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Abstract: This paper aims at the characteristics of nonlinear, time-varying and parameter coupling in
a hydraulic servo system. An intelligent control method is designed that uses self-learning without
a model or prior knowledge, in order to achieve certain control effects. The control quantity can
be obtained at the current moment through the continuous iteration of a strategy–value network,
and the online self-tuning of parameters can be realized. Taking the hydraulic servo system as the
experimental object, a twin delayed deep deterministic (TD3) policy gradient was used to reinforce the
learning of the system. Additionally, the parameter setting was compared using a deep deterministic
policy gradient (DDPG) and a linear–quadratic–Gaussian (LQG) based on linear quadratic Gaussian
objective function. To compile the reinforcement learning algorithm and deploy it to the test platform
controller for testing, we used the Speedgoat prototype target machine as the controller to build
the fast prototype control test platform. MATLAB/Coder and compute unified device architecture
(CUDA) were used to generate an S-function. The results show that, compared with other parameter
tuning methods, the proposed algorithm can effectively optimize the controller parameters and
improve the dynamic response of the system when tracking signals.

Keywords: reinforcement learning; TD3; DDPG; hydraulic servo; Speedgoat

1. Introduction

As a high-precision closed-loop control system, a hydraulic servo system can make the
output (displacement, velocity or force) of a system follow the changes of the input quickly
and accurately. This offers the unique advantages of fast response speed, large load stiffness
and large control power and is widely used in the aerospace, heavy industry, robotics
and national defense fields. However, as a high-order nonlinear system, the inherent
nonlinearity, time-variability and parameter coupling of a hydraulic servo system pose
challenges to the design of control methods [1]. The determination of controller parameters
and the deployment of a control strategy are the main difficulties. Thus, the question of
how to control a hydraulic servo system with high precision is of great significance to its
popularization and application.

The use of reinforcement learning algorithms to solve control problems such as nonlin-
ear engineering problems has been widely studied by many researchers. For instance, Wu,
M. et al. [2] used a safe deep reinforcement learning (DRL) control method based on a safe
reward shaping method and applied it to the constrained control for an electro-hydraulic
servo system (EHSS). Chen, P. et al. [3] proposed a novel control strategy of speed servo
systems based on deep reinforcement learning, which can achieve proportional–integral–
derivative automatic tuning and effectively overcome the effects of inertia mutation and
torque disturbance. Wyrwał, D. et al. [4] proposed a novel control strategy for a hydraulic
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cylinder based on deep reinforcement learning, which can automatically control the hy-
draulic system online so that the system can consequently maintain a consistently good
control performance. Zhang, T. et al. [5] proposed a strategy based on deep reinforcement
learning for the optimization of gain parameters of a cross-coupled controller, allowing
the effective convergence of the gain parameters with the optimal intervals. The optimal
gain parameters obtained by the proposed strategy can significantly improve the contour
control accuracy in biaxial contour tracking tasks. Zamfirache, I.A. et al. [6] proposed a
new control approach based on reinforcement learning (RL) that used policy iteration (PI)
and a metaheuristic grey wolf optimizer (GWO) algorithm to train neural networks (NNs).
In so doing they demonstrated good results for NN training and the solving of complex
optimization problems. Shuprajhaa, T. et al. [7] developed a generic-data-driven modified
proximal policy optimization (m-PPO) for an adaptive PID controller (RL-PID) based on
reinforcement learning for the control of open-loop unstable processes, which eliminated
the need for process modeling and pre-requisite knowledge on process dynamics and
controller tuning.

