference. The direction of the force is investigated by changing the angle difference
between 90 and 180 degrees to emphasize load balancing in tooth surface load distribution.
The gear parameters in Table 1 are used to compare the test data in the dynamic transmission
error measurement given in the reference studies [17,23].
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Table 1. Test gear parameters used in Refs. [17,23].

Pinion/Gear
Number of teeth 50
Module 3
Pressure angle [°] 20
Base circle [mm] 140.95
Tip diameter [mm] 156
Root diameter [mm] 140.68
Gear width [mm)] 20
Young’'s modulus [MPa] 206,000
Poisson coefficient 0.3
Center distance [mm] 150
Backlash at the line of action [mm] 0.136
Contact ratio 1.75

3.1. System Response in the Torque Split

Experimental data on the dynamic transmission error in the literature are used to
validate the system dynamic response in this proposed model using the results from a given
study [26]. The test rig type is a mechanical closed power loop for dynamic transmission
error measurement from a spur gear pair.

The jump phenomenon occurs when the input speed is close to the resonance speed of
the gear system, causing tooth pair separations caused by relative dynamic displacement
during gear rotation. When the input velocity is approximately the main and harmonic
resonance velocities of the system, the jump during acceleration is not the same as during
the deceleration process. The numerical results are compared with the measurement results
from the test system. The amplitude jump phenomenon is seen in the back-and-forth sweep
shown in Figure 9.

25 -~
20 A
‘s
215 4
o 3
H
A e Calculated DTE
v 10 A
E . Reference
> xJJ
0 1 1 1 1 1
0 1000 2000 3000 4000 5000

Rotational Speed [rpm]

Figure 9. Comparison between measured DTE in spur gear pair [26] and calculation.

It can be found that the pattern of dynamic transmission error results matches the
experimental results, especially the frequency ranges of harmonics as seen in Figure 9. The
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results in Figure 10 are obtained by developing the gear dynamic model and using it for
the torque split model. Amplitudes of DTE are specified by unloaded static transmission
error and shift to higher values with higher manufacturing errors. We may obtain closer
results by decreasing the unloaded static transmission error.
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L2 € 100 -
o 80
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A 60 - \ « 12
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250 A
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Figure 10. Cont.
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Figure 10. DTE results in different gear positions. (a) 40-150°. (b) 40-180°. (c) 0-90°. (d) 16-150°.
(e) 30-150°. (f) 15-150°. (g) 14-150°. (h) 0-180°.

The phase difference between gears coming into contact directly changes the frequency
ranges and amplitudes of harmonics and sub-harmonics. This study is performed by
defining a rotational speed-dependent time between gear mesh stiffness. The position
angles of the gear pairs are transformed into phase differences using analytical geometry
relations. Different gear position angles are evaluated such that the phase difference can be
between 0 and a maximum of 0.1257 [rad]. As mentioned before, the same gear parameters
are used for 1-2 and 2-3 gear pairs from Ref [23] with 340 Nm torque input to determine the
effect of the phase difference in the torque split model on the system’s dynamic response.
Peak-to—peak DTE and gear position graphs between phase differences of 0.0349 [rad] at
40-150°, 0.0559 [rad] at 40-180°, 0.0628 [rad] at 0-90°, 0.0768 [rad] at 16-150°, 0.0838 [rad]
at 30-150°, 0.0942 [rad] at 15-150°, 0.1117 [rad] at 14-180°, and 0.1257 [rad] at 0°-180° are
shown in Figure 10 for the torque split model with the given same gear parameters.

As can be seen in Figure 10, the results are not the same as obtained in the 1-2 and
2-3 gear pairs. The magnitude and frequency of subharmonics also vary. Although the
magnitude of subharmonics decreased in some gear pairs, DTE values increased in general
due to the second gear pair excitation. Meanwhile, with a phase difference of 0.0349 [rad],
the amplitude of the subharmonic at 1200 [rpm] increases, the amplitude at 2200 [rpm]
increases between 0.0559 [rad] and 0.0738 [rad], and the amplitude of other harmonics
decreases slightly. The amplitude value at 20002200 [rpm] is relatively less than the phase
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difference between 0.0559 and 0.0738 [rad] for phase differences between 0.0838 [rad]
and 0.0942 [rad]. Accordingly, there is a more stable system response in this frequency
range. Instability is seen at 0.1117 and 0.1257 [rad] phase differences and a 4000 [rpm]
rotational speed.

