
Citation: von Hahn, T.; Mechefske,

C.K. Machine Learning in CNC

Machining: Best Practices. Machines

2022, 10, 1233. https://doi.org/

10.3390/machines10121233

Academic Editor: Wennian Yu

Received: 26 October 2022

Accepted: 10 December 2022

Published: 16 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Machine Learning in CNC Machining: Best Practices
Tim von Hahn * and Chris K. Mechefske

Department of Mechanical and Materials Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
* Correspondence: t.vonhahn@queensu.ca

Abstract: Building machine learning (ML) tools, or systems, for use in manufacturing environments
is a challenge that extends far beyond the understanding of the ML algorithm. Yet, these challenges,
outside of the algorithm, are less discussed in literature. Therefore, the purpose of this work is to
practically illustrate several best practices, and challenges, discovered while building an ML system
to detect tool wear in metal CNC machining. Namely, one should focus on the data infrastructure
first; begin modeling with simple models; be cognizant of data leakage; use open-source software;
and leverage advances in computational power. The ML system developed in this work is built
upon classical ML algorithms and is applied to a real-world manufacturing CNC dataset. The
best-performing random forest model on the CNC dataset achieves a true positive rate (sensitivity)
of 90.3% and a true negative rate (specificity) of 98.3%. The results are suitable for deployment
in a production environment and demonstrate the practicality of the classical ML algorithms and
techniques used. The system is also tested on the publicly available UC Berkeley milling dataset. All
the code is available online so others can reproduce and learn from the results.

Keywords: manufacturing; machine learning; tool wear; MLOps

1. Introduction

Machine learning (ML) is proliferating throughout society and business. However,
much of today’s published ML research is focused on the machine learning algorithm. Yet,
as Chip Huyen notes, the machine learning algorithm “is only a small part of an ML system
in production” [1]. Building and then deploying ML systems (or applications) into complex
real-world environments requires considerable engineering acumen and knowledge that
extend far beyond the machine learning code, or algorithm, as shown in Figure 1 [2].

Configura�on Data Collec�on

Data 
Verifica�on

Machine 
Resource

Management
Serving 

Infrastructure

Monitoring

Process 
Management Tools

Analysis Tools

Feature Extrac�on

ML 

Code

Figure 1. The machine learning algorithm (called “ML code” in the figure) is only a small portion
of a complete ML system. A complete ML application, to be used in a manufacturing environment,
contains many other components, such as monitoring, feature extraction components, and serving
infrastructure, for example. (Image from Google, used with permission by CC BY 4.0.)

Fortunately, there is a growing recognition of the challenges in building and deploy-
ing ML systems, as discussed below and highlighted in Table 1. As such, individuals,

Machines 2022, 10, 1233. https://doi.org/10.3390/machines10121233 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10121233
https://doi.org/10.3390/machines10121233
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://doi.org/10.3390/machines10121233
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10121233?type=check_update&version=2


Machines 2022, 10, 1233 2 of 27

from both industry and academia, have begun sharing their learnings, failures, and best
practices [1–6]. The sharing of this knowledge is invaluable for those who seek to practically
use ML in their chosen domain.

Table 1. Relevant literature from within the general machine learning community, and from within
manufacturing and ML, that discuss the best practices in building ML systems.

Title Author Domain

Designing Machine Learning Systems: An Iterative Process
for Production-Ready Applications [1] Huyen General ML

Hidden technical debt in machine learning systems [2] Sculley et al. General ML

Rules of Machine Learning: Best Practices for ML Engineer-
ing [3] Zinkevich General ML

Best practices for machine learning applications [4] Wujek et al. General ML

Machine Learning: The High-Interest Credit Card of Technical
Debt [5] Sculley et al. General ML

How to avoid machine learning pitfalls: a guide for academic
researchers [6] Lones General ML

Operationalizing Machine Learning: An Interview Study [7] Shankar et al. General ML

MLOps Scaling Machine Learning Lifecycle in an Industrial
Setting [8] Zhao et al. Manufacturing

& ML

Development of a devops infrastructure to enhance the de-
ployment of machine learning applications for manufactur-
ing [9]

Albino et al. Manufacturing
& ML

Data Quality Management for Industry 4.0: A Survey [10] Williams and
Tang

Manufacturing
& ML

Artificial Intelligence and Deep Learning Applications for
Automotive Manufacturing [11] Luckow et al. Manufacturing

& ML

However, the sharing of these best practices within manufacturing is less numerous.
Zhao et al. and Albino et al. both discuss the infrastructure and engineering requirements
for building ML systems in manufacturing [8,9]. Williams and Tang articulate a methodol-
ogy for monitoring data quality within industrial ML systems [10]. Finally, Luckow et al.
briefly discuss some best practices they have observed while building ML systems from
within the automotive manufacturing industry [11].

Clearly, there are strong benefits to deploying ML systems in manufacturing [12,13].
Therefore, an explicit articulation of best practices, and a discussion of the challenges
involved, is beneficial to all engaged at the intersection of manufacturing and machine
learning. As such, we have highlighted five best practices, discovered through our research,
namely the following:

1. Focus on the data infrastructure first.
2. Start with simple models.
3. Beware of data leakage.
4. Use open-source software.
5. Leverage computation.

We draw from a real-world case study, with data provided by an industrial partner, to
illustrate these best practices. The application concerns the building of a ML system for
tool wear detection on a CNC machine. A data-processing pipeline is constructed which is
then used to train classical machine learning models on the CNC data. We frankly discuss
the challenges and learnings, and how they relate to the five best practices highlighted



Machines 2022, 10, 1233 3 of 27

above. The machine learning system is also tested on the common UC Berkeley milling
dataset [14]. All the code is made publicly available so that others can reproduce the results.
However, due to the proprietary nature of the CNC dataset, we have only made the CNC
feature dataset publicly available.

Undoubtedly, there are many more “best practices” relevant to deploying machine
learning systems with manufacturing. In this work, we share our learnings, failures, and
the best practices that were discovered while building ML tools within the important
manufacturing domain.

2. Dataset Descriptions
2.1. UC Berkeley Milling Dataset

The UC Berkeley milling data set contains 16 cases of milling tools performing cuts
in metal [14]. Six cutting parameters were used in the creation of the data: the metal type
(either cast iron or steel), the feed rate (either 0.25 mm/rev or 0.5 mm/rev), and the depth
of cut (either 0.75 mm or 1.5 mm). Each case is a combination of the cutting parameters (for
example, case one has a depth of cut of 1.5 mm, a feed rate of 0.5 mm/rev, and is performed
on cast iron). The cases progress from individual cuts representing the tool when healthy, to
degraded, and then worn. There are 165 cuts amongst all 16 cases. There are two additional
cuts that are not considered due to data corruption. Table A1, in Appendix A, shows the
cutting parameters used for each case.

Figure 2 illustrates a milling tool and its cutting inserts working on a piece of metal. A
measure of flank wear (VB) on the milling tool inserts was taken for most cuts in the data
set. Figure 3 shows the flank wear on a tool insert.

Figure 2. A milling tool is shown moving forward and cutting into a piece of metal. (Image modified
from Wikipedia, public domain.)

Figure 3. Flank wear on a tool insert (perspective and front view). VB is the measure of flank wear.
Interested readers are encouraged to consult the Modern Tribology Handbook for more information [15].
(Image from author.)

Six signal types were collected during each cut: acoustic emission (AE) signals from
the spindle and table; vibration from the spindle and table; and AC/DC current from



Machines 2022, 10, 1233 4 of 27

the spindle motor. The signals were collected at a sampling rate of 250 Hz, and each cut
has 9000 sample points, for a total signal length of 36 s. All the cuts were organized in a
structured MATLAB array as described by the authors of the dataset. Figure 4 shows a
representative sample of a single cut.

AE
 S

pi
nd

le
AE

 Ta
bl

e
Vi

be
 S

pi
nd

le
Vi

be
 Ta

bl
e

DC
 C

ur
re

nt

0 5 10 15 20 25 30 35
Seconds

AC
 C

ur
re

nt

Figure 4. The six signals from the UC Berkeley milling data set (from cut number 146).