Some studies have also integrated multiple comprehensive methods to achieve optimal
control. Vaerenbergh, K.V. et al. [8] presented a practical application of a hybrid approach
where reinforcement learning is the global layer to tune the controllers of every subsystem
for the problem. It was shown that developing a centralized global controller for systems
with many subsystems or complex interactions is usually very hard or even unfeasible.
Lv, Y. et al. [9] used an RL-based approximate dynamic programming (ADP) structure to
learn the optimal tracking control input of a servo mechanism, where unknown system
dynamics were approximated with a three-layer NN identifier. Radac, M.B, and Lala, T. [10]
proposed a Q-learning-like data-driven model-free (with unknown process dynamics)
algorithm. They used neural networks as generic function approximators and validation on
an active suspension system and it was shown to be easily amenable to artificial road profile
disturbance generation for the optimal and robust control of a data-driven learning solution.
Oh, T.H. et al. [11] proposed a DDPG-based deep RL method to simultaneously design and
tune several notch filters and used a real industrial servo system with multiple resonances
to demonstrate the proposed method effectively. They found the optimal parameters for
several notch filters and successfully suppressed multiple resonances to provide the desired
performances. Chen, W. et al. [12] proposed a novel adaptive law for the critical network in
an RL framework to address the problem of nonlinear system control, which is driven by
historical estimation errors but uses an auxiliary matrix instead of a historical data set, thus
reducing the computational effort of the controller.

Reinforcement learning mainly learns and optimizes its own behavioral strategies
through the idea and mechanism of trial and error. The behavior acts on the environment
and obtains a response from the environment. The response is the evaluation index of
the behavior. In the process of constantly interacting with the environment, the agent
constantly changes their actions according to the rewards they get from the environment.
With enough training, the agent can accumulate experience and then interact with the
environment in a way that maximizes reward.

Although many studies have been undertaken in the practice of RL design and have
laid a great theoretical foundation, there still exist some challenges and shortcomings. For
instance, the classic reinforcement learning methods such as Q-learning do not have good
generalizability and are usually only useful for specific tasks. Methods of control that have
been optimized by neural network algorithms or genetic algorithms are usually effective
only for specific cycle periods, lack on-line learning capabilities and have limited generaliz-
ability. Additionally, the experimental research on pure hydraulic servo systems has rarely
been concerned with RL, and the verification of tests is relatively simple. As a result, most
studies fail to set comparison tests or compile reinforcement learning algorithms for testing
and verification.

In this study, the application of a reinforcement learning algorithm as the optimal
control is presented Ref. [13]. This algorithm learns the optimal control strategy through
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direct interaction with objects. A deep neural network based on TD3 reinforcement learning
training is introduced to realize this complex control [14–16]. Firstly, the feasibility and
effectiveness of the controller are verified by simulation, and rapid prototype control is
then carried out based on a Speedgoat prototype target machine. A GPU coder and LCT
packaging tool are then used to deploy the reinforcement learning control program after
the reinforcement learning training is completed. Finally, we verify the rationality of the
control scheme and the effectiveness of the control algorithm by experiments.

2. Reinforcement Learning

Reinforcement learning [17] is a type of learning method in machine learning. It aims
to construct and train agents to complete corresponding tasks in an unknown environment
and its basic framework is shown in Figure 1 Since the actions in the learning process
can affect the environment and the environment will then affect the subsequent actions,
reinforcement learning can be regarded as, in essence, a closed-loop control, and the
strategies of the agent allow it to complete the task in an optimal way through iterative
updates, which is similar to the controller in the system [18,19].
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Figure 1. The basic framework of reinforcement learning.

Interactions between the agent and the environment in a period T are as follows:

(a) The Agent observes the system state after the previous action A;
(b) Under the current state of S and strategy P, agent undertakes action A by exploring

the noise ε;
(c) The reward value R is obtained under the new environment state S, then the Agent

updates the strategy P according to the reward value R;
(d) Repeat the above steps until the requirements are met.

Among these illustrated above, the reward value R is to evaluate the quality of the
actions made by the agent in the environment. Since the reasonable setting of a reward
function determines its convergence speed and stability, it is key for the agent to learn
strategy effectively.

