
Citation: Ma, L.; Wang, M. State

Estimation of Memristor Neural

Networks with Model Uncertainties.

Machines 2022, 10, 1228. https://

doi.org/10.3390/machines10121228

Academic Editor: Dan Zhang

Received: 24 October 2022

Accepted: 12 December 2022

Published: 15 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

State Estimation of Memristor Neural Networks with
Model Uncertainties
Libin Ma and Mao Wang *

Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150001, China
* Correspondence: maowang@hit.edu.cn

Abstract: This paper is concerned with the problem of state estimation of memristor neural networks
with model uncertainties. Considering the model uncertainties are composed of time-varying delays,
floating parameters and unknown functions, an improved method based on long short term memory
neural networks (LSTMs) is used to deal with the model uncertainties. It is proved that the improved
LSTMs can approximate any nonlinear model with any error. On this basis, adaptive updating laws
of the weights of improved LSTMs are proposed by using Lyapunov method. Furthermore, for the
problem of state estimation of memristor neural networks, a new full-order state observer is proposed
to achieve the reconstruction of states based on the measurement output of the system. The error of
state estimation is proved to be asymptotically stable by using Lyapunov method and linear matrix
inequalities. Finally, two numerical examples are given, and simulation results demonstrate the
effectiveness of the scheme, especially when the memristor neural networks with model uncertainties.

Keywords: memristor neural networks; model uncertainties; long short term memory neural
networks (LSTMs); adaptive updating laws; full-order state observer

1. Introduction

Since the prototype of memristor was born in 1971 by Chua [1], memristor have
been widely used in all walks of life. The vector–matrix multiplication is realized by
the crossbar array structure of memristor, and a neural network can be realized by the
corresponding coding scheme based on it. Various neural networks based on memris-
tor hardware have been developed rapidly. Because of an incomparable advantage that
memristor neural networks can reflect the memorized information, the memristor neural
networks are particularly suitable for self-adaptability, nonlinear systems, self-learning,
and associative storage, so memristor neural networks are widely used in brain simulation,
pattern recognition, neural morphologic computation, knowledge acquisition, and various
hardware applications involving neural networks [2–15]. To list a few, the experimental
implementation of transistor-free metal-oxide memristor crossbars, with device variability
sufficiently low to allow operation of integrated neural networks, in a simple network: a
single-layer perceptron (an algorithm for linear classification) was shown in [16]. In [17], a
structure suppressing the overshoot current was investigated to approach the conditions
required as an ideal synapse of a neuromorphic system. In [18], fully memristive artificial
neural networks were built by using diffusive memristors based on silver nanoparticles
in a dielectric film. The electrical properties and conduction mechanism of the fabricated
IGZO-based memristor device in a 10 × 10 crossbar array were analyzed in [19]. Operation
of one-hidden layer perceptron classifier entirely in the mixed-signal integrated hardware
was demonstrated in [20]. Therefore, the research on memristor neural networks is very
necessary and meaningful. Although many papers have extended the memristor neural
networks and solved some problems, there are still problems in the memristor neural net-
works. Therefore, memristor neural networks including their various kinds of deformation
have broad market prospects. Especially, the research on memristor neural networks with
model uncertainties has become a hot topic.

Machines 2022, 10, 1228. https://doi.org/10.3390/machines10121228 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10121228
https://doi.org/10.3390/machines10121228
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0001-5939-7813
https://orcid.org/0000-0001-6342-8061
https://doi.org/10.3390/machines10121228
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10121228?type=check_update&version=2

Machines 2022, 10, 1228 2 of 28

In recent decades, scholars have carried out a great amount of research and analysis
on memristor neural networks. The results can be broadly divided into four categories:
(1) Stability analysis of memristor neural networks [21–25]; (2) State estimation of memristor
neural networks [26–29]; (3) Synchronization problem of memristor neural networks [30–32];
(4) Control problem of memristor neural networks [33–35]. In practice, time-varying
delays must exist in the hardware implementation of memristor neural networks. Due
to the existence of time-varying delays, the future states of the system are affected by the
previous states, which leads to instability of the system and poor control performance.
Consequently, state estimation of memristor neural networks is of great research value and
a large part of the research has focused on state estimation of memristor neural networks.
Note that the above results are generally based on the known structures and parameters
of memristor neural networks without model uncertainties. In practice, the hardware
implementation of memristor neural networks usually fails to attain the ideal design
values, and there are design deviations. In particular, model uncertainties often exist in the
hardware implementation of memristor neural networks. Therefore, model uncertainties
and model errors are common in hardware memristor neural networks. Similarly, affected
by model uncertainties, state estimation of memristor neural networks is also a challenging
problem. Considering the above analysis, it is needed to study state estimation of memristor
neural networks with model uncertainties.

A great amount of valuable research on state estimation of memristor neural networks
with model uncertainties can be found in [26–29,36–38]. In [26], it used passivity theory to
deal with the state estimation problem of memristor-based recurrent neural networks with
time-varying delays. By using Lyapunov–Krasovskii function (LKF), convex combination
technique and reciprocal convexity technique, a delay-dependent state estimation matrix
was established, and the expected estimator gain matrix was obtained by solving linear
matrix inequalities (LMIs). It is a pity that the model of the system must be determined and
the functions in the system must be known. In [27], for memristor neural networks with
randomness, the random system was transformed into an interval parameter system by
Filippov, and the H∞ state observer was designed on this basis. One of the problems in the
paper is that it is a random interference that affects the system rather than model uncertainty.
The random interference is regular and limited. In [28], for memristor-based bidirectional
associative memory neural networks with additive time-varying delays, a state estimation
matrix was constructed by selecting an appropriate LKF and using the Cauchy-Schwartz-
based summation inequality, and the gain matrix was obtained by the LMIs. The paper
also has the problems mentioned above. In [29], for a class of memristor neural networks
with different types of inductance functions and uncertain time-varying delays, a state
estimation matrix was constructed by selecting a suitable LKF, and the gain matrix was
solved by using the LMIs and Wirtinger-type inequality. Model uncertainty is involved in
the paper, but it is only for the uncertainty of the time-varying delays. In [36], an extended
dissipative state observer was proposed by using nonsmooth analysis and a new LKF.
In [37], based on the basic properties of quaternion-valued, a state observer was designed
for quaternion-valued memristor neural networks, and algebraic conditions were given to
ensure global dissipation. The methods proposed in [36,37] are not suitable for memristor
neural networks with model uncertainties. In [38], for memristor neural networks with
random sampling, the randomness was represented by two different sampling periods,
which satisfied a Bernoulli distribution. The random sampling system was transformed into
a system with random parameters by using an input delay method. On this basis, a state
observer was designed based on the LMIs and a LKF. Through the above discussion, it is
not difficult to find that a similar method is used to estimate the states of memristor neural
networks. By selecting an appropriate LKF, the state observation matrix is constructed
based on the structure of the system, and the gain matrix is solved by utilizing the LMIs.
It can be seen from the above analysis that most studies on state estimation of memristor
neural networks have the same problem, which requires that the system cannot contain the
model uncertainties. Some studies include model uncertainties, which are only for time-

Machines 2022, 10, 1228 3 of 28

varying delays. Other studies also include model uncertainties, which are only about the
fluctuation of parameters. There are few studies on the state estimation of memristor neural
networks whose model uncertainties include time-varying delays, floating parameters and
unknown functions. It has a huge research potential to tap.

When the memristor neural networks are designed and translated into hardware by
the designer, the model uncertainties of the system only include the time-varying delays
and floating parameters. In practice, the situation is not unique. Sometimes it is necessary
to analyze the memristor neural networks designed by other designers. At this time, the
model uncertainties of memristor neural networks include time-varying delays, floating
parameters and unknown functions. The model of the memristor neural networks can be
designed as in Figure 1 [28]. Motivated by the above discussion, the main concern of this
paper is to design a state observer for memristor neural networks with model uncertainties,
which include time-varying delays, floating parameters and unknown functions. Model
uncertainties are composed of current states, past states and unknown functions. In order
to approach the model uncertainties that contain memory information, improved long
short term memory neural networks (LSTMs) are proposed. It is theoretically proved that
the improved LSTMs can approach the model uncertainties with arbitrary error. Memristor
neural networks with model uncertainties can be transformed into a new system with an
improved LSTMs. On this basis, a full-order state observer is designed according to the
output of the system. An error matrix of the states is constructed by a designed LKF, and
the gain matrix is solved by the LMIs. In order to make the new system more accurate, a
new error matrix of the states is constructed by using Young’s inequality based on a LKF.
On this basis, adaptive updating laws of the weights of improved LSTMs are designed to
reduce the errors of the states. The main contributions of this paper are as follows.

Figure 1. Circuit of memristor neural networks [28].

1. Improved LSTMs are proposed for memristor neural networks with model uncertain-
ties. It is proved that the improved LSTMs can well approach the model uncertainties
in memristor neural networks. Model uncertainties include time-varying delays,
floating parameters and unknown functions. It has not been seen in other studies.

2. By utilizing the LMIs and a LKF, a full-order observer based on the output of the sys-
tem is presented to obtain state information and solve the problem of state estimation.

3. By using Young’s inequality and a designed LKF, adaptive updating laws of the
weights of improved LSTMs are given to obtain the new system with improved
LSTMs precisely.

This paper is organized as follows. In Section 2, the problem is formulated, and several
essential assumptions and lemmas are listed. Section 3 presents the primary theorems,
including improved LSTMs, observer design for memristor neural networks with model
uncertainties, and adaptive updating laws of the weights of improved LSTMs. In Section 4,

Machines 2022, 10, 1228 4 of 28

the effectiveness of the proposed scheme is demonstrated through numerical examples.
Finally, the conclusions are drawn in Section 5.