Each cut has a region of stable cutting, that is, where the tool is at its desired speed
and feed rate, and fully engaged in cutting the metal. For the cut in Figure 4, the stable
cutting region begins at approximately 7 s and ends at approximately 29 s when the tool
leaves the metal it is machining.

2.2. CNC Industrial Dataset

Industrial CNC data, from a manufacturer involved in the metal machining of small
ball-valves, were collected over a period of 27 days. The dataset represents the manufac-
turing of 5600 parts across a wide range of metal materials and cutting parameters. The
dataset was also accompanied by tool change data, annotated by the operator of the CNC



Machines 2022, 10, 1233 5 of 27

machine. These annotations indicated the time the tools were changed, along with the
reason for the tool change (either the tool broke, or the tool was changed due to wear).

A variety of tools were used in the manufacturing of the parts. Disposable tool inserts,
such as that shown in Figure 3, were used to make the cuts. The roughing tool, and its
insert, was changed most often due to wear and thus is the focus of this study.

The CNC data, like the milling data, can also be grouped into different cases. Each case
represents a unique roughing tool insert. Of the 35 cases in the dataset, 11 terminated in a
worn tool insert as identified by the operator. The remaining cases had the data collection
stopped before the insert was worn, or the insert was replaced for another reason, such
as breakage.

Spindle motor current was the primary signal collected from the CNC machine. Us-
ing motor current within machinery health monitoring (MHM) is widespread and has
been shown to be effective in tool condition monitoring [16,17]. In addition, monitor-
ing spindle current is a low-cost and unobtrusive method, and thus ideal for an active
industrial environment.

Finally, the data were collected from the CNC machine’s control system using software
provided by the equipment manufacturer. For the duration of each cut, the current, the
tool being used, and when the tool was engaged in cutting the metal, was recorded. The
data were collected at 1000 Hz. Figure 5, below, is an example of one such cut from the
roughing tool. The shaded area in the figure represents the approximate time when the
tool was cutting the metal. We refer to each shaded area as a sub-cut.

0 5 10 15 20
Seconds

Cu
rre

nt

sub-cut
0 1 2 3 4 5 6 7 8

Figure 5. A sample cut of the roughing tool from the CNC dataset. The shaded sub-cut indices are
labeled from 0 through 8 in this example. Other cuts in the dataset can have more, or fewer, sub-cuts.

3. Methods
3.1. Milling Data Preprocessing

Each of the 165 cuts from the milling dataset was labeled as healthy, degraded, or
failed, according to its health state (amount of wear) at the end of the cut. The labeling
schema is shown in Table 2 and follows the labeling strategy of other researchers in the
field [18]. For some of the cuts, a flank wear value was not provided. In such a case, a
simple interpolation between the nearest cuts, with flank wear values defined, was made.

Table 2. The distribution of sub-cuts from the milling dataset.

State Label Flank Wear (mm) Number of Sub-Cuts Percentage of Sub-Cuts

Healthy 0 0∼0.2 3311 36.63%
Degraded 1 0.2∼0.7 5065 56.03%
Failed (worn) 2 >0.7 664 7.35%



Machines 2022, 10, 1233 6 of 27

Next, the stable cutting interval for each cut was selected. The interval varies based
on when the tool engages with the metal. Thus, visual inspection was used to select the
approximate region of stable cutting.

For each of the 165 cuts, a sliding window of 1024 data points, or approximately 1 s
of data, was applied. The stride of the window was set to 64 points as a simple data-
augmentation technique. Each windowed sub-cut was then appropriately labeled (either
healthy, degraded, or failed). These data preprocessing steps were implemented with the
open-source PyPHM package and can be readily reproduced [19].

In total, 9040 sub-cuts were created. Table 2 also demonstrates the percentage of
sub-cuts by label. The healthy and degraded labels were merged into a “healthy” class
label (with a value of 0) in order to create a binary classification problem.

3.2. CNC Data Preprocessing

As noted in Section 2.2, each part manufactured is made from multiple cuts across
different tools. Here, we only considered the roughing tool for further analysis. The
roughing tool experienced the most frequent tool changes due to wear.

Each sub-cut, as shown in Figure 5, was extracted and given a unique identifier. The
sub-cuts were then labeled either healthy (0) or failed (1). If a tool was changed due to wear,
the prior 15 cuts were labeled as failed. Cuts with tool breakage were removed from the
dataset. Table 3, below, shows the cut and sub-cut count and the percentage breakdown by
label. In total, there were 5503 complete cuts performed by the roughing tool.

Table 3. The distribution of cuts, and sub-cuts, from the CNC dataset.

State Label Number of Cuts Percentage of Cuts Number of Sub-Cuts

Healthy 0 5352 97.26% 42,504
Failed (worn) 1 152 7.35% 1175

3.3. Feature Engineering

Automated feature extraction was performed using the tsfresh open-source library [20].
The case for automated feature extraction continues to grow as computing power becomes
more abundant [21]. In addition, the use of an open-source feature extraction library, such
as tsfresh, saves time by removing the need to re-implement code for common feature
extraction or data-processing techniques.

The tsfresh library comes with a wide variety of time-series feature engineering tech-
niques, and new techniques are regularly being added by the community. The techniques
vary from simple statistical measures (e.g., standard deviations) to Fourier analysis (e.g.,
FFT coefficients). The library has been used for feature engineering across industrial ap-
plications. Unterberg et al. utilized tsfresh in an exploratory analysis of tool wear during
sheet-metal blanking [22]. Sendlbeck et al. built a machine learning model to predict gear
wear rates using the library [23]. Gurav et al. also generated features with tsfresh in their
experiments mimicking an industrial water system [24].

In this work, 38 unique feature methods, from tsfresh, were used to generate features.
Table 4 lists a selection of these features. In total, 767 features on the CNC dataset were
created, and 4530 features, across all six signals, were created on the milling dataset.

After feature engineering, and the splitting of the data into training and testing sets,
the features were scaled using the minimum and maximum values from the training set.
Alternatively, standard scaling was applied, whereby the mean of a feature, across all
samples, was subtracted and then divided by its standard deviation.



Machines 2022, 10, 1233 7 of 27

Table 4. Examples of features extracted from the CNC and milling datasets using tsfresh.

Feature Name Description

Basic Statistical Features Simple statistical features. Examples: mean, root-mean-
square, kurtosis

FFT Coefficients Real and imaginary coefficients from the discrete fast
Fourier transform (FFT)

Continuous Wavelet Transform Coefficients of the continuous wavelet transform for the
Ricker wavelet.

3.4. Feature Selection

The large number of features, generated through automated feature extraction, ne-
cessitates a method of feature selection. Although it is possible to use all the features for
training a machine learning model, it is highly inefficient. Features may be highly correlated
with others, and some features will contain minimal informational value. Even more, in a
production environment, it is unrealistic to generate hundreds, or thousands, of features for
each new sample. This is particularly important if one is interested in real-time prediction.

Two types of feature selection were used in this work. First, and most simply, a certain
number of features were selected at random. These features were then used in a random
search process (discussed further in Section 4) for the training of machine learning models.
Through this process, only the most beneficial features would yield suitable results.

The second type of feature selection leverages the inbuilt selection method within
tsfresh. The tsfresh library implements the "FRESH" algorithm, standing for feature extrac-
tion based on scalable hypothesis tests. In short, a hypothesis test is conducted for each
feature to determine if the feature has relevance in predicting a value. In our case, the
predicted value is whether the tool is in a healthy or failed state. Following the hypothesis
testing, the features are ranked by p-value, and only those features below a certain p-value
are considered useful. The features are then selected randomly. Full details of the FRESH
algorithm are detailed in the original paper [20].

Finally, feature selection can only be conducted on the training dataset as opposed to
the full dataset. This is done to avoid data leakage, further discussed in Section 6.