When the system responses of each phase difference are examined, especially for
0-4000 [rpm] rotational speed, the system is more stable at phase differences between
0.0349 [rad] and 0.0838-0.0942 [rad]. Therefore, optimization of the phase in the design
may reduce vibration and noise. In the example of the torque split gear system, positioning
using the same phase difference in the 0-90 gear position can achieve a better result in
terms of vibration at an operating speed of 1200-1500 [rpm].

3.2. Contact Pressure Distribution in the Torque Split Model

In the proposed model, the components in the line of action direction of the separating
elements from each contact on the tooth surface are combined. These amounts of deforma-
tion can cause non-uniform loaded tooth contact and partial loss of contact on the tooth
surface. In this study, which is conducted using the parameters of Table 1, a smoother
transition in the roll angle is also achieved by applying a 5 um tip relief.

The load distribution algorithm used in this study is validated using the ANSYS®
finite element program. The steps followed in the finite element study are given as follows:

1-  The material assignment is performed after adding model geometry.
2-  Gears are positioned in a single tooth region in Figure 11.
3- The contact areas of the pinion and the driven gear are marked.

0.00 150.00 300.00 (mm)
[ Se— ]
75.00 225.00

Figure 11. Gears in single tooth region. (a) Gear pair. (b) Torque split model.

4-  The friction coefficient is defined as 0.05.

5-  The "Augmented Lagrange’ method on contact, ‘asymmetric” behavior, and ‘nodal-
projected normal from contact’ detection method are determined.

6- Since the Hertz compliance is dependent on the force, its stiffness is updated in
each iteration.

7- The mesh size of 0.06 mm in the gear contact area is used as in Figure 12. In the
gear pair system, there are 4,933,469 total nodes and 3,517,393 elements. There are
10,175,252 total nodes and 7,350,662 elements in the torque split model.

(a) : (b)

Figure 12. (a) Mesh structure on the gear. (b) Torque split model contact regions.
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8- TheXand Y directions are fixed at the endpoints of the shaft to provide support on the
shafts. At the end where torque is applied to the pinion, RX, RY, and RZ are released
in Figure 13. One of both ends of the shaft is released in the Z direction. In the driven
gears, RZ is fixed at the end in the direction of torque flow to simulate the torque
of resistance. RX and RY are released. One of both ends of the shaft is released in
the Z direction. X and Y coordinates represent the lateral plane and can be assumed
perpendicular to the shaft axis. The shaft lays along the Z direction.

u, =0
=0_

Uy

(b)

Figure 13. Boundary conditions. (a) Gear pair. (b) Torque split model.

9- 85 Nm torque for the gear pair and 170 Nm for the torque split are applied to the
pinion from one end in a certain period and the system is loaded.

There is a 99% similarity between the analytical load distribution result as a result of
the analysis performed in the single tooth region with the ANSYS® finite element software
given in Figure 14al,a2. Gear contact loss is approximately half of the face width in the
gear pair contact analysis.

The maximum pressure is 714 [MPa] in the torque split analytical model and 720 [MPa]
in the finite element model as shown in Figure 14al,a2. In the torque split model, the results
at different gear position angles are studied using the analytical approach given in this study.
The maximum pressure is 614 [MPa] in the torque split analytical model and 580 [MPa] in
the finite element model as shown in Figure 14b1,b2. In the torque split model, contact loss
is observed at approximately 1-2 mm. The amount of loss is approximately at this level in
the finite element model.