This paper takes a servo valve controlled asymmetric hydraulic cylinder system as the
research object, builds a simulation environment based on a MATLAB/Simulink module,
and carries out precise positional control of a hydraulic cylinder through a reinforcement
learning algorithm. Additionally, the TD3 reinforcement learning algorithm was designed
to interact with the environment so that ultimately the strategy of the control requirements
can be satisfied. The servo valve controlled asymmetric hydraulic cylinder system is shown
in Figure 2.
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Figure 2. The schematic diagram of hydraulic servo system. 1. Asymmetric hydraulic cylinder
2. Sensor 3. Load 4. Servo hydraulic valve 5. Throttle hydraulic valve 6. Relief value 7. Hydraulic oil
tank 8. Pump.

3. Design of the Algorithm
3.1. Actor–Critic Algorithm

The actor–critic [20] method combines the advantages of two methods: Actor and
Critic. The method of Critic can be used to estimate a function of value that can lay a
foundation to update the Actor function. As in Figure 3, there are two neural networks, one
of these is the Actor network which determines the output in response to the environment,
which can be either continuous or discrete. According to the combination of action and
state on the output, the Critic network evaluates the value of the action of the Actor
network. Meanwhile, the actual reward can be compared with the estimated value of
the Critic to get the time difference error (TD-Error), which can judge how to adjust the
parameters of the Critic network to obtain a more accurate estimate value. It can also judge
the quality of the current action value [21,22], so as to achieve the purpose of updating
the Actor parameters. In the process of the constant interaction between the agent and the
environment, the weights of the Actor and Critic are updated and a relatively ideal control
effect is achieved [23].
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3.2. The Algorithm of DDPG and TD3

The depth deterministic policy gradient (DDPG) algorithm is a deep reinforcement
learning algorithm based on Actor–Critic architecture for continuous action space [24]. The
structure of a DDPG algorithm is shown in Figure 4.
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The twin delayed deep deterministic policy gradient (TD3) algorithm (Figure 5) im-
proves the network structure and update mode [25–27], which is based on DDPG algorithm.
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This uses the Actor–Critic framework and builds six neural networks to build the
reinforcement learning body. The reward function is constructed based on the tracking
error and error integral of the hydraulic position servo system, and the state set is composed
of the output error of the position servo system. The TD3 algorithm has two advantages,
which are as follows:

(i) A reduced overestimation of a dual Critic network.
Since noise θ appears in the sample value y, the target value Eθ of Q network in the

real case of the learning process is:

y = r + γ max
a′

Q(s′, a′) (1)

Eθ [max
a′

Q(s′, a′) + θ] ≥ max
a′

Q(s′, a′) (2)

After updating the Q function many times, errors will accumulate, leading to a num-
ber of bad states being assigned with higher value, and to a large deviation. A double
Q-value network reduces estimation errors because it decouples the action and update
operations [28]. The roles of the main and target networks and the update mode are shown
in Table 1.

Table 1. Double Q-value network.

Main Net Target Net

Function Approximation of action value function Q Providing TD targets
Update Updating the weights by minimum gradient method Copy the Main weight
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Using two independent Critics (sharing experience pool) in the TD3 algorithm, we
can take the minimum value between the two Critics to eliminate the phenomenon of
overestimation and to update the target value. However, although this may lead to an
underestimated value for the strategy, this is preferable to overestimating it, as cumulative
overestimation will make the strategy ineffective.

(ii) Smooth regularization of the target strategy.
Each step of the TD update produces a small error, which is more noticeable for

approximate estimates. After many updates, a large number of errors will accumulate,
eventually leading to an inaccurate Q value [29]. When the Actor and Critic are trained
simultaneously, there may be a situation where training is unstable or divergent. In this
paper, the target network is introduced by the delayed update of the policy. The method
includes two aspects. First, a regularization of the parameters (add noise). Secondly, we
update the target network every d times after updating Critic. The update objectives of
Critic are calculated by the target network to improve the value function convergence,
wherein the value function is updated at a higher frequency and the strategy is updated at
a lower frequency.