3.5. Over and Under-Sampling

Both the CNC and milling datasets are highly imbalanced; that is, there are far more
“healthy” samples in the dataset than “failed”. The class imbalance can lead to problems in
training machine models when there are not enough examples of the minority (failed) class.

Over- and under-sampling are used to address class imbalance and improve the
performance of machine learning trained on imbalanced data. Over-sampling is when
examples from the minority class—the failed samples in the CNC and milling datasets—are
copied back into the dataset to increase the size of the minority class. Under-sampling
is the reverse. In under-sampling, examples from the majority class are removed from
the dataset.

Nine different variants of over- and under-sampling were tested on the CNC and
milling datasets and were implemented using the imbalanced-learn (https://github.com/
scikit-learn-contrib/imbalanced-learn, accessed on 21 July 2022) software package [25].
The variants, with a brief description, are listed in Table 5. Generally, over-sampling
was performed, followed by under-sampling, to achieve a relatively balanced dataset.
As with the feature selection, the over- and under-sampling was only performed on the
training dataset.

https://github.com/scikit-learn-contrib/imbalanced-learn
https://github.com/scikit-learn-contrib/imbalanced-learn


Machines 2022, 10, 1233 8 of 27

Table 5. The methods of over- and under-sampling tested in the experiments.

Method Name Type Description

Random Over-sampling Over-
sampling

Samples from minority class are randomly dupli-
cated.

Random Under-sampling Under-
sampling

Samples from majority class are randomly re-
moved.

SMOTE (Synthetic Minority
Over-sampling Technique) [26]

Over-
sampling

Synthetic samples are created from the minority
class. The samples are created by interpolation
between close data points.

ADASYN (Adaptive Synthetic
sampling approach for imbal-
anced learning) [27]

Over-
sampling

Similar to SMOTE. Number of samples generated
are proportional to data distribution.

SMOTE-ENN [28]
Over and
Under-
sampling

SMOTE is performed for over-sampling. Majority
class data points are then removed if n of their
neighbours are from the minority class.

SMOTE-TOMEK [29]
Over and
Under-
sampling

SMOTE is performed for over-sampling. When
two data points, from differing classes, are nearest
to each other, these are a TOMEK-link. TOMEK
link data points are removed for undersampling.

Borderline-SMOTE [30] Over-
sampling

Like SMOTE, but only samples near class bound-
ary are over-sampled.

K-Means SMOTE [31] Over-
sampling

Clusters of minority samples are identified with
K-means. SMOTE is then used for over-sampling
on identified clusters.

SVM SMOTE [32] Over-
sampling

Class boundary is determined through SVM al-
gorithm. New samples are generated by SMOTE
along boundary.

3.6. Machine Learning Models

Eight classical machine learning models were tested in the experiments, namely: the
Gaussian naïve-Bayes classifier, the logistic regression classifier, the linear ridge regression
classifier, the linear stochastic gradient descent (SGD) classifier, the support vector machine
(SVM) classifier, the k-nearest-neighbors classifier, the random forest (RF) classifier, and the
gradient boosted machines classifier.

The models range from simple, such as the Gaussian naïve-Bayes classifier, to more
complex, such as the gradient boosted machines. All these models can be readily im-
plemented on a desktop computer. Further benefits of these models are discussed in
Section 6.

These machine learning models are commonplace, and as such, the algorithm details
are not covered in this work. All the algorithms, except for gradient boosted machines, were
implemented with the scikit-learn machine learning library in Python [33]. The gradient
boosted machines were implemented with the Python XGBoost library [34].

4. Experiment

The experiments on the CNC and milling datasets were conducted using the Python
programming language. Many open-source software libraries were used, in addition to
tsfresh, scikit-learn, and the XGBoost libraries, as listed above. NumPy [35] and SciPy [36]
were used for data preprocessing and the calculation of evaluation metrics. Pandas, a
tool for manipulating numerical tables, was used for recording results [37]. PyPHM, a
library for accessing and preprocessing industrial datasets, was used for downloading and
preprocessing the milling dataset [19]. Matplotlib was used for generating figures [38].



Machines 2022, 10, 1233 9 of 27

The training of the machine learning models in a random search, as described below,
was performed on a high-performance computer (HPC). However, training of the models
can also be performed on a local desktop computer. To that end, all the code from the
experiments is available online. The results can be readily reproduced, either online
through GitHub, or by downloading the code to a local computer. The raw CNC data are
not available due to their proprietary nature. However, the generated features, as described
in Section 3, are available for download.

4.1. Random Search

As noted, a random search was conducted to find the best model, and parameters, for
detecting failed tools on the CNC and milling datasets. A random search is seen as better
for determining optimal parameters than a more deterministic grid search [39].

Figure 6 illustrates the random search process on the CNC dataset. After the features
are created, as seen in step one, the parameters for a random search iteration are randomly
selected. A more complete list of parameters, used for both the CNC and milling datasets,
is found in Appendix A. The parameters are then used in a k-folds cross-validation process
in order to minimize over-fitting, as seen in steps three through six. Thousands of random
search iterations can be run across a wide variety models and parameters.

• Model type
• Model hyperparameters
• Features to use
• Sub-cut index numbers to use
• Under/over-sampling
• Imbalance ra�o
• Min/Max scaling or

standardiza�on
• etc.

K-Folds
Cross-Valida�on

Random Search
Itera�on

1 Create features from sub-cuts Select parameters with
random search2

3 Data split

4 Data preprocessing
on train split5 Training

6 Evalua�on

name mean �-
mean

cwt-
max

failed?

1542811320_54_0 2360 6.32 458 0

1549364146_22_1 123 45.00 586 1

1549364146_32_1 3408 92.43 586 0

Figure 6. An illustration of the random search process on the CNC dataset. (Image from author.)

For the milling dataset, seven folds were used in the cross-validation. To ensure
independence between samples in the training and testing sets, the dataset was grouped by
case (16 cases total). Stratification was also used to ensure that, in each of the seven folds,
at least one case where the tool failed was in the testing set. There were only seven cases
that had a tool failure (where the tool was fully worn out), and thus, the maximum number
of folds is seven for the milling dataset.

Ten-fold cross validation was used on the CNC dataset. As with the milling dataset,
the CNC dataset was grouped by case (35 cases) and stratified.

As discussed above, in Section 3, data preprocessing, such as scaling or over-/under-
sampling was conducted after the data was split, as shown in steps three and four. Training
of the model was then conducted, using the split and preprocessed data, as shown in step
five. Finally, the model could be evaluated, as discussed below.



Machines 2022, 10, 1233 10 of 27

4.2. Metrics for Evaluation

A variety of metrics can be used to evaluate the performance of machine learning
models. Measuring the precision–recall area under curve (PR-AUC) is recognized as a
suitable metric for binary classification on imbalanced data and, as such, is used in this
work [40,41]. In addition, the PR-AUC is agnostic to the final decision threshold, which may
be important in applications where the recall is much more important than the precision,
or vice versa. Figure 7 illustrates how the precision–recall curve is created.

After each model is trained, in a fold, the PR-AUC is calculated on that fold’s hold-out
test data. The PR-AUC scores can then be averaged across each of the folds. In this work,
we also rely on the PR-AUC from the worst-performing fold. The worst-performing fold
can provide a lower bound of the model’s performance, and as such, provide a more
realistic impression of the model’s performance.

Figure 7. Explanation of how the precision–recall curve is calculated. (Image from author).

5. Results

In total, 73,274 and 230,859 models were trained on the milling and CNC datasets,
respectively. The top performing models, based on average PR-AUC, were selected and
then analyzed further.

Figures 8 and 9 show the ranking of the models for the milling and CNC datasets,
respectively. In both cases, the random forest (RF) model outperformed the others. The
parameters of these RF models are also shown, below, in Tables 6 and 7.

Table 6. The parameters used to train the RF model on the milling data.