Notation: Rn denotes the n dimensional Euclidean space. For a given matrix A or
vector B, AT and BT denote their transpose, and tr{A} denotes its trace. A < 0 indicate a
negative definite matrix.

2. Preliminaries
Considering the memristor neural networks as follows, the same model can be found

in [26–28,36,37],

ẋ1(t) = −a1x1(t) +
n
∑

j=1
b1j(x1(t)) f j(xj(t)) +

n
∑

j=1
c1j(x1(t))gj(xj(t− τj(t))) + U1

ẋ2(t) = −a2x2(t) +
n
∑

j=1
b2j(x2(t)) f j(xj(t)) +

n
∑

j=1
c2j(x2(t))gj(xj(t− τj(t))) + U2

...

ẋn(t) = −anxn(t) +
n
∑

j=1
bnj(xn(t)) f j(xj(t)) +

n
∑

j=1
cnj(xn(t))gj(xj(t− τj(t))) + Un

y1(t) =
n
∑

j=1
h1jxj(t)

y2(t) =
n
∑

j=1
h2jxj(t)

...

ym(t) =
n
∑

j=1
hnjxj(t)

, (1)

where xi(t)(i = 1, · · · , n) represents the state variable of the memristor neural networks,
and n is the system dimension; ai(i = 1, · · · , n) is the self-feedback coefficient, which satis-
fies ai > 0; f j(xj(t)) and gj(xj(t− τj(t))) (j = 1, · · · , n) represent the activation functions
of states xj(t) and xj(t− τj(t) respectively; bij(xi(t)) represents the memristive synaptic
connection weight between states xi(t) and xj(t), and cij(xi(t)) represents the memristive
synaptic connection weight between states xi(t) and xj(t− τj(t)); τj(j = 1, · · · , n) denotes
the time-varying delay which satisfies 0 6 τj 6 τmax, and τmax is the upper bound constant;
Ui(i = 1, · · · , n) denotes the input of the system, and yi(t)(i = 1, · · · , m) represents the
measurement output of the system; hij(i = 1, · · · , m; j = 1, · · · , n) is the measurement
constant from state xj(t) to output yi(t), and m is the output dimension.

The system (1) can be represented in vector form,{
ẋ(t) = −Ax(t) + Bf(x(t)) + Cg(x(t− τ(t))) + U
y(t) = Hx(t)

, (2)

where A =


a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · an

, B =


b11 b12 · · · b1n
b21 b22 · · · b2n

...
...

. . .
...

bn1 bn2 · · · bnn

, U =


U1
U2
...

Un

,

f(x(t)) =


f1(x1(t))
f2(x2(t))

...
fn(xn(t))

, g(x(t − τ(t))) =


g1(x1(t− τ1(t)))
g2(x2(t− τ2(t)))

...
gn(xn(t− τn(t)))

, y(t) =


y1(t)
y2(t)

...
ym(t)

,

C =


c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
cn1 cn2 · · · cnn

, H =


h11 h12 · · · h1n
h21 h22 · · · h2n

...
...

. . .
...

hm1 cm2 · · · hmn

, x(t) =


x1(t)
x2(t)

...
xn(t)

.

Machines 2022, 10, 1228 5 of 28

As mentioned in the introduction, most studies involve model uncertainties that only
include floating parameters. In the process of neural network hardware implementation
as memristor neural networks, the memristive synaptic connection weights bij and cij will
produce deviations [28]. The fluctuation of parameters bij and cij is regarded as model
uncertainty. This is the starting point of much research on state estimation of memristor
neural networks, such as [26–28,36–38]. Some studies regard time-varying delay τj(t) as
model uncertainty and study state estimation of memristor neural networks based on it, for
example [29]. It should be noted that model uncertainties in all the above studies do not
include fi(xi(t)) and gi(xi(t− τi)). Both fi(xi(t)) and gi(xi(t− τi)) must be known, and
bij and cij float within the ideal range. If fi(xi(t)) and gi(xi(t− τi)) are unknown, and the
ideal values of bij and cij are unknown, the model uncertainties include floating parameters
bij and cij, time-varying delay τj(t) and unknown functions fi(xi(t)) and gi(xi(t− τi)), and
all the above studies are not applicable. The state estimation of memristor neural networks
with model uncertainties including floating parameters, time-varying delays and unknown
functions is the main concern in this paper.

Remark 1. In other studies, model uncertainties only include floating parameters bij and cij or
time-varying delay τj(t). Functions fi(xi(t)) and gi(xi(t− τi)) must be known. In this paper,
model uncertainties include floating parameters bij and cij, time-varying delay τj(t) and unknown
functions fi(xi(t)) and gi(xi(t− τi)).

As shown in system (2), the model uncertainties contain memory information xi(t− τi).
The LSTMs are the most suitable to deal with the model uncertainties. LSTMs are networks
of basic LSTMs cells, and the architecture of a conventional LSTMs cell is illustrated in
Figure 2. A memory cell, an input gate, an output gate and a forgetting gate make up
a LSTMs cell. The forgetting gate, input gate, and output gate respectively determine
whether historical information, input information, and output information are retained [39].
The specific computation is shown in Equation (3).

ft
it
ot
gt

 =


σ
(

W f [xt, ht−1] + b f

)
σ(Wi[xt, ht−1] + bi)
σ(Wo[xt, ht−1] + bo)

tanh
(
Wg[xt, ht−1] + bg

)


ct = ft ⊗ ct−1 ⊕ it ⊗ gt

ht = ot ⊗ tanh(ct),

(3)

where ft denotes the forgetting gate; it and ot represent input gate and output gate, re-
spectively; gt is the updating vector of the LSTM cell; ht is the hidden state vector; ht−1 is
the hidden state vector at step t− 1; xt is the input vector of the LSTM cell; ct is the state
vector of the cell; ct−1 is the state vector of the cell at step t− 1; W is the weight matrix
and b refers to the bias vector; σ and tanh(·) are the sigmoid and tanh activation functions,
respectively; ⊗ and ⊕ represent elementwise multiplication and addition, respectively.

xt

σ σ tanh σ

ft It gt ot

ct

ht

− Ct 1− Ct 1

− ht 1− ht 1

Figure 2. Schematic diagram of a basic LSTMs cell.

Machines 2022, 10, 1228 6 of 28

Remark 2. LSTMs cell is not completely suitable for estimating the states of memristor neural
networks with model uncertainties. LSTMs cell needs to be improved to save computation and be
more suitable for state estimation.

Moreover, in order to improve the LSTMs, design the state observer of memristor
neural networks with model uncertainties, and derive the updating laws of the weights
of the improved LSTMs, some assumptions and lemmas need to be introduced for the
following proof.

Assumption 1. The functions f j(·) and gj(·) satisfy local Lipschitz conditions. For all
k, p ∈ R, have

∣∣ f j(k)− f j(p)
∣∣ 6 K f |k− p| and

∣∣gj(k)− gj(p)
∣∣ 6 Kg|k− p|, where K f and

Kg are Lipschitz constants, and satisfy f j(0) = gj(0) = 0.

f j(·) and gj(·) are the activation functions of memristor neural networks, so Assumption 1
is generally tenable.

Lemma 1 ([40]). k(·) is a continuous function defined on a set Ω. Multilayer neural networks can
be defined as,

k̄ = WTS(VI),

where W and V are the second weight matrix and the first weight vector of the Multilayer neural
networks, respectively; I is the input vector of Multilayer neural networks, and S(·) is the activation
function of Multilayer neural networks.
Then, for a given desired level of accuracy ε > 0, there exist the ideal weights W̄ and V̄ to satisfy
the following inequality,

sup
I∈Ω
‖k(·)− k̄‖ 6 ε.

Lemma 2. (Young’s inequality) For all x, y ∈ R, the following inequality holds,

xy 6
εp

p
‖x‖p +

1
qεp ‖y‖

q,

where ε > 0, p > 1, q > 1, and (p− 1)(q− 1) = 1.

3. Main Result

In this part, improved LSTMs, state observer design for memristor neural networks
with model uncertainties, and adaptive updating laws of the weights of improved LSTMs
will be discussed.

To begin with, the system (2) can be redefined as follows,{
ẋ(t) = −Ax(t) + K(x(t), x(t− τ(t)))) + U
y(t) = Hx(t)

, (4)

where K(·) is a vector of functions, which can be defined as [K1(x(t), x(t − τ(t)))),
K2(x(t), x(t− τ(t)))), · · · , Kn(x(t), x(t− τ(t))))]T.

As mentioned in Remark 1, K(·) is the function vector of model uncertainties formed
by floating parameters bij and cij, time-varying delay τj(t) and unknown functions fi(xi(t))
and gi(xi(t− τi)). In order to approximate the unknown function vector K(x(t), x(t− τ(t)))),
improved LSTMs are proposed, and an improved LSTMs cell is shown in Figure 3.

Machines 2022, 10, 1228 7 of 28

ht

σ

Wt,i

bt,i

tanh
xt

CtCt 1Ct 1

Figure 3. Schematic diagram of an improved LSTMs cell.

Comparing Figures 2 and 3, it can be seen that the input gate it and the hidden state
vector ht−1 at step t− 1 have been removed. Since x(t) is part of K(·) in the form of a
function vector, the input gate can be removed. x(t) should be part of LSTMs cell in the
form of tanh function. The reason why ht−1 is removed is that K(·) contains x(t− τ(t)), so
the functions of ht−1 can be combined into ct−1 to save computation. Remove the output
gate ot and use ht as the output of LSTMs cell to simplify the structure of LSTMs cell.
Therefore, the improved LSTMs cell is made up of the following parts: (1) The state vector
x(t) of the system at time t and the state vector with weights ct−1 of the system at time t− 1
constitute the input of the improved LSTMs cell; (2) ct is the vector that holds the state of
the improved LSTMs cell at time t; (3) ht is the output vector of the improved LSTMs cell
at time t; (4) σ(x(t)) is the forgetting function at time t, which is used to control whether
the memory information stored by the improved LSTMs cell at time t− 1 is added to the
improved LSTMs cell calculation at time t. The specific computation of a simplified and
improved LSTMs cell can be expressed as follows,

ct = Wt,ixt ⊕ ct−1 ⊗ σ(xt)
ht = tanh(Wt,ixt ⊕ ct−1 ⊗ σ(xt)⊕ bt,i),

(5)

where Wt,i = [Wt,i,1, Wt,i,2, · · · , Wt,i,n] denotes the weight vector of the ith cell and bt,i is
a bias constant of the ith cell; xt = [x1(t), x2(t), · · · , xn(t)]

T represents the state vector at
time t.