3.3. Flow of Control

Reinforcement learning in this paper consists of PI parameters Kp and Ki to form an
action set, and its learning process is shown in Figure 6 below.
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The TD3 servo control algorithm is shown in Figure 7. In the initial target network, we
use a DQN mechanism and the initialization playback buffer B to eliminate the influence
of catastrophic neural network forgetting [30,31]. By introducing a random noise with
SARSA ideas ε (disturbance smooth value function in the action dimensions) to choose a
actions and storage transition matrix to B, the memory pool can be formed. The process of
updating the weights of Actor and Critic (πϕ, Qθ1 and Qθ2) is as follows:

ã← πφ′(s′) + ε

y← r + γmin
i=1,2

Qθ′ i (s
′, ã)

ε ∼ clip(η(0, σ̃),−c, c)

(3)

Updating the Critic network with minimized loss function:

Lθi = min
θi

1
N
(y−Qθi (s, a))2 (4)

Updating Actor networks using policy gradients:

∇φ J(φ) ≈ 1
N ∑

i
∇aQθ1(s, a)

∣∣
a=πφ(s)

∇θπφ(s) (5)

Reducing the cumulative error by updating the target network smoothly:{
θ′ i ← τθi + (1− τ)θ′ i
φ′ ← τφ + (1− τ)φ′

(6)
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A neural network should be established before creating an Actor network, including
an observation input and action output [32]. As a network, a PI controller can set error and
error integral observation vectors on the fully connected layer.

u = Kpe(t) + Ki

∫ t

0
e(t)dt (7)

w = [Kp, Ki] (8)

Here, u is the output of the Actor network and w is the weight of the Actor network.
Since the gradient descent optimization may turn the weight negative, function Y

should be executed to ensure that the weights are positive before setting the fully connected
PI layer.

Y = abs(w) ∗ [e(t),
∫ t

0
e(t)dt] (9)
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J = lim
T→∞

E(
1
T

∫ T

0
[A(re f − y(t))2 + Bu2(t)]dt) (10)

White noise (E[n2(t)] = 1) is added to the model to simulate signal acquisition and
external interference, so as to minimize the output control signal while ensuring minimal
errors under the objective function standard.

4. The Establishment of the Environment
4.1. The Establishment of the Network

The reinforcement learning (RL) agent is used to replace the PI controller to keep the
network structure of the two Critics in the same state (Figure 8), we then set the number of
network neurons (Table 2).
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Figure 8. The neural network structure layer defined by TD3. (a) The network layer of the Actor and
(b) the network layer of the Critic.

Table 2. Number of network neurons.

The Name of Layer Critic Network Actor Network

Layer of state 3 × 2 3 × 2
Layer of action 4 × 1 -

Fully connected layer 1 50 × 1 50 × 1
Fully connected layer 2 50 × 1 -

Connection layer 32 × 1 32 × 1
Layer of activation 1 25 × 1 25 × 1

Fully connected layer 3 50 × 1 50 × 1
Layer of activation 2 25 × 1 25 × 1

Fully connected layer 4 4 ×1 4 × 1

4.2. Establishment of the Environment

The environment receives operations from agents in reinforcement learning scenarios,
outputs observations generated by the dynamic behavior of the environment model and
generates rewards to measure the contribution of actions to the completion of tasks [33].
The observer structure is shown in Figure 9.
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Figure 9. Observed vectors.