The pinion location is taken as the reference point, and the effect of the angle between
the gears on the contact pressure with the asymmetrical positioning is shown at 0-180°,
40-180°, 0-150°, and 0-90° angles in the pressure distribution in Figure 15. In this gear
position, since the line of action is opposite in both gears that transmit torque from the
pinion, the deflection of the pinion shaft is negligible. It can be said that only the shaft
deflections of the driven gears affect the contact pattern. The distribution in Figure 15al-a3
with 180° phase difference and asymmetric gear positioning is the case with the least
contact loss.

CONTACT PRESSURE

20.9

Roll Angle [deg] 145 "7 Face Width [mm]

Figure 14. Cont.
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Figure 14. The proposed analytical method comparison with finite element model (a1,a2) Gear pair.
(b1,b2) Torque split 1-2 gear pair. (c1,c2) Torque split 2-3 gear pair.
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Figure 15. Contact pressure distribution in gear pairs 1-2 and 2-3, respectively. (al-a3) 0-180°
positions. (b1-b3) 40-180° positions. (c1-c3) 40-150° positions. (d1-d3) 0-90° positions.

The angle difference of 1-2 and 2-3 gear pairs decreases at 40-180° positions, and with
this positioning in Figure 15b1-b3, the contact loss slightly increased. The difference in
pressure distribution between the two gear pairs is due to the inclusion of the weight effect
in the calculated model.

The pressure distribution at the 40-150° position is examined in Figure 15¢1-c3. Since
the phase difference is less than in the previous example, the maximum contact force value
increased while the partial contact loss increased as expected.

The 0-90° positioned torque split model is studied in Figure 15d1-d3, which has the
biggest phase difference compared to others and shows the highest contact loss. Shaft
bending in the pinion is close to the deflection of the driven gears. The contact pressure
or partial contact loss between gears 1-2 and 2-3 is very close. As a result, the pressure
distribution in the gear pairs according to the position does not seem different if the weight
effect is neglected.
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4. Conclusions

An analytical model was proposed for the gear positions and phase difference to
numerically calculate the system dynamic response in the torque split gear model, which is
especially used in cases such as driving two separate pieces of equipment. Shaft bending
and torsional deformation of the gear body were studied, and the calculations were vali-
dated by the finite element method for the pressure distribution algorithm, similar to the
method in the AGMA 927 standard. The direction of the force in the pinion is determined
by the reaction forces in the driven gears to calculate the load distribution in the torque
split model. The main outcomes can be given as follows:

e  The direction of the shaft bending in the pinion and the load distribution algorithm are
calculated for each gear pair. There is the least reaction force compared to the 0°-180°
positioning in the torque split model, while as this angle decreases, the reaction force
increases in the pinion, and the partial tooth contact loss increases.

e  The angle between gears directly affects the phase difference. The difference in the roll
angle between gears coming into contact is reflected in the dynamic model as a phase
delay. Different dynamic transmission error results occur in gear pairs even if gears
with the same tooth number are used in the torque split model.

e Since the phase difference changes according to parameters such as the number of
teeth and the gear position angle, the effect on the dynamic transmission error in
the gears is obtained by modeling each of them. The positioning of gears can cause
instability in the harmonics of the torque split model. It is possible to obtain a lower
DTE amplitude depending on the location at various operating speed ranges.

The gear parameters are taken as the same and the gear contact is assumed to be
uniformly loaded to determine the effect of the phase difference directly. As a result of
the asymmetrical positioning of the gear on the shaft, the mesh stiffness of the gear pair
changes with partial loss of contact. In a gear pair design with a relatively long shaft, the
shaft deflection effect can be reduced by placing the gear in the center of the shaft. In
systems such as the torque split model, the effect of shaft deflection can be compensated
by positioning the driven gears at an appropriate angle with respect to the drive gear. In
the next study, establishing the dynamic model at different phase angles with the gears
positioned asymmetrically on the shaft and examining the system responses is planned.
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Appendix A

J;, p,: Position angle of the gear

Figure A1. The friction force direction determination.

W

1 90"4'2"'“21\«—

®ywt 1 -2 working pressure angle between gears

Ugaw:2—3

Figure A2. Determining the angles to the line of action direction in the torque split model.
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