Based on the simplified and improved LSTMs cell, the improved LSTMs are illustrated
in Figure 4. In Figure 4, each column represents a neural network composed of p improved
LSTMs cells at time j. The outputs of the p improved LSTMs cells pass through the weight
matrix Vj to obtain the output vector of the neural network at time j, which is used to
approximate K(·). The neural network at each time can be connected through cj and cj−1
to form neural networks at all times. xj represents the state vector at time j, and j ∈ [1, t].
ci

j denotes the output of the hidden states of the ith(i ∈ [1, p]) LSTMs cell at time j, and p
is the number of LSTMs cells. Wj,i represents the weight vector of the ith LSTMs cell at
time j. bj,i is the bias of the ith LSTMs cell at time j. hi

j denotes the output of the states of
the ith LSTMs cell at time j. Vj,i,l represents the weight coefficient from the output of the
ith LSTMs cell to the lth system output at time j, and l ∈ [1, m]. yj,l denotes the lth system
output at time j. The improved LSTMs can approximate any nonlinear function by the
following theorem.

Machines 2022, 10, 1228 8 of 28

Figure 4. Schematic diagram of the improved LSTMs.

Theorem 1. k(·) is a continuous nonlinear function defined on a set Ω. Improved LSTMs are
shown in Figure 3. k̄ is an approximate function of k(·) based on the improved LSTMs. Then, for a
given desired level of accuracy ε > 0, there exist the ideal weights W̄j,i(j ∈ [1, t], i ∈ [1, p]) and
V̄j,i,l(j ∈ [1, t], i ∈ [1, p], l ∈ [1, m]) to satisfy the following inequality,

sup
xj∈Ω
‖k(·)− k̄‖ 6 ε. (6)

The proof of Theorem 1 can be found in Appendix A.

Based on Theorem 1, the estimation system for the system (4) can be defined as the
following formula, { ˙̂x(t) = −Ax̂(t) + K̄ + L · [y(t)−H · x̂(t)] + U

ŷ(t) = Hx̂(t)
, (7)

where L ∈ Rn×m denotes the observer gain matrix; K̄ ∈ Rn is an estimated function vector
of K(x(t), x(t− τ(t)))) based on the improved LSTMs, which satisfies Theorem 1. K̄ is
given in Equation (8),

K̄ = V̄T
t · tanh

{
W̄txt +

t−1

∑
i=1

[
W̄ixi ·

t

∏
j=i+1

σ(xj)

]
+ b̄t

}
, (8)

where V̄t ∈ Rp×n and W̄i ∈ Rp×n denote the ideal weight matrices, and b̄t ∈ Rp is the
ideal bias vector.

The function σ(xj) is determined by the time-varying delay τj(t) which satisfies
0 6 τj(t) 6 τmax. σ(xj) is 1 in the range of [t− τmax, t], and σ(xj) is 0 in the rest of the range.
This ensures that all the data in the interval t− τmax to t will be included in the calculation.
Considering the system (4) and the estimation system (7), the error system can be obtained
as follows

e(t) = x̂(t)− x(t),

ė(t) = ˙̂x(t)− ẋ(t)

= [−Ax̂(t) + K̄ + L · [y(t)−H · x̂(t)] + U]

− [−Ax(t) + K(x(t), x(t− τ(t)))) + U]

= −(A + LH)e(t) + [K̄−K(x(t), x(t− τ(t)))].

(9)

Machines 2022, 10, 1228 9 of 28

Assumption 2. For the unknown function Ki(x(t), x(t− τ(t)))) and the estimated function
K̄i (i = 1, 2, · · · , n), there exist Lipschitz constant vectors KL1 and KL2, which satisfy the
following inequality,

|Ki(x(t), x(t− τ(t))))− K̄i| 6 KT
L1|x(t)− x̂(t)|+ KT

L2|x(t− τ(t))− x̂(t− τ(t))|. (10)

Considering Theorem 1, K̄i is an estimated function of the finite error of Ki(x(t), x(t− τ(t))).
Similarly, K̄i is a function of x̂(t) and x̂(t− τ(t)). On this basis, considering Assumption 1,
Assumption 2 is tenable.

Theorem 2. Suppose that Assumption 2 holds for the system (4) and the estimation system (7), if
there exist symmetric positive definite matrices P, Q, M, a diagonal matrix F, a matrix G ∈ Rn×p

and a real constant δ > 0 such that inequality (11) holds,
Ω1 P M M
P −F 0 0
M 0 Ω2 −2M
M 0 −2M −2M

 < 0, (11)

where Ω1 = −ATP−HTGT − PA−GH + Q + 2KL1tr{F}KT
L1, and Ω2 = 2KL2tr{F}KT

L2 −
(1− δ)Q− 2M.

Then, the error system (9) is asymptotically stable with observer gain matrix calculated by
L = P−1G. The proof of Theorem 2 can be found in Appendix B.

Based on Theorem 2, the observer gain matrix L can be obtained. Considering the
function vector K̄ in system (7), the weight matrices W̄i and V̄i are ideal. In fact, the ideal
weights are hard to select, and the estimated weights need to be adjusted by adaptive laws
to be close to the ideal weights. With reference to the system (7), the estimated system can
be redefined as follows{ ˙̂x(t) = −Ax̂(t) + K̂ + L · [y(t)−H · x̂(t)] + U

ŷ(t) = Hx̂(t)
, (12)

where K̂ is an estimated function vector of K̄.
K̂ is given in Equation (13),

K̂ = V̂T
t · tanh

{
Ŵtxt +

t−1

∑
i=1

[
Ŵixi ·

t

∏
j=i+1

σ(xj)

]
+ b̂t

}
, (13)

where V̂t and Ŵi are estimated weight matrices; b̂t is a estimated bias vector.
With reference to the error system (9), the error system can be obtained as follows

by using the Equation (6)

ė(t) = −(A + LH)e(t) +
(
K̂− K̄− ε1

)
, (14)

where ε1 is an error vector.
For error weight matrices Ṽt and W̃i and a error weight vector b̃t, we have

Ṽt = V̂t − V̄t

W̃i = Ŵi − W̄i

b̃t = b̂t − b̄t.

(15)

Machines 2022, 10, 1228 10 of 28

Theorem 3. For the error system (14), the design parameters Nw_i ∈ Rp, Nv_t ∈ Rp and
Nb_t ∈ Rp×n satisfy following inequality Ω3 −P 1

2 ΩT
wvb

−P 0 0
1
2 Ωwvb 0 0

 6 0,

where Ω3 = −(A + LH)TP− P(A + LH),

Ωwvb =



Ωw_t
Ωw_t−1 · σ(xt)

...
Ωw_1 ·∏t

j=2 σ(xj)

Ωv_t
Nb_t


, Ωw_i =


Nw_i 0 · · · 0

0 Nw_i · · · 0
...

...
. . .

...
0 0 · · · Nw_i

,

Ωv_t =




Nv_t 0 · · · 0
0 Nv_t · · · 0
...

...
. . .

...
0 0 · · · Nv_t

− 2


ε2 · P1•
ε2 · P2•

...
ε2 · Pn•


.

The adaptive updating laws of the weights can be given as follows

˙̂Wi = Nw_i · eT(t)− 4V̂tPe(t)xT
i (i = 1, 2, · · · , t)

˙̂Vt = Nv_t · eT(t)− 2ŜteT(t)P
˙̂bt = Nb_t · e(t)− 4V̂tPe(t),

(16)

then the error system (14) is asymptotically stable. The proof of Theorem 3 can be found in
Appendix C.

Considering (16), the adaptive updating laws of the weights are determined by e(t).
Hence, it requires that e(t) is a n-dimensional vector. According to (12), we have

ŷ(t)− y(t) = H · (x̂(t)− x(t)) = H · e(t). (17)

If there exists H−1, the e(t) can be obtained as follows by using (17)

e(t) = H−1 · (ŷ(t)− y(t)). (18)

In general, m is not equal to n, and H−1 does not exist. Hence, (18) does not hold. To
solve this problem, the following assumption is given.

Assumption 3. ŷ(t) and y(t) are continuously differentiable functions and the first derivative of
ŷ(t) and y(t) are bounded and measurable.

Theorem 4. Based on Assumption 3, if the given matrix G is left invertible, the e(t) can be
obtained as follows

e(t) = G−1 · Y, (19)

where G =

[
H

−H(A + LH)

]
and Y =

[
ŷ(t)− y(t)
˙̂y(t)− ẏ(t)

]
. The proof of Theorem 4 can be found in

Appendix D.

Machines 2022, 10, 1228 11 of 28

Remark 3. Based on Theorem 1, the estimated system (12) can be given. By using Theorem 2, the
observer gain matrix L can be obtained. By using Theorems 3 and 4, the adaptive updating laws of
the weights can be obtained.

4. Simulation Analysis

In this section, two numerical cases are presented to verify the rationality of the above results.