Mixed rewards are used for rewarding signals, which include continuous rewards
and discrete rewards. Here, the discrete reward signals keep the system away from the
bad state, while continuous reward signals improve the convergence by providing smooth
rewards near the target state [34]. The following hybrid reward function R is designed for
position control of the hydraulic servo system:

r1 = −10ae2
t − u2

t

r2 = −10a(p ≤ −125||p ≥ 125)
R = r1 + r2

(11)

The larger a is, the better the network exploration is, but the longer the learning
time and the higher the learning cost. When comprehensively considering the parameter
a ∈ (1,4), as the displacement is outside the range of activity, there will be a large reward
and punishment (P ∈ (125125)). The program block diagram of the above Equation (11) is
shown in Figure 10, and the Simulink reinforcement learning training program is shown in
Figure 11 below.
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4.3. Setting the Hyperparameter

Variables and expressions were used in MATLAB to parameterize the hydraulic
model, and the control system of the hydraulic system was designed in Simulink. The
super parameters can be set after setting up the environment (Table 3).

Table 3. Hyperparameter settings.

Hyperparameter Symbol Value

Random seed αr 1
Maximal set M 2000

Maximum substep size per episode T 100
Time of sampling TS 0.01

Time of simulation Tf 3
Playback buffer B 106

Quantity of batch N 250
Threshold of gradient ε 1

Learning rate of Actor network ra 0.0003
Learning rate of Critic network rc 0.0002

noise of exploration e 0.1
Delayed updating D 2
Factor of discount γ 0.99

Rate of soft renewal τ 0.01

Since training is the foundation of reinforcement learning, the coefficient of the reward
function needs to be set several times in normal circumstances, so as to let the agent obtain
a better training effect. By setting the error coefficient appropriately, the rates of change for
the node reward and average node reward obtained by the agent in training can be shown
in Figures 12 and 13 below, where the value of a is set to 1, 2, 3, and 4.
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Figure 13. Average rate of change for node reward.

Figure 12 shows the average compensation of agents in training within 500 nodes. The
node reward is the actual value of each training round (which fluctuates greatly), while the
average reward is the smoothed effect of the actual training (the mean of node training),
which eventually increases and becomes stable.

It can be seen from Figure 12 that the smaller the error coefficient is, the greater the
final node reward will be, but this does not mean that the smaller the error coefficient is,
the better. As can be seen from Figure 13, when the coefficient is 1 or 2, the growth rate
of the point reward changes frequently, which means that it is still fluctuating in a small
range at 500 steps; however, when the coefficient is 3 or 4, it changes dramatically at the
beginning and becomes stable at about 100 steps, while the rate of change in the later period
is basically 0. This proves that the first two groups have a higher final reward, though
the training was not completed and so the average reward fluctuated wildly. The latter
two groups completed the training and, although a higher coefficient of error was set, it
ultimately converged to results that are similar to those of the first two groups.

The same reward function was set to compare the training effect of the DDPG and TD3
algorithms. As can be seen from the comparison graph of reinforcement learning curves,
DDPG agents learn faster (about 400 sets) and reach the local minimum at the beginning.
Compared with DDPG, TD3 has a slower start but a small bottom, and will end up with a
higher reward as it avoids the overestimation of the value of Q. Compared with DDPG,
TD3 has a steadily improved learning curve, indicating it has improved its stability and the
curve graph comparison of learning is shown in Figure 14.
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The above reinforcement learning parameter optimization method was compared with
the optimal controller (LQG) by simulation experiments, in order to test the actual control
performance of the obtained parameters. Under the same input conditions, the response
performance of controller parameters obtained by different methods was compared at
the same time (the comparison data are shown in Figure 15). Figure 15a,d are sinusoidal
signals and trapezoidal signals. It can be seen from the comparison data that TD3 has a
better effect than DDPG and LQG as PID controls the errors of the TD3 algorithm. The
comparison curves shown in Figure 15b,e are smaller than those of the other two algorithms.
Figure 15c,f show the absolute error integral (Int-IAE) curves under the two respective
signals. The error cumulative integral (Int-IAE) is taken as the evaluation index to compare
the fixed-parameter PID control performance of the control strategy based on reinforcement
learning with that of the servo system structure under different signal types and signal
amplitude values and shows that, as the cumulative error integral gets smaller, the accuracy
increases.
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Figure 15. Comparison diagram of control method effect. (a) Following the sinusoidal signal,
(b) subsequent error of the of sinusoidal signal, (c) comparison graph of IAE index, (d) following the
trapezoidal signal, (e) error of the subsequent of sinusoidal signal, and (f) comparison graph of IAE
index.