Parameter Values

No. features used 10
Scaling method min/max scaler
Over-sampling method SMOTE-TOMEK
Over-sampling ratio 0.95
Under-sampling method None
Under-sampling ratio N/A
RF bootstrap True
RF classifier weight None
RF criterion entropy
RF max depth 142
RF min samples per leaf 12
RF min samples split 65
RF no. estimators 199



Machines 2022, 10, 1233 11 of 27

Table 7. The parameters used to train the RF model on the CNC data.

Parameter Values

No. features used 10
Scaling method standard scaler
Over-sampling method SMOTE-TOMEK
Over-sampling ratio 0.8
Under-sampling method None
Under-sampling ratio N/A
RF bootstrap True
RF classifier weight balanced
RF criterion entropy
RF max depth 342
RF min samples per leaf 4
RF min samples split 5
RF no. estimators 235

0.0 0.2 0.4 0.6 0.8 1.0

Precision­Recall Area­Under­Curve Score

0.83

0.98
Naive Bayes

0.83

1.00
Ridge Regression

0.84

0.96
Logistic Regression

0.86

1.00
SGD Linear

0.97

1.00
SVM

0.99

1.00
KNN

1.00

1.00
XGBoost

1.00

1.00
Random Forest

Top Performing Models by PR­AUC Score, Milling data

Average Min/Max

N
ai

ve
 C

la
ss

ifi
er

0.52

0.71

0.64

0.73

0.94

0.97

0.98

1.00

Figure 8. The top performing models for the milling data. The x-axis is the precision–recall area-
under-curve score. The following are the abbreviations of the models names: XGBoost (extreme
gradient boosted machine); KNN (k-nearest-neighbors); SVM (support vector machine); and SGD
linear (stochastic gradient descent linear classifier).



Machines 2022, 10, 1233 12 of 27

0.0 0.2 0.4 0.6 0.8 1.0

Precision­Recall Area­Under­Curve Score

0.41

0.86
Naive Bayes

0.45

0.81
Logistic Regression

0.50

0.98
Ridge Regression

0.50

0.93
SGD Linear

0.61

0.81
SVM

0.94

0.99
KNN

0.97

1.00
XGBoost

0.98

1.00
Random Forest

Top Performing Models by PR­AUC Score, CNC data

Average Min/Max

N
ai

ve
 C

la
ss

ifi
er

0.06

0.26

0.27

0.12

0.30

0.83

0.87

0.91

Figure 9. The top performing models for the CNC data. The x-axis is the precision–recall area-
under-curve score. The following are the abbreviations of the models names: XGBoost (extreme
gradient boosted machine); KNN (k-nearest-neighbors); SVM (support vector machine); and SGD
linear (stochastic gradient descent linear classifier).

The features used in each RF model are displayed in Figures 10 and 11. The figures
also show the relative feature importance by F1 score decrease. Figure 12 shows how the
top six features, from the CNC model, trend over time. Clearly, the top ranked feature—the
index mass quantile on sub-cut 4—has the strongest trend. The full details, for all the
models, are available in Appendix A and in the online repository.

The PR-AUC score is an abstract metric that can be difficult to translate to real-world
performance. To provide additional context, we took the worst-performing model in the
k-fold and selected the decision threshold that maximized its F1-score. The formula for the
F1 score is as follows:

F1 = 2 × precision × recall
precision + recall

=
TP

TP + 1
2 (FP + FN)

(1)

where TP is the number of true positives, FP is the number of false positives, and FN is the
number of false negatives.



Machines 2022, 10, 1233 13 of 27

The true positive rate (sensitivity), the true negative rate (specificity), the false negative
rate (miss rate) and false positive rate (fall out), were then calculated with the optimized
threshold. Table 7 shows these metrics for the best-performing random forest models, using
its worst k-fold.

To further illustrate, consider 1000 parts manufactured on the CNC machine. We know,
from Table 3, that approximately 27 (2.7%) of these parts will be made using worn (failed)
tools. The RF model will properly classify 24 of the 27 cuts as worn (the true positive rate).
Of the 973 parts manufactured using healthy tools, 960 will be properly classified as healthy
(the true negative rate).

Linear trend std. error,
AC current

FFT coef. 63 (abs),
AC current

Linear trend intercept,
Vibe table

FFT coef. 36 (abs),
AE spindle

Energy ratio by chunks
AC current

FFT coef. 49 (abs),
AE spindle

FFT coef. 42 (angle),
Vibe table

FFT coef. 63 (imag),
Vibe spindle

FFT coef. 95 (imag),
Vibe table

Symmetry looking,
Vibe spindle

0.5

0.31

0.17

0.09

0.048

0.03

0.0012

0.00091

0.00031

0.0 In
cr

ea
sin

g 
Im

po
rta

nc
e

Feature importance by mean F1 score decrease, Milling data

Figure 10. The 10 features used in the milling random forest model. The features are ranked from
most important to least by how much their removal would decrease the model’s F1 score.



Machines 2022, 10, 1233 14 of 27

Index mass quantile,
sub-cut 4

FFT coef. 4 (real),
sub-cut 5

FFT coef. 87 (abs),
sub-cut 6

Partial autocorrelation,
sub-cut 5

Change quantiles,
(agg. by mean), sub-cut 5

FFT coef. 57 (real),
sub-cut 5

FFT coef. 28 (abs),
sub-cut 1

FFT coef. 35 (abs),
sub-cut 1

FFT coef. 46 (abs),
sub-cut 1

Large standard deviation,
sub-cut 6

0.5

0.35

0.15

0.13

0.087

0.076

0.064

0.048

0.041

0.0 In
cr

ea
sin

g 
Im

po
rta

nc
e

Feature importance by mean F1 score decrease, CNC data

Figure 11. The 10 features used in the CNC random forest model. The features are ranked from most
important to least by how much their removal would decrease the model’s F1 score.

Index mass quantile,
sub-cut 4

FFT coef. 4 (real),
sub-cut 5

FFT coef. 87 (abs),
sub-cut 6

Partial autocorrelation,
sub-cut 5

Change quantiles,
(agg. by mean), sub-cut 5

FFT coef. 57 (real),
sub-cut 5

20
19

-01
-22

20
19

-01
-23

20
19

-01
-24

20
19

-01
-25

20
19

-01
-28

20
19

-01
-29

20
19

-01
-30

20
19

-02
-01

20
19

-02
-04

20
19

-02
-05

20
19

-02
-07

20
19

-02
-08

20
19

-02
-11

Healthy Failed

Figure 12. Trends of the top six features over the same time period (January through February 2019).



Machines 2022, 10, 1233 15 of 27

Analysis, Shortcomings, and Recommendations

Figure 13 shows the precision–recall (PR) and receiver operating characteristic (ROC)
curves for the milling random forest model. These curves help understand the results as
shown in the dot plots of Figure 8.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on

PR AUC: 0.999 (avg), 0.998 (min), 1.000 (max)

Precision-Recall Curve

k-fold model
Average model
No skill model

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC AUC: 1.000 (avg), 1.000 (min), 1.000 (max)

ROC Curve

Figure 13. The PR and ROC curves for the random forest milling dataset model. The no-skill model
is shown on the plots by a dashed line. The no-skill model will classify the samples at random.

The precision–recall curve, for the milling RF model, shows that all the models on
the 7 k-folds give strong results. Each of the curves from the k-folds is pushed to the top
right, and as shown in Table 8, even the worst-performing fold achieves a true positive rate
of 97.3%.

Table 8. The results of the best-performing random forest models, after threshold tuning, for both the
milling and CNC datasets.

Parameter Milling Dataset CNC Dataset

True Positive Rate (sensitivity) 97.3% 90.3%
True Negative Rate (specificity) 99.9% 98.7%
False Negative Rate (miss rate) 2.6% 9.7%
False Positive Rate (fall out) 0.1% 1.3%

The precision–recall curve from the CNC RF model, as shown in Figure 14, shows
greater variance between each trained model in the 10 k-folds. The worst-performing fold
obtains a true positive rate of 90.3%.