4.1. Examples

Example 1. 2-dimensional memristor neural networks are considered, and the parameters
of the system (2) are given as follows,

A =

[
2.3 0
0 2

]
, B =

[
0.31 0.38
0.49 0.32

]
, C =

[
0.32 0.19
0.39 0.25

]
, U =

[
0.2
0.3

]
,

H =
[
1 0.5

]
, f(x(t)) =

[
|x1+1|−|x1−1|

2
|x2+1|−|x2−1|

2

]
, g(x(t− τ(t))) =

[
x1(t− τ1(t))
x2(t− τ2(t))

]
,

τ1(t) = τ2(t) =
0.05t
1 + t

, x(0) =
[

1
1

]
.

Based on the system (2), the estimated system (17) can be designed as follows,

x̂(0) =
[

0.2
0.3

]
, KL1 = KL2 =

[
1
1

]
, δ = 0.1.

By using Theorem 2 and LMIs tools, the parameters of the estimated system (17) can
be obtained,

P =

[
0.03553 −0.00345
−0.00345 0.03629

]
, Q =

[
0.03545 −0.01504
−0.01504 0.04070

]
, F =

[
0.00363 0

0 0.00379

]
,

M =

[
0.00494 −68.44222

68.44222 0.00505

]
, L =

[
−0.88667
−0.75623

]
.

Set sampling time T = 30s and sampling period4T = 0.001s. Considering (18), set
xi = x̂i·4T(i = 1, 2, · · · , t/4T) and σ(xi) = 0(i < t/4T − 30). Based on Theorem 3 and
Theorem 4, set Nw_i and Nv_t and Nb_t are negative unit vectors and matrix.

The state trajectories of the state x(t) and the state observer x̂(t) are drawn in Figure 5.
Figure 6 is drawn for the estimated error between the state x(t) and the state observer x̂(t).
In Figure 7, the trajectories of the derivative of the state ẋ(t) and the derivative of the state
observer ˙̂x(t) are depicted. The trajectories of the error between ẋ(t) and ˙̂x(t) are given in
Figure 8. In Figure 9, the output curve y(t) and the estimated output curve ŷ(t) are given.
Figure 10 shows the estimated error curve between y(t) and ŷ(t).

Figure 5. The state and estimated state curves of the 2-dimensional memristor neural networks.

Machines 2022, 10, 1228 12 of 28

Figure 6. The estimated error curves of the states.

Figure 7. The derivative curves of the states and estimated states.

Figure 8. The error curves of the derivative of the states.

Machines 2022, 10, 1228 13 of 28

Figure 9. The output and estimated output curves.

Figure 10. The error curves of the output.

In order to verify the accuracy of the estimated structure, a test system is designed
based on the gain observation matrix L. Under the same simulation conditions as above,
the effects of the adjusted weights and the random weights on the system are compared.
In Figure 11, the state trajectories of the real system and the estimated system with the
adjusted weights and the system with the random weights are given. Figure 12 shows the
real output curve and the estimated output with the adjusted weights and the output curve
with the random weights.

0 5 10 15 20 25 30
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 11. The state and estimated state with the adjusted weights and state with the random weights curves.

Machines 2022, 10, 1228 14 of 28

0 5 10 15 20 25 30
0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 12. The output and estimated output with the adjusted weights and output with the random
weights curves.

Example 2. 3-dimensional memristor neural networks are considered, and the parameters
of the system (2) are given as follows,

A =

2.5 0 0
0 2.5 0
0 0 3.3

, B =

 0.2 0.15 0.35
0.15 0.35 0.08
0.1 0.15 0.3

, C =

0.125 0.15 0.136
0.35 0.18 0.3
0.2 0.04 0.05

,

H =

[
1 1 1
1 0 1

]
, f(x(t)) =


|x1+1|−|x1−1|

2
|x2+1|−|x2−1|

2
|x3+1|−|x3−1|

2

, g(x(t− τ(t))) =

x1(t− τ1(t))
x2(t− τ2(t))
x3(t− τ3(t))

,

U =

0.2
0.3
0.1

, x(0) =

1
1
1

, τ1(t) = τ2(t) = τ3(t) =
0.05t
1 + t

.

Based on the system (2), the estimated system (17) can be designed as follows,

x̂(0) =

0.4
0.5
0.6

, KL1 = KL2 =

1
1
1

, δ = 0.1.

By using Theorem 2 and LMIs tools, the parameters of the estimated system (17) can
be obtained,

P =

0.51349 0.03364 0.10199
0.03364 0.71344 −0.02472
0.10199 −0.02472 0.39999

, Q =

−0.30425 −0.32097 −0.34837
−0.32097 −0.51236 −0.19432
−0.34837 −0.19432 0.00547

,

F =

0.10879 0 0
0 0.17792 0
0 0 0.20825

, M =

 0.05344 −47.67758 −16.83918
47.67685 0.04188 −39.81878
16.83445 39.83217 0.07044

,

L =

−0.29468 −0.06180
−0.99352 0.98883
0.32407 −0.98883

.

Set sampling time T = 30s and sampling period4T = 0.001s. Considering (18), set
xi = x̂i·4T(i = 1, 2, · · · , t/4T) and σ(xi) = 0(i < t/4T− 30). Based on Theorems 3 and 4,
set Nw_i and Nv_t and Nb_t are negative unit vectors and matrix.

The state trajectories of the state x(t) and the state observer x̂(t) are drawn in Figure 13.
Figure 14 is drawn for the estimated error between the state x(t) and the state observer

Machines 2022, 10, 1228 15 of 28

x̂(t). In Figure 15, the trajectories of the derivative of the state ẋ(t) and the derivative of
the state observer ˙̂x(t) are depicted. The trajectories of the error between ẋ(t) and ˙̂x(t) are
given in Figure 16. In Figure 17, the output curve y(t) and the estimated output curve ŷ(t)
are given. Figure 18 shows the estimated error curve between y(t) and ŷ(t).

Figure 13. The state and estimated state curves of the 3-dimensional memristor neural networks.

Figure 14. The estimated error curves of the states.

Figure 15. The derivative curves of the states and estimated states.

Machines 2022, 10, 1228 16 of 28

Figure 16. The error curves of the derivative of the states.

Figure 17. The output and estimated output curves.

Figure 18. The error curves of the output.

In order to verify the accuracy of the estimated structure, a test system is designed
based on the gain observation matrix L. Under the same simulation conditions as above,
the effects of the adjusted weights and the random weights on the system are compared.
In Figure 19, the state trajectories of the real system and the estimated system with the
adjusted weights and the system with the random weights are given. Figure 20 shows the
real output curve and the estimated output with the adjusted weights and the output curve
with the random weights.

Machines 2022, 10, 1228 17 of 28

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 19. The state and estimated state with the adjusted weights and state with the random weights curves.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.5

Figure 20. The output and estimated output with the adjusted weights and output with the random
weights curves.

4.2. Description of Simulation Results

Figures 5 and 13 show that the estimated state vector is a good approximation of the
real state vector. On the other hand, Figures 6 and 14 verify that the estimation error vector
of states is going to zero. Figures 7 and 15 show that the derivative vector of estimated
states is a good approximation of the derivative vector of real states. On the other hand,
Figures 8 and 16 verify that the estimation error vector of derivative of states is going to
zero. Figures 9 and 17 show that the estimated output vector is a good approximation of
the real output vector. On the other hand, Figures 10 and 18 verify that the estimation
error vector of outputs is going to zero. Figures 11 and 19 show that the estimated state
vector with adaptive weights is better than that with random weights. Figures 12 and 20
show that the output vector with adaptive weights is better than that with random weights.
Simulation results indicate that the state observer proposed in this paper has stronger
adaptability and more accurate estimation results for memristor neural networks with
model uncertainties.

5. Conclusions

The state estimation of memristor neural networks with model uncertainties is dis-
cussed in this paper. In particular, model uncertainties include time-varying delays, floating
parameters and unknown functions. An improved approach based on LSTMs is proposed
to deal with model uncertainties. This paper proves that the improved neural networks can
approximate any nonlinear function with any error. On this basis, a full-order state observer
is proposed to achieve the reconstruction of states based on the measurement output of

Machines 2022, 10, 1228 18 of 28

the system. The adaptive updating laws of the weights of improved neural networks are
proposed based on a LKF. By using LKF and LMIs tools, this paper obtains the asymptotic
stability conditions for the error systems. The simulation results show that by using the
full-order state observer and the adaptive updating laws of the weights, an accurate esti-
mate of the solution can be obtained. The test results show that the model uncertainties
can be approximated accurately. As mentioned in the introduction, the improved LSTMs
designed in this paper can also be realized by crossbar array of memristor, which will be
our next work.

Author Contributions: Conceptualization, methodology, software, validation, formal analysis, inves-
tigation, resources, data curation, writing—original draft preparation, writing—review and editing,
L.M.; visualization, supervision, M.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated during and analysed during the current study
are available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declared no potential conflict of interest with respect to the research,
authorship, and/or publication of this article.

Appendix A. The Proof of Theorem 1

Proof. Considering the Equation (5), the improved neural networks are derived by using
the recursive method.

Take j = 1, we have

c1
1 = W̄1,1x1, h1

1 = tanh
(
W̄1,1x1 + b̄1,1

)
,

c2
1 = W̄1,2x1, h2

1 = tanh
(
W̄1,2x1 + b̄1,2

)
,

...

cp
1 = W̄1,px1, hp

1 = tanh
(
W̄1,px1 + b̄1,p

)
.

Then,

c1 = W̄1x1, h1 = tanh
(
W̄1x1 + b̄1

)
,

where c1 =


c1

1
c2

1
...

cp
1

, W̄1 =


W̄1,1
W̄1,2

...
W̄1,p

 =


W̄1,1,1 W̄1,1,2 · · · W̄1,1,n
W̄1,2,1 W̄1,2,2 · · · W̄1,2,n

...
...

. . .
...