The change of the PI layer parameters after TD3 training is shown in Figures 16 and 17.
In the case of the sine and trapezoidal signals, the error and error cumulative integral of
the TD3 algorithm are smaller than those of the other two algorithms. It can be seen from
Table 4 that, compared with DDPG, the overshoot of the TD3 step signal is reduced by
24%, and the stabilization time reaches 0.056 s, which is half as long as that of the LQG,
and the overshoot time reaches 7%. The TD3-based reinforcement learning control has
relatively simple control tasks with a few adjustable parameters, allowing it to obtain better
results. Therefore, the correctness of the agent model and the effectiveness of training can
be verified by the above results in this study.
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Table 4. System response under step signal.

Strategy Kp Ki Time of Rise (s) Time of Stability (s) Overshoot (%) Phase Margin

LQG 50.52 12.56 0.057 0.102 31 87.45
DDPG 43.41 8.99 0.067 0.114 32 87.85

TD3 54.81 9.11 0.052 0.056 7 87.62
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5. Rapid Prototype Control Experiment

The fast prototype control (Figure 18) is a real-time system that can be created on the
desktop, or in a laboratory or field environment. It can also test the automation system and
verify its control algorithm, which greatly reduces the development and testing cycle [35].

Machines 2022, 10, x FOR PEER REVIEW 15 of 21 
 

 

 

Figure 16. Variation curve of Kp. 

 

Figure 17. Variation curve of Ki. 

5. Rapid Prototype Control Experiment 

The fast prototype control (Figure 18) is a real-time system that can be created on the 

desktop, or in a laboratory or field environment. It can also test the automation system 

and verify its control algorithm, which greatly reduces the development and testing cycle 

[35]. 

 

Figure 18. Fast prototype control. 

A better reward function was designed and a greater control strategy was obtained 

in the simulation environment, both of which are based on the TD3 reinforcement learning 

environment described above.However, the work needs to be verified by experiment to 

prove the rationality of the previous work in this paper. The Speedgoat target machine 

0 100 200 300 400 500

Number of iterations

0

20

40

60

K
p

0 100 200 300 400 500
0

2

4

6

8

10

K
i

Number of iterations

Figure 18. Fast prototype control.



Machines 2022, 10, 1244 14 of 19

A better reward function was designed and a greater control strategy was obtained in
the simulation environment, both of which are based on the TD3 reinforcement learning
environment described above.However, the work needs to be verified by experiment to
prove the rationality of the previous work in this paper. The Speedgoat target machine
based on a MATLAB kernel can be used for rapid prototype control and to verify the
correctness of the simulation results and control strategy.

5.1. Test Equipment

The Speedgoat real-time target machine (Figure 19) in the experiment was used as
the controller of the hydraulic servo system, and a rapid prototyping (RP) technology was
used to deploy the pure software algorithm to the hardware for implementation, so that it
could be tested in a real environment [36,37]. The board configuration of Speedgoat and the
mainframe’s technical specifications of Baseline-S are shown in Tables 5 and 6 respectively.

Table 5. Board configuration of Speedgoat.

Type Name Number of Interfaces

Master computer for controlling Baseline-S Bus Interfaces of ethernet and video
Input of simulation IO191 Board card Single-ended AI of No.24

Output of simulation IO191 Board card AO of No.12
CAN Bus IO691 Board card No.2

Input of digitization IO191 Board card DI of No.24
Output of digitization IO191 Board card DO of No.24

Table 6. Mainframe’s technical specifications of Baseline-S.