There are several reasons for the difference in model performance between the milling
and CNC datasets. First, each milling sub-cut has six different signals available for use
(AC/DC current, vibration from the spindle and table, and acoustic emissions from the
spindle and table). Conversely, the CNC model can only use the current from the CNC
spindle. The additional signals in the milling data provide increased information for
machine learning models to learn from.

Second, the CNC dataset is more complicated. The tools from the CNC machine are
changed when the operator notices a degradation in part quality. However, individual
operators will have different thresholds, and cues, for changing tools. In addition, there are
multiple parts manufactured in the dataset across a wide variety of metals and dimensions.
In short, the CNC dataset reflects the conditions of a real-world manufacturing environment
with all the “messiness” which that entails. As such, the models trained on the CNC data
cannot as easily achieve high results like in the milling dataset.



Machines 2022, 10, 1233 16 of 27

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PR AUC: 0.977 (avg), 0.916 (min), 1.000 (max)

Precision-Recall Curve

k-fold model
Average model
No skill model

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC AUC: 0.998 (avg), 0.994 (min), 1.000 (max)

ROC Curve

Figure 14. The PR and ROC curves for the random forest CNC dataset model.

In contrast, the milling dataset is from a carefully controlled laboratory environment.
Consequently, there is less variety between cuts in the milling dataset than in the CNC
dataset. The milling dataset is more homogeneous, and the homogeneity allows the models
to understand the data distribution and model it more easily.

Third, the milling dataset is smaller than the CNC dataset. The milling dataset has
16 different cases, but only 7 of the cases have a tool that becomes fully worn. The CNC
dataset has 35 cases, and of those cases, 11 contain a fully worn tool. The diminished size
of the milling dataset, again, allows the models to model the data more easily. As noted
by others, many publicly available industrial datasets are small, thus making it difficult
for researchers to produce results that are generalizable [42,43]. The UC Berkeley milling
dataset suffers from similar problems.

Finally, models trained on small datasets, even with cross validation, can be susceptible
to overfitting [44]. Furthermore, high-powered models, such as random forests or gradient
boosted machines, are more likely to exhibit a higher variance. The high variance, and
overfitting, may give the impression that the model is performing well across all k-folds,
but if the data are changed, even slightly, the model performs poorly.

Overall, the CNC dataset is of higher quality than the milling dataset; however, it too
suffers from its relatively small size. We posit that similar results could be achieved with
only a few cuts from each of the 35 cases. In essence, the marginal benefit of additional cuts
in a case rapidly diminishes past the first few since they are all similar. This hypothesis
would be of interest for further research.

The results from the CNC dataset are positive, and the lower bound of the model’s
performance approaches acceptability. We believe that collecting more data will greatly
improve results. Ultimately, the constraint to creating production-ready ML systems is
not the type of algorithm, but rather, the lack of data. We further discuss this in the Best
Practices section below.

6. Discussion of Best Practices
6.1. Focus on the Data Infrastructure First

In 2017, Monica Rogati coined the “data science hierarchy of needs” as a play on the
well-known Maslow’s hierarchy of needs. Rogati details how the success of a data science
project, or ML system, is predicated on a strong data foundation. Having a data infrastruc-
ture that can reliably collect, transform, and store data is a prerequisite to upstream tasks,
such as data exploration, or machine learning [45]. Figure 15 illustrates this hierarchy.

Within the broader machine learning community, there is a growing acknowledgment
of the benefits of a strong data infrastructure. Andrew Ng, a well-known machine learning



Machines 2022, 10, 1233 17 of 27

educator and entrepreneur, has expressed the importance of data infrastructure through
his articulation of “data-centric AI” [46]. Within data-centric AI, there is a recognition that
outsized benefits can be obtained by improving the data quality first, rather than improving
the machine learning model.

AI, Deep Learning

Experimenta�on, Classical ML

Analy�cs, Metrics, Feature 
Engineering, Training Data

Cleaning, Anomaly Detec�on, Prep

Reliable Data Flow, Infrastructure, 
Pipelines, ETL, Data Storage

Instrumenta�on, Logging, Sensors, 
External Data

LEARN & OPTIMIZE

AGGREGATE/ LABEL

EXPLORE/TRANSFORM

MOVE/STORE

COLLECT

Figure 15. The data science hierarchy of needs. The hierarchy illustrates the importance of data
infrastructure. Before more advanced methods can be employed in a data science or ML system,
the lower levels, such as data collection, ETL, data storage, etc., must be satisfied. (Image used
with permission from Monica Rogati at aipyramid.com (www.aipyramid.com accessed 9 September
2022) [45].)

As an example of this data-centric approach, consider the OpenAI research team.
Recently, they made dramatic advances in speech recognition that have been predicated
on the data infrastructure. They used simple heuristics to remove “messy” samples, all
the while using off-the-shelf machine learning models. More broadly, the nascent field of
machine learning operations (MLOps) has arisen as a means of formalizing the engineering
acumen in building ML systems. The data infrastructure is a large part of MLOps [1,7].

In this work, we built the top four tiers of the data science hierarchy pyramid as shown
in Figure 15. However, although part of the data infrastructure was built—in the extraction–
load–transform (ETL) portion—much of the data infrastructure was outside of the research
team’s control. A system to autonomously collect CNC data was not implemented, and as
such, far less data were collected than desired. Over a one-year period, data were manually
collected for 27 days, which led to the recording of 11 roughing tool failures. Yet, over that
same one-year period, there were an additional 79 cases where the roughing tool failed,
but no data were collected.

Focusing on the data infrastructure first, the bottom two layers of the pyramid, builds
for future success. In a real-world setting, as in manufacturing, the quality of the data will
play an outsized role in the success of the ML application being developed. As shown in
the next section, even simple models, coupled with good data, can yield excellent results.

6.2. Start with Simple Models

The rise of deep learning has led to much focus, from researchers and industry, on its
application in manufacturing. However, as shown in the data science hierarchy of needs,
in Figure 15, it is best to start with “simple”, classical ML models. The work presented here
relied on these classical ML models, from naïve Bayes to random forests. These models still
achieved positive results.

There are several reasons to start with simple models:

www.aipyramid.com


Machines 2022, 10, 1233 18 of 27

• Simple models are straightforward to implement. Modern machine learning packages,
such as scikit-learn, or XGBoost, allow the implementation of classical ML models in
only several lines of code.

• Simple models require less data than deep learning models.
• Simple models can produce strong results, and in many cases, outperform deep

learning models.
• Simple models cost much less to train. Even a random forest model, with several ter-

abytes of data, will only cost a few dollars to retrain on a commercial cloud provider. A
large deep learning model, in contrast, may be an order of magnitude more expensive
to train.

• Simple models allow for quicker iteration time. This allows users to rapidly “demon-
strate [the] practical benefits” of an approach, and subsequently, avoid less-productive
approaches [7].

The benefits, and even preference for simple models, are becoming recognized within
the research and MLOps communities. Already, in 2006, David Hand noted that “simple
methods typically yield performance almost as good as more sophisticated methods” [47].
In fact, more complicated methods can yield over-optimization. Others have shown that
tree-based models still outperform deep-learning approaches on tabular [48,49]. Tabular
data and tree-based models were both used in this study.

Finally, Shankar et al. recently interviewed 18 machine learning engineers across a
variety of companies in an insightful study on operationalizing ML real-world applications.
They noted that most of the engineers prefer the use of simple machine-learning algorithms
over more complex approaches [7].

6.3. Beware of Data Leakage

Data leakage occurs when information from the target domain (such as the label
information on the health state of a tool) is introduced, often unintentionally, into the
training dataset. The data leakage produces results that are far too optimistic, and ultimately,
useless. Unfortunately, data leakage is difficult to detect for those who are not wary
or uneducated. Kaufman et al. summarized the problem succinctly: “In practice, the
introduction of this illegitimate information is unintentional, and facilitated by the data
collection, aggregation and preparation process. It is usually subtle and indirect, making
it very hard to detect and eliminate” [50]. We observed many cases of data leakage in
peer-reviewed literature, both from within manufacturing, and more broadly. Data leakage,
sadly, is too common across many fields where machine learning is employed [50].