W̄1,p,1 W̄1,p,2 · · · W̄1,p,n

, h1 =


h1

1
h2

1
...

hp
1

,

b̄1 =


b̄1,1
b̄1,2

...
b̄1,p

.

Machines 2022, 10, 1228 19 of 28

And we have

y1,1 = V̄1,1,1 · tanh
(
W̄1,1x1 + b̄1,1

)
+ V̄1,2,1 · tanh

(
W̄1,2x1 + b̄1,2

)
+ · · ·

+ V̄1,p,1 · tanh
(
W̄1,px1 + b̄1,p

)
,

y1,2 = V̄1,1,2 · tanh
(
W̄1,1x1 + b̄1,1

)
+ V̄1,2,2 · tanh

(
W̄1,2x1 + b̄1,2

)
+ · · ·

+ V̄1,p,2 · tanh
(
W̄1,px1 + b̄1,p

)
,

...

y1,m = V̄1,1,m · tanh
(
W̄1,1x1 + b̄1,1

)
+ V̄1,2,m · tanh

(
W̄1,2x1 + b̄1,2

)
+ · · ·

+ V̄1,p,m · tanh
(
W̄1,px1 + b̄1,p

)
.

Then,

y1 = V̄T
1 · tanh

(
W̄1x1 + b̄1

)
,

where y1 =


y1,1
y1,2

...
y1,m

, V̄1 =


V̄1,1,1 V̄1,1,2 · · · V̄1,1,m
V̄1,2,1 V̄1,2,2 · · · V̄1,2,m

...
...

. . .
...

V̄1,p,1 V̄1,p,2 · · · V̄1,p,m

.

Take j = 2, we have

c1
2 = W̄2,1x2 + c1

1 · σ(x2) = W̄2,1x2 + W̄1,1x1 · σ(x2),

h1
2 = tanh

(
W̄2,1x2 + W̄1,1x1 · σ(x2) + b̄2,1

)
,

c2
2 = W̄2,2x2 + c2

1 · σ(x2) = W̄2,2x2 + W̄1,2x1 · σ(x2),

h2
2 = tanh

(
W̄2,2x2 + W̄1,2x1 · σ(x2) + b̄2,2

)
,

...

cp
2 = W̄2,px2 + cp

1 · σ(x2) = W̄2,px2 + W̄1,px1 · σ(x2),

hp
2 = tanh

(
W̄2,px2 + W̄1,px1 · σ(x2) + b̄2,p

)
.

Then,

c2 = W̄2x2 + W̄1x1 · σ(x2), h2 = tanh
(
W̄2x2 + W̄1x1 · σ(x2) + b̄2

)
,

where c2 =


c1

2
c2

2
...

cp
2

, W̄2 =


W̄2,1
W̄2,2

...
W̄2,p

 =


W̄2,1,1 W̄2,1,2 · · · W̄2,1,n
W̄2,2,1 W̄2,2,2 · · · W̄2,2,n

...
...

. . .
...

W̄2,p,1 W̄2,p,2 · · · W̄2,p,n

, h2 =


h1

2
h2

2
...

hp
2

,

b̄2 =


b̄2,1
b̄2,2

...
b̄2,p

.

Machines 2022, 10, 1228 20 of 28

And we have

y2,1 = V̄2,1,1 · tanh
(
W̄2,1x2 + W̄1,1x1 · σ(x2) + b̄2,1

)
+ V̄2,2,1 · tanh(W̄2,2x2

+ W̄1,2x1 · σ(x2) + b̄2,2) + · · ·+ V̄2,p,1 · tanh
(
W̄2,px2 + W̄1,px1 · σ(x2) + b̄2,p

)
,

y2,2 = V̄2,1,2 · tanh
(
W̄2,1x2 + W̄1,1x1 · σ(x2) + b̄2,1

)
+ V̄2,2,2 · tanh(W̄2,2x2

+ W̄1,2x1 · σ(x2) + b̄2,2) + · · ·+ V̄2,p,2 · tanh
(
W̄2,px2 + W̄1,px1 · σ(x2) + b̄2,p

)
,

...

y2,m = V̄2,1,m · tanh
(
W̄2,1x2 + W̄1,1x1 · σ(x2) + b̄2,1

)
+ V̄2,2,m · tanh(W̄2,2x2

+ W̄1,2x1 · σ(x2) + b̄2,2) + · · ·+ V̄2,p,m · ·tanh
(
W̄2,px2 + W̄1,px1 · σ(x2) + b̄2,p

)
.

Then,

y2 = V̄T
2 · tanh

(
W̄2x2 + W̄1x1 · σ(x2) + b̄2

)
,

where y2 =


y2,1
y2,2

...
y2,m

, V̄2 =


V̄2,1,1 V̄2,1,2 · · · V̄2,1,m
V̄2,2,1 V̄2,2,2 · · · V̄2,2,m

...
...

. . .
...

V̄2,p,1 V̄2,p,2 · · · V̄2,p,m

.

Take j = t, we have

c1
t = W̄t,1xt + c1

t−1 · σ(xt)

= W̄t,1xt +
[
W̄t−1,1xt−1 + c1

t−2 · σ(xt−1)
]
· σ(xt)

= W̄t,1xt +
t−1

∑
i=1

[
W̄i,1xi ·

t

∏
j=i+1

σ(xj)

]
,

h1
t = tanh

{
W̄t,1xt +

t−1

∑
i=1

[
W̄i,1xi ·

t

∏
j=i+1

σ(xj)

]
+ b̄t,1

}
,

c2
t = W̄t,2xt + c2

t−1 · σ(xt)

= W̄t,2xt +
[
W̄t−1,2xt−1 + c2

t−2 · σ(xt−1)
]
· σ(xt)

= W̄t,2xt +
t−1

∑
i=1

[
W̄i,2xi ·

t

∏
j=i+1

σ(xj)

]
,

h2
t = tanh

{
W̄t,2xt +

t−1

∑
i=1

[
W̄i,2xi ·

t

∏
j=i+1

σ(xj)

]
+ b̄t,2

}
,

...

cp
t = W̄t,pxt + cp

t−1 · σ(xt)

= W̄t,pxt +
[
W̄t−1,pxt−1 + cp

t−2 · σ(xt−1)
]
· σ(xt)

= W̄t,pxt +
t−1

∑
i=1

[
W̄i,pxi ·

t

∏
j=i+1

σ(xj)

]
,

hp
t = tanh

{
W̄t,pxt +

t−1

∑
i=1

[
W̄i,pxi ·

t

∏
j=i+1

σ(xj)

]
+ b̄t,p

}
.

Machines 2022, 10, 1228 21 of 28

Then,

ct = W̄txt +
t−1

∑
i=1

[
W̄ixi ·

t

∏
j=i+1

σ(xj)

]
,

ht = tanh

{
W̄txt +

t−1

∑
i=1

[
W̄ixi ·

t

∏
j=i+1

σ(xj)

]
+ b̄t

}
,

where ct =


c1

t
c2

t
...

cp
t

, W̄t =


W̄t,1
W̄t,2

...
W̄t,p

 =


W̄t,1,1 W̄t,1,2 · · · W̄t,1,n
W̄t,2,1 W̄t,2,2 · · · W̄t,2,n

...
...

. . .
...

W̄t,p,1 W̄t,p,2 · · · W̄t,p,n

, ht =


h1

t
h2

t
...

hp
t

, b̄t =


b̄t,1
b̄t,2

...
b̄t,p

.

And we have

yt,1 = V̄t,1,1 · tanh

{
W̄t,1xt +

t−1

∑
i=1

[
W̄i,1xi ·

t

∏
j=i+1

σ(xj)

]
+ b̄t,1

}

+ V̄t,2,1 · tanh

{
W̄t,2xt +

t−1

∑
i=1

[
W̄i,2xi ·

t

∏
j=i+1

σ(xj)

]
+ b̄t,2

}
+ · · ·

+ V̄t,p,1 · tanh

{
W̄t,pxt +

t−1

∑
i=1

[
W̄i,pxi ·

t

∏
j=i+1

σ(xj)

]
+ b̄t,p

}
,

yt,2 = V̄t,1,2 · tanh

{
W̄t,1xt +

t−1

∑
i=1

[
W̄i,1xi ·

t

∏
j=i+1

σ(xj)

]
+ b̄t,1

}

+ V̄t,2,2 · tanh

{
W̄t,2xt +

t−1

∑
i=1

[
W̄i,2xi ·

t

∏
j=i+1

σ(xj)

]
+ b̄t,2

}
+ · · ·

+ V̄t,p,2 · tanh

{
W̄t,pxt +

t−1

∑
i=1

[
W̄i,pxi ·

t

∏
j=i+1

σ(xj)

]
+ b̄t,p

}
,

...

yt,m = V̄t,1,m · tanh

{
W̄t,1xt +

t−1

∑
i=1

[
W̄i,1xi ·

t

∏
j=i+1

σ(xj)

]
+ b̄t,1

}

+ V̄t,2,m · tanh

{
W̄t,2xt +

t−1

∑
i=1

[
W̄i,2xi ·

t

∏
j=i+1

σ(xj)

]
+ b̄t,2

}
+ · · ·

+ V̄t,p,m · tanh

{
W̄t,pxt +

t−1

∑
i=1

[
W̄i,pxi ·

t

∏
j=i+1

σ(xj)

]
+ b̄t,p

}
.

Then,

yt = V̄T
t · tanh

{
W̄txt +

t−1

∑
i=1

[
W̄ixi ·

t

∏
j=i+1

σ(xj)

]
+ b̄t

}
,

where yt =


yt,1
yt,2

...
yt,m

, V̄t =


V̄t,1,1 V̄t,1,2 · · · V̄t,1,m
V̄t,2,1 V̄t,2,2 · · · V̄t,2,m

...
...

. . .
...

V̄t,p,1 V̄t,p,2 · · · V̄t,p,m

.