Type Technical Specifications

CPU Intel Celeron 2 GHz 4 cores
Current operating system Simulink Real-Time

memory space 4GB RAM & 32GB SSD
USB interface 1 × USB 3.0 & 2 × USB 2.0

Computer Interface 1 × ethernet interface
serial interface 2 × RS232(Support 120 kb/s)
power supply 9-36V

Protocol Support TCP/IP, EtherCAT, XCP Master,
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5.2. Using Reinforcement Learning for Control

To use reinforcement learning-based control, third-party software is required: a CUDA
supported NVIDIA GPU; NVIDIA CUDA package and drivers; NVIDIA cuDNN library;
Visual Studio compiler; Simulink Real-Time Target Support Package; and other extension
packages and environment variables.

The policy used in this paper uses an extract function to extract the policy part of the
agent and generates an “m type” interface function named evaluatePolicy, which is passed
to the GPU coder for code generation which generates a series of class dynamic link library
codes, whose type is shown in Table 7 below.
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Table 7. Type of generated code.

Types of Configuring Object Generated Code

‘Mex’ MEX function
‘Lib’ Static library
‘Dll’ Dynamic library
‘Exe’ Executable file

For the hydraulic servo system studied in this paper, a legacy code tool (LCT) was used
to encapsulate the dynamic library code into an S-function module, where Figure 20 shows
the flow chart of the reinforcement learning control strategy code generation. Figure 21
shows the actual control effect of the control program built on Simulink, which demon-
strates that the curve of the experimental results corresponds to the curve of the simulation
results and confirms the effectiveness of reinforcement learning control in practical engi-
neering applications. Figure 22 shows the comparison diagram of control method effect.
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6. Conclusions 
(1) The reinforcement learning control model of the hydraulic servo system was built 

based on MATLAB/Simulink. The reinforcement learning model was trained by cre-
ating an Actor and Critic layer and defining the observation vector and hyperparam-
eter. The DDPG and TD3 algorithms were trained under the same reward function 
and the simulation experiments were compared with the linear–quadratic–gaussian 
(LQG) controller. 

(2) The mixed reward function FR was planned according to the training purpose. When 
the error coefficient a reaches 4, the average node reward reaches −50, and the average 
node reward change rate ultimately reaches approximately 0. Thus, it can be seen 
that the system achieves a higher reward value in the iteration and tends to converge. 

(3) Using the Speedgoat as the reinforcement learning controller, MATLAB/Coder and 
CUDA were used to generate an S-function, and the reinforcement learning algo-
rithm was compiled and deployed to the test-bed controller for testing by building a 
fast prototype control test bed for a hydraulic servo system, one which was based on 
reinforcement learning. The trajectory tracking performance of the proposed algo-
rithm is about 30% higher than that of other algorithms, which verifies the rationality 
of the control scheme and the effectiveness of the control algorithm. 
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6. Conclusions

(1) The reinforcement learning control model of the hydraulic servo system was built
based on MATLAB/Simulink. The reinforcement learning model was trained by creat-
ing an Actor and Critic layer and defining the observation vector and hyperparameter.
The DDPG and TD3 algorithms were trained under the same reward function and the
simulation experiments were compared with the linear–quadratic–gaussian (LQG)
controller.

(2) The mixed reward function FR was planned according to the training purpose. When
the error coefficient a reaches 4, the average node reward reaches−50, and the average
node reward change rate ultimately reaches approximately 0. Thus, it can be seen that
the system achieves a higher reward value in the iteration and tends to converge.

(3) Using the Speedgoat as the reinforcement learning controller, MATLAB/Coder and
CUDA were used to generate an S-function, and the reinforcement learning algorithm
was compiled and deployed to the test-bed controller for testing by building a fast
prototype control test bed for a hydraulic servo system, one which was based on rein-
forcement learning. The trajectory tracking performance of the proposed algorithm is
about 30% higher than that of other algorithms, which verifies the rationality of the
control scheme and the effectiveness of the control algorithm.
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