Introducing data leakage into a real-world manufacturing environment will cause the
ML system to fail. As such, individuals seeking to employ ML in manufacturing should be
cognizant of the common data leakage pitfalls. Here, we explore several of these pitfalls
with examples from manufacturing. We adopted the taxonomy from Kapoor et al. and
encourage interested readers to view their paper on the topic [51].

• Type 1—Preprocessing on training and test set: Preprocessing techniques, like scaling,
normalization, or under-/over-sampling, must only be applied after the dataset has
been split into training and testing sets. In our experiment, as noted in Section 3, these
preprocessing techniques were performed after the data were split in the k-fold.

• Type 2—Feature selection on training and test set: This form of data leakage occurs
when features are selected using the entire dataset at once. By performing feature
selection over the entire dataset, additional information will be introduced into the
testing set that should not be present. Feature selection should only occur after the
train/validation/testing sets are created.

• Type 3—Temporal leakage: Temporal data leakage occurs, on time series data, when
the training set includes information from a future event that is to be predicted. As an
example, consider case 13 on the milling dataset. Case 13 consists of 15 cuts. Ten of
these cuts are when the tool is healthy, and five of the cuts are when the tool is worn. If
the cuts from the milling dataset (165 cuts in total) are randomly split into the training



Machines 2022, 10, 1233 19 of 27

and testing sets, then some of the “worn” cuts from case 13 will be in both the training
and testing sets. Data leakage will occur, and the results from the experiment will be
too optimistic. In our actual experiments, we avoided data leakage by splitting the
datasets by case, as opposed to individual cuts.

6.4. Use Open-Source Software

The open-source software movement has consistently produced “category-killing
software” across a broad spectrum of fields [52]. Open-source software is ubiquitous in
all aspects of computing, from mobile phones, to web browsers, and certainly within
machine learning.

Table 9, below, lists several of these open-source software packages that are relevant
to building modern ML systems. These software packages are also, predominantly, built
using the open-source Python programming language. Python, as a general-purpose
language, is easy to understand and is one of the most popular programming languages in
existence [53].

The popularity of Python, combined with high-quality open-source software packages,
such as those in Table 9, only attracts more data scientists and ML practitioners. Some
of these individuals, in the ethos of open-source, improve the software further. Others
create instructional content, share their code (such as we have with this research), or simply
discuss their challenges with the software. All this creates a dominant network effect; that
is, the more users that adopt the open-source Python ML software, the more attractive these
tools become to others. Today, Python, and its open-source tools, are dominant within the
machine learning space [54].

Table 9. Several popular open-source machine learning, and related, libraries. All these applications
are written in Python.

Software Name Description

scikit-learn [33] Various classification, regression, and clustering algorithms.

NumPy [35] Comprehensive mathematical software package. Supports for large multi-
dimensional arrays and matrices.

PyTorch [55] Popular deep learning framework.

TensorFlow [56] Popular deep learning framework, originally created by Google.

Ultimately, using these open-source software packages greatly improves productivity.
In our work, we began building our own feature engineering pipeline. However, we soon
realized the complexity of that task. As a results, we utilized the open-source tsfresh library
to implement the feature engineering pipeline, thus saving countless hours of development
time. Individuals looking to build ML systems should consider open-source software first
before looking to build their own tools, or using proprietary software.

6.5. Leverage Advances in Computational Power

The rise of deep learning has coincided with the dramatic increase in computation
power. Rich Sutton, a prominent machine learning researcher, argued in 2019 that “the
biggest lesson that can be read from 70 years of AI research is that general methods
that leverage computation are ultimately the most effective, and by a large margin” [57].
Fortunately, it is easier than ever for those building ML systems to tap into the increasing
computational power available.

In this work, we utilized a high-performance computer (HPC) to perform an extensive
parameter search. Such HPCs are common in academic environments and should be taken
advantage of when possible. However, individuals without access to an HPC can also
train many classical ML models on regular consumer GPUs. Using GPUs will parallelize
the model training process. The XGBoost library allows training on GPUs, which can be



Machines 2022, 10, 1233 20 of 27

integrated into a parameter search. RAPIDS has also developed a suite of open-source
libraries for data analysis and training of ML models on GPUs.

Compute power will continue to increase and drop in price. This trend presents
opportunities for those who can leverage it. Accelerating data preprocessing, model
training, and parameter searches allows teams to iterate faster through ideas, and ultimately,
build more effective ML applications.

7. Conclusions and Future Work

Machine learning is becoming more and more integrated into manufacturing envi-
ronments. In this work we demonstrated an ML system used to predict tool wear on a
real-world CNC machine, and on the UC Berkeley milling dataset. The best performing
random forest model on the CNC dataset achieved a true positive rate (sensitivity) of 90.3%
and a true negative rate (specificity) of 98.3%. Moreover, we used the results to illustrate
five best practices, and learnings, that we gained during the construction of the ML system.
Namely, one should focus on the data infrastructure first; begin modeling with simple
models; be cognizant of data leakage; use open-source software; and leverage advances in
computational power.

A productive direction for future work is the further build-out of the data infras-
tructure. Collecting more data, as noted in Section 5, would improve results and build
confidence in the methods developed here. In addition, the ML system should be deployed
in the production environment and iterated upon there. Finally, the sharing of the chal-
lenges, learnings, and best practices should continue, and we encourage others within
manufacturing to do the same. Ultimately, understanding these broader challenges and
best practices will enable the efficient use of ML within the manufacturing domain.

Author Contributions: Conceptualization, methodology, software, validation, formal analysis, inves-
tigation, data curation, visualization, and writing—original draft preparation, by T.v.H.; writing—
review and editing, T.v.H. and C.K.M.; supervision, project administration, and funding acquisition,
by C.K.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Sciences and Engineering Research Council of
Canada and the Digital Research Alliance of Canada.

Data Availability Statement: The data and code to reproduce the experiments are available at:
https://github.com/tvhahn/tspipe.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Miscellaneous Tables

Table A1. The cutting parameters used in the UC Berkeley milling dataset.

Case Depth of Cut (mm) Feed Rate (mm/rev) Material

1 1.50 0.50 cast iron
2 0.75 0.50 cast iron
3 0.75 0.25 cast iron
4 1.50 0.25 cast iron
5 1.50 0.50 steel
6 1.50 0.25 steel
7 0.75 0.25 steel
8 0.75 0.50 steel
9 1.50 0.50 cast iron

10 1.50 0.25 cast iron
11 0.75 0.25 cast iron
12 0.75 0.50 cast iron
13 0.75 0.25 steel
14 0.75 0.50 steel
15 1.50 0.25 steel
16 1.50 0.50 steel

https://github.com/tvhahn/tspipe


Machines 2022, 10, 1233 21 of 27

Appendix A.2. PR and ROC Curves for the Milling Dataset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PR AUC: 0.995 (avg), 0.983 (min), 1.000 (max)

Precision-Recall Curve

k-fold model
Average model
No skill model

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC AUC: 1.000 (avg), 0.999 (min), 1.000 (max)

ROC Curve

Figure A1. The PR and ROC curves for the XGBoost milling dataset model.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PR AUC: 0.988 (avg), 0.972 (min), 0.998 (max)

Precision-Recall Curve

k-fold model
Average model
No skill model

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

ROC AUC: 0.999 (avg), 0.997 (min), 1.000 (max)

ROC Curve

Figure A2. The PR and ROC curves for the KNN milling dataset model.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PR AUC: 0.974 (avg), 0.941 (min), 0.997 (max)

Precision-Recall Curve

k-fold model
Average model
No skill model

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC AUC: 0.997 (avg), 0.991 (min), 1.000 (max)

ROC Curve

Figure A3. The PR and ROC curves for the SVM milling dataset model.