Take σ(xj) = 1, (j = 1, 2, · · · , t), and yt can be reconstituted as follows,

yt = V̄T
t · tanh

{
W̄x + b̄t

}
,

Machines 2022, 10, 1228 22 of 28

where W̄ = [W̄t, W̄t−1, · · · , W̄1], x = [xt, xt−1, · · · , x1]
T.

It can be found that the formula is the basic form of multiple neural networks. There-
fore, the improved LSTMs can be converted into multiple neural networks. Considering
Lemma 1, multiple neural networks can approximate any nonlinear function with any
error. Considering the improved LSTMs, since it can be converted into the multiple neural
networks, the lemma satisfied by the multiple neural networks can also be satisfied by
the improved LSTMs. Therefore, Theorem 1 can be obtained according to the form of
Lemma 1.

Appendix B. The Proof of Theorem 2

Proof. Take a Lyapunov-Krasovskii function,

V(t, e(t)) = eT(t)Pe(t) +
∫ t

t−τ(t)
eT(s)Qe(s),

where P and Q are positive definite matrices.
Based on the error system (9), the derivative of V(t, e(t)) can be obtained as follows,

V̇(t, e(t)) = ėT(t)Pe(t) + eT(t)Pė(t) + eT(t)Qe(t)− eT(t− τ(t))Qe(t− τ(t))

= [−(A + LH)e(t) + (K̄−K(x(t), x(t− τ(t))))]TPe(t)

+ eT(t)P[−(A + LH)e(t) + (K̄−K(x(t), x(t− τ(t))))]

+ eT(t)Qe(t)− eT(t− τ(t))Qe(t− τ(t))

= −eT(t)(A + LH)TPe(t)− eT(t)P(A + LH)e(t) + eT(t)Qe(t)

+ eT(t)P(K̄−K(x(t), x(t− τ(t))))− eT(t− τ(t))Qe(t− τ(t))

+ (K̄−K(x(t), x(t− τ(t))))TPe(t).

By using Assumption 2 and Lemma 2, for a positive definite diagonal matrix F,
we have

[K̄−K(x(t), x(t− τ(t)))]TF[K̄−K(x(t), x(t− τ(t)))]

=
n

∑
i=1

{
Fi[K̄i − Ki(x(t), x(t− τ(t)))]2

}
6

n

∑
i=1

{
Fi

[
KT

L1|x(t)− x̂(t)|+ KT
L2|x(t− τ(t))− x̂(t− τ(t))|

]2
}

6
n

∑
i=1

{
Fi

[
eT(t)KL1KT

L1e(t) + eT(t− τ(t))KL2KT
L2e(t− τ(t))

]}
+

n

∑
i=1

{
Fi

[
2|eT(t)|KL1KT

L2|e(t− τ(t))|
]}

6 2eT(t)KL1tr{F}KT
L1e(t) + 2eT(t− τ(t))KL2tr{F}KT

L2e(t− τ(t)).

And there exists a positive definite matrix M to satisfy the following equation

2
[∫ t

t−τ(t)
ė(s)ds− e(t) + e(t− τ(t))

]
M
[
−
∫ t

t−τ(t)
ėT(s)ds− eT(t− τ(t))

]
= 0.

Machines 2022, 10, 1228 23 of 28

For a real constant δ > 0, combining with the above formulas, we have

V̇(t, e(t)) 6 −eT(t)(A + LH)TPe(t)− eT(t)P(A + LH)e(t) + eT(t)Qe(t)

+ eT(t)P(K̄−K(x(t), x(t− τ(t))))− eT(t− τ(t))(1− δ)Qe(t− τ(t))

+ (K̄−K(x(t), x(t− τ(t))))TPe(t) + 2eT(t− τ(t))KL2tr{F}KT
L2e(t− τ(t))

+ 2eT(t)KL1tr{F}KT
L1e(t)− [K̄−K(x(t), x(t− τ(t)))]TF[K̄−K(x(t), x(t− τ(t)))]

+ 2
[∫ t

t−τ(t)
ė(s)ds− e(t) + e(t− τ(t))

]
M
[
−
∫ t

t−τ(t)
ėT(s)ds− eT(t− τ(t))

]
6 eT(t)

[
−ATP−HTLTP− PA− PLH + Q + 2KL1tr{F}KT

L1

]
e(t)

+ eT(t)P(K̄−K(x(t), x(t− τ(t)))) + (K̄−K(x(t), x(t− τ(t))))TPe(t)

− [K̄−K(x(t), x(t− τ(t)))]TF[K̄−K(x(t), x(t− τ(t)))]

+ eT(t− τ(t))
[
2KL2tr{F}KT

L2 − (1− δ)Q− 2M
]
e(t− τ(t))

+ 2eT(t− τ(t)Me(t) + 2
∫ t

t−τ(t)
ėT(s)dsMe(t)− 2

∫ t

t−τ(t)
ėT(s)dsMe(t− τ(t))

− 2eT(t− τ(t))M
∫ t

t−τ(t)
ė(s)ds− 2

∫ t

t−τ(t)
ėT(s)dsM

∫ t

t−τ(t)
ė(s)ds

6 T ·


Ω1 P M M
P −F 0 0
M 0 Ω2 −2M
M 0 −2M −2M

 · ,

where  =
[
e(t), (K̄−K(x(t), x(t− τ(t)))), e(t− τ(t)),

∫ t
t−τ(t) ė(s)ds

]T
, Ω1 = −ATP −

HTGT − PA − GH + Q + 2KL1tr{F}KT
L1, Ω2 = 2KL2tr{F}KT

L2 − (1 − δ)Q − 2M, and
G = PL.

Considering the above inequality, take
Ω1 P M M
P −F 0 0
M 0 Ω2 −2M
M 0 −2M −2M

 < 0,

then the error system (9) is asymptotically stable, and the proof of Theorem 2 is completed.

Appendix C. The Proof of Theorem 3

Proof. Based on the Equation (15), take a Lyapunov–Krasovskii function(LKF),

V(t, e(t)) = eT(t)Pe(t) + tr{ṼT
t · Ṽt}+ tr{W̃T

t · W̃t}+ b̃T
t · b̃t

+
t−1

∑
i=1

[
tr{W̃T

i · W̃i} ·
t

∏
j=i+1

σ(xj)

]
.

Machines 2022, 10, 1228 24 of 28

By using the error system (14) and the Equation (15), the derivative of V (t; e(t)) can be
obtained as follows,

V̇(t, e(t)) = ėT(t)Pe(t) + eT(t)Pė(t) + tr{ṼT
t · ˙̂Vt}+ tr{W̃T

t · ˙̂Wt}+ b̃T
t · ˙̂bt

+
t−1

∑
i=1

[
tr{W̃T

i ·
˙̂Wi} ·

t

∏
j=i+1

σ(xj)

]
= eT(t)

[
−(A + LH)TP− P(A + LH)

]
e(t) +

(
K̂− K̄

)TPe(t)− εT
1 Pe(t)

+ eT(t)P
(
K̂− K̄

)
− eT(t)Pε1 + tr{ṼT

t · ˙̂Vt}+ tr{W̃T
t · ˙̂Wt}+ b̃T

t · ˙̂bt

+
t−1

∑
i=1

[
tr{W̃T

i ·
˙̂Wi} ·

t

∏
j=i+1

σ(xj)

]
.

Combining (8) and (13), it can be obtained

K̂− K̄ = V̂T
t · tanh

{
Ŵtxt +

t−1

∑
i=1

[
Ŵixi ·

t

∏
j=i+1

σ(xj)

]
+ b̂t

}

− V̄T
t · tanh

{
W̄txt +

t−1

∑
i=1

[
W̄ixi ·

t

∏
j=i+1

σ(xj)

]
+ b̄t

}

= V̂T
t · tanh

{
Ŵtxt +

t−1

∑
i=1

[
Ŵixi ·

t

∏
j=i+1

σ(xj)

]
+ b̂t

}

− V̂T
t · tanh

{
W̄txt +

t−1

∑
i=1

[
W̄ixi ·

t

∏
j=i+1

σ(xj)

]
+ b̂t

}

+ V̂T
t · tanh

{
W̄txt +

t−1

∑
i=1

[
W̄ixi ·

t

∏
j=i+1

σ(xj)

]
+ b̂t

}

− V̂T
t · tanh

{
W̄txt +

t−1

∑
i=1

[
W̄ixi ·

t

∏
j=i+1

σ(xj)

]
+ b̄t

}

+ V̂T
t · tanh

{
W̄txt +

t−1

∑
i=1

[
W̄ixi ·

t

∏
j=i+1

σ(xj)

]
+ b̄t

}

− V̄T
t · tanh

{
W̄txt +

t−1

∑
i=1

[
W̄ixi ·

t

∏
j=i+1

σ(xj)

]
+ b̄t

}

6 2V̂T
t ·
{
(Ŵt − W̄t)xt +

t−1

∑
i=1

[
(Ŵi − W̄i)xi ·

t

∏
j=i+1

σ(xj)

]}
+ 2V̂T

t · (b̂t − b̄t)

+ (V̂T
t − V̄T

t) · tanh

{
W̄txt +

t−1

∑
i=1

[
W̄ixi ·

t

∏
j=i+1

σ(xj)

]
+ b̄t

}

6 2V̂T
t ·
{

W̃txt +
t−1

∑
i=1

[
W̃ixi ·

t

∏
j=i+1

σ(xj)

]}
+ 2V̂T

t · b̃t + ṼT
t · Ŝt − ṼT

t · ε2,

where Ŝt = tanh
{

Ŵtxt +
t−1
∑

i=1

[
Ŵixi ·∏t

j=i+1 σ(xj)
]
+ b̂t

}
and ε2 = Ŝt − S̄t.

Machines 2022, 10, 1228 25 of 28

Considering the above equations, we have

V̇(t, e(t)) 6 eT(t)
[
−(A + LH)TP− P(A + LH)

]
e(t)− eT(t)Pε1 − εT

1 Pe(t)

+ 4
[
V̂T

t W̃txt

]T
Pe(t) + 4

t−1

∑
i=1

[
(V̂T

t W̃ixi)
TPe(t) ·

t

∏
j=i+1

σ(xj)

]

+ 4
[
V̂T

t · b̃t

]T
Pe(t) + 2

[
ṼT

t · Ŝt

]T
Pe(t)− 2

[
ṼT

t · ε2

]T
Pe(t) + tr{ṼT

t · ˙̂Vt}

+ tr{W̃T
t · ˙̂Wt}+ b̃T

t · ˙̂bt +
t−1

∑
i=1

[
tr{W̃T

i ·
˙̂Wi} ·

t

∏
j=i+1

σ(xj)

]
6 eT(t)

[
−(A + LH)TP− P(A + LH)

]
e(t)− eT(t)Pε1 − εT

1 Pe(t)

+ tr
{

W̃T
t ·
[
4V̂tPe(t)xT

t + ˙̂Wt

]}
+ tr

{
ṼT

t ·
[
2ŜteT(t)P + ˙̂Vt

]}
+

t−1

∑
i=1

[
tr
{

W̃T
i ·
[
4V̂tPe(t)xT

i + ˙̂Wi

]}
·

t

∏
j=i+1

σ(xj)

]
− 2εT

2 ṼtPe(t)

+ b̃T
t ·
[
4V̂tPe(t) + ˙̂bt

]
.

Then, adaptive updating laws of the weights are given as follows

˙̂Wi = Nw_i · eT(t)− 4V̂tPe(t)xT
i (i = 1, 2, · · · , t)

˙̂Vt = Nv_t · eT(t)− 2ŜteT(t)P
˙̂bt = Nb_t · e(t)− 4V̂tPe(t),

where Nw_i =


Nw_i,1
Nw_i,2

...
Nw_i,p

 and Nv_t =


Nv_t,1
Nv_t,2

...
Nv_t,p

 denote the design vectors;

Nb_t =


Nb_t,1,1 Nb_t,1,2 · · · Nb_t,1,n
Nb_t,2,1 Nb_t,2,2 · · · Nb_t,2,n

...
...

. . .
...

Nb_t,p,1 Nb_t,p,2 · · · Nb_t,p,n

 denotes the design matrix.

And we have

tr
{

W̃T
t ·
[
4V̂tPe(t)xT

t + ˙̂Wt

]}
= tr

{
W̃T

t Nw_teT(t)
}

= tr




W̃t,1,1 W̃t,1,2 · · · W̃t,1,n
W̃t,2,1 W̃t,2,2 · · · W̃t,2,n

...
...

. . .
...

W̃t,p,1 W̃t,p,2 · · · W̃t,p,n


T

·


Nw_t,1
Nw_t,2

...
Nw_t,p

 ·


e1(t)
e2(t)

...
en(t)


T

=
n

∑
i=1

[
W̃T

t,•,i ·Nw_t · ei(t)
]

Machines 2022, 10, 1228 26 of 28

=


W̃t,•,1
W̃t,•,2

...
W̃t,•,n


T

·


Nw_t 0 · · · 0

0 Nw_t · · · 0
...

...
. . .

...
0 0 · · · Nw_t

 ·


e1(t)
e2(t)

...
en(t)


= T

w_t ·Ωw_t · e(t),
t−1

∑
i=1

[
tr
{

W̃T
i ·
[
4V̂tPe(t)xT

i + ˙̂Wi

]}
·

t

∏
j=i+1

σ(xj)

]

=
t−1

∑
i=1

[
T
w_i ·Ωw_i · e(t) ·

t

∏
j=i+1

σ(xj)

]
,

tr
{

ṼT
t ·
[
2ŜteT(t)P + ˙̂Vt

]}
− 2εT

2 ṼtPe(t) = tr
{

ṼT
t Nv_teT(t)

}
− 2εT

2 ṼtPe(t)

=
n

∑
i=1

[
ṼT

t,•,i ·Nv_t · ei(t)
]
− 2

n

∑
i=1

[
ṼT

t,•,i · ε2 · Pi• · e(t)
]

=


Ṽt,•,1
Ṽt,•,2

...
Ṽt,•,n


T

·




Nv_t 0 · · · 0
0 Nv_t · · · 0
...

...
. . .

...
0 0 · · · Nv_t

− 2


ε2 · P1•
ε2 · P2•

...
ε2 · Pn•


 ·


e1(t)
e2(t)

...
en(t)


= T

v_t ·Ωv_t · e(t),

b̃T
t ·
[
4V̂tPe(t) + ˙̂bt

]
= b̃T

t ·Nb_t · e(t).

The derivative of V (t; e(t)) can be obtained as follows

V̇(t, e(t)) 6 eT(t)
[
−(A + LH)TP− P(A + LH)

]
e(t)− eT(t)Pε1 − εT

1 Pe(t)

+ T
w_t ·Ωw_t · e(t) +

t−1

∑
i=1

[
T
w_i ·Ωw_i · e(t) ·

t

∏
j=i+1

σ(xj)

]
+ T

v_t ·Ωv_t · e(t)

+ b̃T
t ·Nb_t · e(t)

6 eT(t)
[
−(A + LH)TP− P(A + LH)

]
e(t)− eT(t)Pε1 − εT

1 Pe(t)

+



w_t
w_t−1

...
w_1
v_t
b̃t



T

·



Ωw_t
Ωw_t−1 · σ(xt)

...
Ωw_1 ·∏t

j=2 σ(xj)

Ωv_t
Nb_t


· e(t)

6 eT(t)
[
−(A + LH)TP− P(A + LH)

]
e(t)− eT(t)Pε1 − εT

1 Pe(t)

+ T
wvb ·Ωwvb · e(t)

6

e(t)
ε1

wvb

T

·

 Ω3 −P 1
2 ΩT

wvb
−P 0 0

1
2 Ωwvb 0 0

 ·
e(t)

ε1
wvb


6 T

1 ·

 Ω3 −P 1
2 ΩT

wvb
−P 0 0

1
2 Ωwvb 0 0

 · 1.

Machines 2022, 10, 1228 27 of 28

Select appropriate Nw_i, Nv_t and Nb_t to satisfy Ω3 −P 1
2 ΩT

wvb
−P 0 0

1
2 Ωwvb 0 0

 6 0,

then the error system (14) is asymptotically stable, and the proof of Theorem 3 is completed.

Appendix D. The Proof of Theorem 4

Proof. By using Assumption 3 and (14), we have

˙̂y(t)− ẏ(t) = H
(˙̂x(t)− ẋ(t)

)
= H

[
−(A + LH)e(t) +

(
K̂− K̄− ε1

)]
.

By using (17), Theorems 2 and 3, we have[
ŷ(t)− y(t)
˙̂y(t)− ẏ(t)

]
=

[
H

−H(A + LH)

]
e(t).

And we have

Y = G · e(t),

where G =

[
H

−H(A + LH)

]
and Y =

[
ŷ(t)− y(t)
˙̂y(t)− ẏ(t)

]
.

If G is left invertible, there exists G−1 such that e(t) = G−1 · Y, and the proof of
Theorem 4 is completed.

References
1. Chua, L. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [CrossRef]
2. Wu, A.; Wen, S.; Zeng, Z. Synchronization control of a class of memristor-based recurrent neural networks. Inf. Sci. 2012, 183,

106–116. [CrossRef]
3. Wen, S.; Zeng, Z.; Huang, T. Exponential stability analysis of memristor-based recurrent neural networks with time-varying

delays. Neurocomputing 2012, 97, 233–240. [CrossRef]
4. Chen, J.; Zeng, Z.; Jiang, P. Global mittag-leffler stability and synchronization of memristor-based fractional-order neural networks.

Neural Netw. 2014, 51, 1–8. [CrossRef] [PubMed]
5. Wang, F.; Na, H.; Wu, S.; Yang, X.; Guo, Y.; Lim, G.; Rashid, M.M. Delayed switching applied to memristor neural networks. J.

Appl. Phys. 2012, 111, 507–511. [CrossRef]
6. Jiang, M.; Mei, J.; Hu, J. New results on exponential synchronization of memristor-based chaotic neural networks. Neurocomputing

2015, 156, 60–67. [CrossRef]
7. Wu, H.; Li, R.; Ding, S.; Zhang, X.; Yao, R. Complete periodic adaptive antisynchronization of memristor-based neural networks

with mixed time-varying delays. Can. J. Phys. 2014, 92, 1337–1349. [CrossRef]
8. Hu, M.; Chen, Y.; Yang, J.; Wang, Y.; Li, H.H. A compact memristor-based dynamic synapse for spiking neural networks. IEEE

Trans. Comput. Aided Des. Integr. Circuits Syst. 2016, 36, 1353–1366. [CrossRef]
9. Zheng, M.; Li, L.; Xiao, J.; Yang, Y.; Zhao, H. Finite-time projective synchronization of memristor-based delay fractional-order

neural networks. Nonlinear Dyn. 2017, 89, 2641–2655. [CrossRef]
10. Negrov, D.; Karandashev, I.; Shakirov, V.; Matveyev, Y.A. A plausible memristor implementation of deep learning neural networks.