Machines 2022, 10, 1233 22 of 27

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PR AUC: 0.865 (avg), 0.731 (min), 0.999 (max)

Precision-Recall Curve

k-fold model
Average model
No skill model

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC AUC: 0.976 (avg), 0.920 (min), 1.000 (max)

ROC Curve

Figure A4. The PR and ROC curves for the SGD linear milling dataset model.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PR AUC: 0.841 (avg), 0.642 (min), 0.965 (max)

Precision-Recall Curve

k-fold model
Average model
No skill model

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC AUC: 0.975 (avg), 0.955 (min), 0.998 (max)

ROC Curve

Figure A5. The PR and ROC curves for the logistic regression milling dataset model.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PR AUC: 0.832 (avg), 0.712 (min), 1.000 (max)

Precision-Recall Curve

k-fold model
Average model
No skill model

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC AUC: 0.964 (avg), 0.931 (min), 1.000 (max)

ROC Curve

Figure A6. The PR and ROC curves for the ridge regression milling dataset model.



Machines 2022, 10, 1233 23 of 27

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PR AUC: 0.832 (avg), 0.515 (min), 0.981 (max)

Precision-Recall Curve

k-fold model
Average model
No skill model

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC AUC: 0.973 (avg), 0.899 (min), 0.999 (max)

ROC Curve

Figure A7. The PR and ROC curves for the Naïve Bayes milling dataset model.

Appendix A.3. PR and ROC Curves for the CNC Dataset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PR AUC: 0.965 (avg), 0.868 (min), 0.995 (max)

Precision-Recall Curve

k-fold model
Average model
No skill model

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC AUC: 0.998 (avg), 0.995 (min), 1.000 (max)

ROC Curve

Figure A8. The PR and ROC curves for the XGBoost CNC dataset model.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PR AUC: 0.939 (avg), 0.833 (min), 0.989 (max)

Precision-Recall Curve

k-fold model
Average model
No skill model

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC AUC: 0.997 (avg), 0.994 (min), 0.999 (max)

ROC Curve

Figure A9. The PR and ROC curves for the KNN CNC dataset model.



Machines 2022, 10, 1233 24 of 27

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PR AUC: 0.610 (avg), 0.298 (min), 0.813 (max)

Precision-Recall Curve
k-fold model
Average model
No skill model

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC AUC: 0.939 (avg), 0.851 (min), 0.996 (max)

ROC Curve

Figure A10. The PR and ROC curves for the SVM CNC dataset model.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PR AUC: 0.501 (avg), 0.120 (min), 0.935 (max)

Precision-Recall Curve
k-fold model
Average model
No skill model

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC AUC: 0.883 (avg), 0.616 (min), 0.998 (max)

ROC Curve

Figure A11. The PR and ROC curves for the SGD linear CNC dataset model.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PR AUC: 0.496 (avg), 0.274 (min), 0.979 (max)

Precision-Recall Curve

k-fold model
Average model
No skill model

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC AUC: 0.894 (avg), 0.683 (min), 1.000 (max)

ROC Curve

Figure A12. The PR and ROC curves for the ridge regression CNC dataset model.



Machines 2022, 10, 1233 25 of 27

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PR AUC: 0.453 (avg), 0.257 (min), 0.807 (max)

Precision-Recall Curve
k-fold model
Average model
No skill model

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC AUC: 0.889 (avg), 0.571 (min), 0.993 (max)

ROC Curve

Figure A13. The PR and ROC curves for the logistic regression CNC dataset model.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PR AUC: 0.410 (avg), 0.064 (min), 0.860 (max)

Precision-Recall Curve
k-fold model
Average model
No skill model

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC AUC: 0.859 (avg), 0.564 (min), 0.997 (max)

ROC Curve

Figure A14. The PR and ROC curves for the Naïve Bayes CNC dataset model.

References
1. Huyen, C. Designing Machine Learning Systems; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2022.
2. Sculley, D.; Holt, G.; Golovin, D.; Davydov, E.; Phillips, T.; Ebner, D.; Chaudhary, V.; Young, M.; Crespo, J.F.; Dennison, D.

Hidden technical debt in machine learning systems. In Advances in Neural Information Processing Systems; 2015. Available online:
https://research.google/pubs/pub43146/ (accessed on 1 July 2022).

3. Zinkevich, M. Rules of Machine Learning: Best Practices for ML Engineering. 2017. Available online: https://developers.google.
com/machine-learning/guides/rules-of-ml (accessed on 1 July 2022).

4. Wujek, B.; Hall, P.; Günes, F. Best Practices for Machine Learning Applications; SAS Institute Inc.: Cary, NC, USA, 2016.
5. Sculley, D.; Holt, G.; Golovin, D.; Davydov, E.; Phillips, T.; Ebner, D.; Chaudhary, V.; Young, M. Machine learning: The high

interest credit card of technical debt. In Proceedings of the 2014; SE4ML: Software Engineering for Machine Learning (NIPS 2014
Workshop).

6. Lones, M.A. How to avoid machine learning pitfalls: A guide for academic researchers. arXiv 2021, arXiv:2108.02497.
7. Shankar, S.; Garcia, R.; Hellerstein, J.M.; Parameswaran, A.G. Operationalizing Machine Learning: An Interview Study. arXiv

2022, arXiv:2209.09125.
8. Zhao, Y.; Belloum, A.S.; Zhao, Z. MLOps Scaling Machine Learning Lifecycle in an Industrial Setting. Int. J. Ind. Manuf. Eng.

2022, 16, 143–153.
9. Albino, G.S. Development of a Devops Infrastructure to Enhance the Deployment of Machine Learning Applications for

Manufacturing. 2022. Available online: https://repositorio.ufsc.br/handle/123456789/232077 (accessed on 1 July 2022).
10. Williams, D.; Tang, H. Data quality management for industry 4.0: A survey. Softw. Qual. Prof. 2020, 22, 26–35.
11. Luckow, A.; Kennedy, K.; Ziolkowski, M.; Djerekarov, E.; Cook, M.; Duffy, E.; Schleiss, M.; Vorster, B.; Weill, E.; Kulshrestha,

A.; et al. Artificial intelligence and deep learning applications for automotive manufacturing. In Proceedings of the 2018 IEEE
International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 3144–3152.

12. Dilda, V.; Mori, L.; Noterdaeme, O.; Schmitz, C. Manufacturing: Analytics Unleashes Productivity and Profitability; Report; McKinsey
& Company: Atlanta, GA, USA, 2017.

13. Philbeck, T.; Davis, N. The fourth industrial revolution. J. Int. Aff. 2018, 72, 17–22.
14. Agogino, A.; Goebel, K. Milling Data Set. NASA Ames Prognostics Data Repository; NASA Ames Research Center: Moffett Field,

CA, USA, 2007.

https://research.google/pubs/pub43146/
https://developers. google. com/machine-learning/guides/rules-of-ml
https://developers. google. com/machine-learning/guides/rules-of-ml
https://repositorio.ufsc.br/handle/123456789/232077


Machines 2022, 10, 1233 26 of 27

15. Bhushan, B. Modern Tribology Handbook, Two Volume Set; CRC Press: Boca Raton, FL, USA, 2000.
16. Samaga, B.R.; Vittal, K. Comprehensive study of mixed eccentricity fault diagnosis in induction motors using signature analysis.