Neurocomputing 2015, 237, 193–199. [CrossRef]
11. Wang, X.; Ju, H.; Yang, H.; Zhong, S. A new settling-time estimation protocol to finite-time synchronization of impulsive

memristor-based neural networks. IEEE Trans. Cybern. 2020, 52, 4312–4322. [CrossRef] [PubMed]
12. Chen, B.; Yang, H.; Zhuge, F.; Li, Y.; Chang, T.-C.; He, Y.-H.; Yang, W.; Xu, N.; Miao, X.-S. Optimal tuning of memristor conductance

variation in spiking neural networks for online unsupervised learning. IEEE Trans. Electron Devices 2019, 66, 2844–2849. [CrossRef]
13. Liu, X.Y.; Zeng, Z.G.; Wunsch, D.C. Memristor-based LSTM network with in situ training and its applications. Neural Netw. 2020,

131, 300–311. [CrossRef] [PubMed]
14. Ning, L.; Wei, X. Bipartite synchronization for inertia memristor-based neural networks on coopetition networks. Neural Netw.

2020, 124, 39–49.
15. Xu, C.; Wang, C.; Sun, Y.; Hong, Q.; Deng, Q.; Chen, H. Memristor-based neural network circuit with weighted sum simultaneous

perturbation training and its applications. Neurocomputing 2021, 462, 581–590. [CrossRef]

http://doi.org/10.1109/TCT.1971.1083337
http://dx.doi.org/10.1016/j.ins.2011.07.044
http://dx.doi.org/10.1016/j.neucom.2012.06.014
http://dx.doi.org/10.1016/j.neunet.2013.11.016
http://www.ncbi.nlm.nih.gov/pubmed/24325932
http://dx.doi.org/10.1063/1.3672409
http://dx.doi.org/10.1016/j.neucom.2014.12.085
http://dx.doi.org/10.1139/cjp-2013-0456
http://dx.doi.org/10.1109/TCAD.2016.2618866
http://dx.doi.org/10.1007/s11071-017-3613-z
http://dx.doi.org/10.1016/j.neucom.2016.10.061
http://dx.doi.org/10.1109/TCYB.2020.3025932
http://www.ncbi.nlm.nih.gov/pubmed/33055055
http://dx.doi.org/10.1109/TED.2019.2907541
http://dx.doi.org/10.1016/j.neunet.2020.07.035
http://www.ncbi.nlm.nih.gov/pubmed/32841836
http://dx.doi.org/10.1016/j.neucom.2021.08.072

Machines 2022, 10, 1228 28 of 28

16. Prezioso, M.; Bayat, F.M.; Hoskins, B.D.; Likharev, K.K.; Strukov, D.B. Training andoperation of an integrated neuromorphic
network based on metal-oxide memristors. Nature 2015, 521, 61–64. [CrossRef] [PubMed]

17. Kim, S.; Park, J.; Kim, T.H.; Hong, K.; Hwang, Y.; Park, B.g.; Kim, H. 4-bit multilevel operation in overshoot suppressed
Al2O3/TiOx resistive random-access memory crossbar array. Adv. Intell. Syst. 2022, 4, 2100273. [CrossRef]

18. Wang, Z.R.; Joshi, S.; Savel’ev, S.; Song, W.; Midya, R.; Li, Y.; Rao, M.; Yan, P.; Asapu, S.; Zhuo, Y.; et al. Fully memristive neural
networks for pattern classification with unsupervised learning. Nat. Electron. 2018, 1, 137–145. [CrossRef]

19. Choi, W.S.; Jang, J.T.; Kim, D.; Yang, T.J.; Kim, C.; Kim, H.; Kim, D.H. Influence of Al2O3 layer on InGaZnO memristor crossbar
array for neuromorphic applications. Chaos Solitons Fractals 2022, 156, 111813. [CrossRef]

20. Bayat, F.M.; Prezioso, M.; Chakrabarti, B.; Nili, H.; Kataeva, I.; Strukov, D.B. Implementation of multilayer perceptron network
with highly uniform passive memristive crossbar circuits. Nat. Commun. 2018, 9, 2331. [CrossRef]

21. Chen, Y.; Chen, G. Stability analysis of delayed neural networks based on a relaxed delay-product-type lyapunov functional.
Neurocomputing 2021, 439, 340–347. [CrossRef]

22. Wang, L.; Song, Q.; Liu, Y.; Zhao, Z.; Alsaadi, F.E. Finite-time stability analysis of fractional-order complex-valued memristor-
based neural networks with both leakage and time-varying delays. Neurocomputing 2017, 245, 86–101. [CrossRef]

23. Meng, Z.; Xiang, Z. Stability analysis of stochastic memristor-based recurrent neural networks with mixed time-varying delays.
Neural Comput. Appl. 2017, 28, 1787–1799. [CrossRef]

24. Chen, C.; Zhu, S.; Wei, Y. Finite-time stability of delayed memristor-based fractional-order neural networks. IEEE Trans. Cybern.
2020, 50, 1607–1616. [CrossRef]

25. Du, F.; Lu, J. New criteria for finite-time stability of fractional order memristor-based neural networks with time delays.
Neurocomputing 2021, 421, 349–359. [CrossRef]

26. Rakkiyappan, R.; Chandrasekar, A.; Laksmanan, S.; Park, J.H. State estimation of memristor-based recurrent neural networks
with time-varying delays based on passivity theory. Complexity 2014, 19, 32–43. [CrossRef]

27. Bao, H.; Cao, J.; Kruths, J.; Alsaedi, A.; Ahmad, B. H∞ state estimation of stochastic memristor-based neural networks with
time-varying delays. Neural Netw. 2018, 99, 79–91. [CrossRef]

28. Nagamani, G.; Rajan, G.S.; Zhu, Q. Exponential state estimation for memristor-based discrete-time bam neural networks with
additive delay components. IEEE Trans. Cybern. 2020, 5, 4281–4292. [CrossRef]

29. Sakthivel, R.; Anbuvithya, R.; Mathiyalagan, K.; Prakash, P. Combined h∞ and passivity state estimation of memristive neural
networks with random gain fluctuations. Neurocomputing 2015, 168, 1111–1120. [CrossRef]

30. Wei, F.; Chen, G.; Wang, W. Finite-time synchronization of memristor neural networks via interval matrix method. Neural Netw.
2020, 127, 7–18. [CrossRef]

31. Wang, J.; Wang, Z.; Chen, X.; Qiu, J. Synchronization criteria of delayed inertial neural networks with generally markovian
jumping. Neural Netw. 2021, 139, 64–76. [CrossRef] [PubMed]

32. Li, L.; Xu, R.; Gan, Q.; Lin, J. Synchronization of neural networks with memristor-resistor bridge synapses and lévy noise.
Neurocomputing 2021, 432, 262–274. [CrossRef]

33. Ren, H.; Peng, Z.; Gu, Y. Fixed-time synchronization of stochastic memristor-based neural networks with adaptive control. Neural
Netw. 2020, 130, 165–175. [CrossRef] [PubMed]

34. Zheng, C.D.; Zhang, L. On synchronization of competitive memristor-based neural networks by nonlinear control. Neurocomputing
2020, 410, 151–160. [CrossRef]

35. Pan, C.; Bao, H. Exponential synchronization of complex-valued memristor-based delayed neural networks via quantized
intermittent control. Neurocomputing 2020, 404, 317–328. [CrossRef]

36. Xiao, J.; Li, Y.; Zhong, S.; Xu, F. Extended dissipative state estimation for memristive neural networks with time-varying delay.
ISA Trans. 2016, 64, 113–128. [CrossRef] [PubMed]

37. Li, R.; Gao, X.; Cao, J.; Zhang, K. Dissipativity and exponential state estimation for quaternion-valued memristive neural networks.
Neurocomputing 2019, 363, 236–245. [CrossRef]

38. Li, H. Sampled-data state estimation for complex dynamical networks with time-varying delay and stochastic sampling.
Neurocomputing 2014, 138, 78–85. [CrossRef]

39. Dai, X.; Yin, H.; Jha, N. Grow and prune compact, fast, and accurate lstms. IEEE Trans. Comput. 2020, 69, 441–452. [CrossRef]
40. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2,

359–366. [CrossRef]

http://dx.doi.org/10.1038/nature14441
http://www.ncbi.nlm.nih.gov/pubmed/25951284
http://dx.doi.org/10.1002/aisy.202100273
http://dx.doi.org/10.1038/s41928-018-0023-2
http://dx.doi.org/10.1016/j.chaos.2022.111813
http://dx.doi.org/10.1038/s41467-018-04482-4
http://dx.doi.org/10.1016/j.neucom.2021.01.098
http://dx.doi.org/10.1016/j.neucom.2017.03.042
http://dx.doi.org/10.1007/s00521-015-2146-y
http://dx.doi.org/10.1109/TCYB.2018.2876901
http://dx.doi.org/10.1016/j.neucom.2020.09.039
http://dx.doi.org/10.1002/cplx.21482
http://dx.doi.org/10.1016/j.neunet.2017.12.014
http://dx.doi.org/10.1109/TCYB.2019.2902864
http://dx.doi.org/10.1016/j.neucom.2015.05.012
http://dx.doi.org/10.1016/j.neunet.2020.04.003
http://dx.doi.org/10.1016/j.neunet.2021.02.004
http://www.ncbi.nlm.nih.gov/pubmed/33684610
http://dx.doi.org/10.1016/j.neucom.2020.12.041
http://dx.doi.org/10.1016/j.neunet.2020.07.002
http://www.ncbi.nlm.nih.gov/pubmed/32679456
http://dx.doi.org/10.1016/j.neucom.2020.05.061
http://dx.doi.org/10.1016/j.neucom.2020.04.097
http://dx.doi.org/10.1016/j.isatra.2016.05.007
http://www.ncbi.nlm.nih.gov/pubmed/27264155
http://dx.doi.org/10.1016/j.neucom.2019.07.036
http://dx.doi.org/10.1016/j.neucom.2014.02.051
http://dx.doi.org/10.1109/TC.2019.2954495
http://dx.doi.org/10.1016/0893-6080(89)90020-8

	Introduction
	Preliminaries
	Main Result
	Simulation Analysis
	Examples
	Description of Simulation Results

	Conclusions
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