Int. J. Electr. Power Energy Syst. 2012, 35, 180–185. [CrossRef]
17. Akbari, A.; Danesh, M.; Khalili, K. A method based on spindle motor current harmonic distortion measurements for tool wear

monitoring. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 5049–5055. [CrossRef]
18. Cheng, Y.; Zhu, H.; Hu, K.; Wu, J.; Shao, X.; Wang, Y. Multisensory data-driven health degradation monitoring of machining tools

by generalized multiclass support vector machine. IEEE Access 2019, 7, 47102–47113. [CrossRef]
19. von Hahn, T.; Mechefske, C.K. Computational Reproducibility Within Prognostics and Health Management. arXiv 2022,

arXiv:2205.15489.
20. Christ, M.; Braun, N.; Neuffer, J.; Kempa-Liehr, A.W. Time series feature extraction on basis of scalable hypothesis tests (tsfresh—A

python package). Neurocomputing 2018, 307, 72–77. [CrossRef]
21. He, X.; Zhao, K.; Chu, X. AutoML: A survey of the state-of-the-art. Knowl.-Based Syst. 2021, 212, 106622. [CrossRef]
22. Unterberg, M.; Voigts, H.; Weiser, I.F.; Feuerhack, A.; Trauth, D.; Bergs, T. Wear monitoring in fine blanking processes using

feature based analysis of acoustic emission signals. Procedia CIRP 2021, 104, 164–169. [CrossRef]
23. Sendlbeck, S.; Fimpel, A.; Siewerin, B.; Otto, M.; Stahl, K. Condition monitoring of slow-speed gear wear using a transmission

error-based approach with automated feature selection. Int. J. Progn. Health Manag. 2021, 12. v12i2.3026. [CrossRef]
24. Gurav, S.; Kumar, P.; Ramshankar, G.; Mohapatra, P.K.; Srinivasan, B. Machine learning approach for blockage detection and

localization using pressure transients. In Proceedings of the 2020 IEEE International Conference on Computing, Power and
Communication Technologies (GUCON), Greater Noida, India, 2–4 October 2020; pp. 189–193.

25. Lemaître, G.; Nogueira, F.; Aridas, C.K. Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in
Machine Learning. J. Mach. Learn. Res. 2017, 18, 1–5.

26. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

27. He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In Proceedings
of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence),
Hong Kong, China, 1–8 June 2008; pp. 1322–1328.

28. Batista, G.E.; Prati, R.C.; Monard, M.C. A study of the behavior of several methods for balancing machine learning training data.
ACM SIGKDD Explor. Newsl. 2004, 6, 20–29. [CrossRef]

29. Batista, G.E.; Bazzan, A.L.; Monard, M.C. Balancing Training Data for Automated Annotation of Keywords: A Case Study. In
Proceedings of the WOB, Macae, Brazil, 3–5 December 2003; pp. 10–18.

30. Han, H.; Wang, W.Y.; Mao, B.H. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In
International Conference on Intelligent Computing; Springer: Berlin/Heidelberg, Germany, 2005; pp. 878–887.

31. Last, F.; Douzas, G.; Bacao, F. Oversampling for imbalanced learning based on k-means and smote. arXiv 2017, arXiv:1711.00837.
32. Nguyen, H.M.; Cooper, E.W.; Kamei, K. Borderline over-sampling for imbalanced data classification. In Proceedings of the Fifth

International Workshop on Computational Intelligence & Applications, Hiroshima, Japan, 10–12 November 2009; Volume 2009,
pp. 24–29.

33. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

34. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.

35. Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith,
N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [CrossRef]

36. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;
Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [CrossRef]

37. Wes McKinney. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference,
Austin, TX, USA, 28 June–3 July 2010; van der Walt, S., Millman, J., Eds.; pp. 56–61. [CrossRef]

38. Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [CrossRef]
39. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
40. Davis, J.; Goadrich, M. The relationship between Precision-Recall and ROC curves. In Proceedings of the 23rd International

Conference on MACHINE Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 233–240.
41. Saito, T.; Rehmsmeier, M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on

imbalanced datasets. PLoS ONE 2015, 10, e0118432. [CrossRef] [PubMed]
42. Zhao, R.; Yan, R.; Chen, Z.; Mao, K.; Wang, P.; Gao, R.X. Deep learning and its applications to machine health monitoring. Mech.

Syst. Signal Process. 2019, 115, 213–237. [CrossRef]
43. Wang, W.; Taylor, J.; Rees, R.J. Recent Advancement of Deep Learning Applications to Machine Condition Monitoring Part 1: A

Critical Review. Acoust. Aust. 2021, 49, 207–219. [CrossRef]
44. Cawley, G.C.; Talbot, N.L. On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach.

Learn. Res. 2010, 11, 2079–2107.

http://doi.org/10.1016/j.ijepes.2011.10.011
http://dx.doi.org/10.1007/s40430-017-0762-4
http://dx.doi.org/10.1109/ACCESS.2019.2908852
http://dx.doi.org/10.1016/j.neucom.2018.03.067
http://dx.doi.org/10.1016/j.knosys.2020.106622
http://dx.doi.org/10.1016/j.procir.2021.11.028
http://dx.doi.org/10.36001/ijphm.2021.v12i2.3026
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1145/1007730.1007735
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.25080/Majora-92bf1922-00a
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1371/journal.pone.0118432
http://www.ncbi.nlm.nih.gov/pubmed/25738806
http://dx.doi.org/10.1016/j.ymssp.2018.05.050
http://dx.doi.org/10.1007/s40857-021-00222-9


Machines 2022, 10, 1233 27 of 27

45. Rogati, M. The AI hierarchy of needs. Hacker Noon, 13 June 2017. Available online: www.aipyramid.com (accessed on 9 September
2022).

46. Ng, A. A Chat with Andrew on MLOps: From Model-Centric to Data-centric AI. 2021. Available online: https://www.youtube.
com/watch?v=06-AZXmwHjo (accessed on 1 July 2022).

47. Hand, D.J. Classifier technology and the illusion of progress. Stat. Sci. 2006, 21, 1–14. [CrossRef]
48. Grinsztajn, L.; Oyallon, E.; Varoquaux, G. Why do tree-based models still outperform deep learning on tabular data? arXiv 2022,

arXiv:2207.08815.
49. Shwartz-Ziv, R.; Armon, A. Tabular data: Deep learning is not all you need. Inf. Fusion 2022, 81, 84–90. [CrossRef]
50. Kaufman, S.; Rosset, S.; Perlich, C.; Stitelman, O. Leakage in data mining: Formulation, detection, and avoidance. ACM Trans.

Knowl. Discov. Data (TKDD) 2012, 6, 1–21. [CrossRef]
51. Kapoor, S.; Narayanan, A. Leakage and the Reproducibility Crisis in ML-based Science. arXiv 2022, arXiv:2207.07048.
52. Feller, J.; Fitzgerald, B. Understanding Open Source Software Development; Addison-Wesley Longman Publishing Co., Inc.: Boston,

MA, USA, 2002.
53. Stack Overflow Developer Survey 2022. 2022. Available online: https://survey.stackoverflow.co/2022/ (accessed on 1 July 2022).
54. Raschka, S.; Patterson, J.; Nolet, C. Machine learning in python: Main developments and technology trends in data science,

machine learning, and artificial intelligence. Information 2020, 11, 193. [CrossRef]
55. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Wallach,
H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Sydney, Australia, 2019;
pp. 8024–8035.

56. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. Tensorflow:
Large-scale machine learning on heterogeneous distributed systems. arXiv 2016, arXiv:1603.04467.

57. Sutton, R. The bitter lesson. Incomplete Ideas (blog) 2019, 13, 12. Available online: http://www.incompleteideas.net/IncIdeas/
BitterLesson.html (accessed on 1 July 2022).

www.aipyramid.com
https://www.youtube.com/watch?v=06-AZXmwHjo
https://www.youtube.com/watch?v=06-AZXmwHjo
http://dx.doi.org/10.1214/088342306000000060
http://dx.doi.org/10.1016/j.inffus.2021.11.011
http://dx.doi.org/10.1145/2382577.2382579
https://survey.stackoverflow.co/2022/
http://dx.doi.org/10.3390/info11040193
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html

	Introduction
	Dataset Descriptions
	UC Berkeley Milling Dataset
	CNC Industrial Dataset

	Methods
	Milling Data Preprocessing
	CNC Data Preprocessing
	Feature Engineering
	Feature Selection
	Over and Under-Sampling
	Machine Learning Models

	Experiment
	Random Search
	Metrics for Evaluation

	Results
	Discussion of Best Practices
	Focus on the Data Infrastructure First
	Start with Simple Models
	Beware of Data Leakage
	Use Open-Source Software
	Leverage Advances in Computational Power

	Conclusions and Future Work
	Appendix A
	Appendix A.1
	Appendix A.2
	Appendix A.3

	References

