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Abstract: This paper proposes a joint neural network model to imitate lane-changing behaviors.
Specifically, lane-changing decision-making process is captured by probabilistic neural network
(PNN) and lane-changing decision-making process is learned by back-propagation neural network
(BPNN). The link between the two neural networks is the target gap for lane-changing. After
testing and calibrating the joint neural network model, simulation experiments are designed to
study heterogeneous traffic flow at an off-ramp bottleneck. Numerical simulations are conducted
in various traffic scenarios with different market penetration rates (MPRs) of intelligent vehicles
(IVs) and proportions of exit vehicles. Finally, the performance of heterogeneous flows is evaluated
from the perspectives of average speed, road capacity, and safety. The results show that joint neural
network can accurately predict the gap types chosen for lane changes and vehicle trajectory during
lane-changing. For the traffic system, road capacity obtains the least value when the MPR of IVs is
50%. Moreover, frequent lane-changing movements upstream the off-ramp bottleneck determine
the areas at greatest risk. However, when MPR of IVs is over 80% or proportion of exit vehicles is
below 15%, both traffic efficiency and safety can be significantly improved. This work provides some
insights into the application of machine learning algorithms to traffic flow modeling, and conducts
quantitative analysis on the impact of key parameters on traffic systems. Findings of this work can
support management and operation of automated highway systems in the future.

Keywords: intelligent vehicles; lane change; machine learning; vehicle trajectory; neural network

1. Introduction

The field of intelligent vehicles (IVs) is rapidly growing worldwide from intelligent
control systems to intelligent sensors. These systems or sensors offer the potential for
considerable enhancements in traffic efficiency and safety. Meanwhile, intelligent vehicular
technologies are gradually changing the movements of decision-making and execution
process. Especially, vehicle-to-everything (V2X) communications can transform valid
information to surrounding vehicles or the roadside unit. It helps drivers prevent road
collisions and avoid dangerous situations by sharing data with other vehicles [1,2]. In this
case, IVs can gain sufficient information in a connected environment to operate efficiently
and safely. For example, potential benefits include making an optimal decision on the target
gap for lane-changing, and executing a set of high-quality movements with a wiser central
controller. Generally, two main control subjects are longitudinal and lateral movements of
vehicles in the traffic stream [3,4].

For the longitudinal control, there are a lot of classic models designed to simulate
car-following behaviors. Particularly, the intelligent driver model (IDM) introduced by
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Kesting et al. [5] has been proposed to imitate longitudinal dynamics of manually driven
vehicles (MVs). For IVs, adaptive cruise control (ACC) system is developed to assist drivers
and improve driving safety. In the previous theoretical research, simulations have been
extensively conducted to demonstrate the efficiency and stability of ACC systems. As an
enhanced version of ACC, cooperative ACC (CACC) forms the basis of connected and
autonomous vehicles, which can notably smooth hazardous traffic flow [6–11]. In this
paper, both ACC vehicles and CACC vehicles are collectively referred to IVs.

Moreover, the mixed traffic flow with MVs and IVs is investigated and the transporta-
tion system is evaluated by several indexes in different aspects of performance. Ye and
Arvin et al. explored the impact of connected and autonomous vehicles (CAVs) on traffic
safety respectively in freeway and intersection scenarios [12–14]. Zhou et al. estimated
the effect of CAV platoon and CACC market penetration rate on fuel consumption and
emissions based on IDM and ACC/CACC models [7]. Wang et al. presented a framework
for the analytical study on stability of CACC-manual heterogeneous vehicular flow with
partial CACC performance degrading [15]. Additionally, Mahdinia et al. evaluated the
safety, energy, and emissions impacts of automated and cooperative systems in mixed traffic
containing conventional, ACC and CACC vehicles [16]. Results of the above-mentioned
literature indicate that the implementation of IVs would be beneficial for better traffic.

Compared with longitudinal control models in a commercial application, research
on lateral control has not formed unified criteria or frameworks due to complexity and
confidentiality in lane-changings. Gipps proposed a structure of lane-changing decisions,
which was applied for the urban situation [17]. Following Gipps’s pioneering work, many
researchers have been devoted to the extension or improvement of the model [2,18]. For
example, Kesting et al. introduced a general model (minimizing overall braking induced
by lane change, MOBIL) to derive lane-changing rules for discretionary and mandatory
lane changes [19]. Toledo et al. presented a generalized lane-changing model that explicitly
incorporates the choice of target lane on the basis of the utilities of current and adjacent
lanes [20].

With the rapid development of IVs, studies are being conducted on modeling or
predicting intelligent vehicles’ lane-changing movements, including CAVs and automated
vehicles (AVs). Ye and Yamamoto modeled CAVs’ car-following and lane-changing maneu-
vers in heterogeneous traffic flow based on cellular automaton [12,13]. Shamir designed a
smooth and ergonomic optimal lane-change trajectory for an AV’s three-phase overtaking
maneuver [21]. Yang et al. proposed a dynamic lane-changing trajectory planning model
for AVs. Lane-changing could be finished smoothly, efficiently, and safely controlled by
this new model [22]. Besides, research on lane-changing of IVs can be related to control
methods, such as ramp metering and variable speed limit.

Moreover, many lane-changing behaviors cannot be precisely represented by the con-
ventional rule-based models. Therefore, more and more data-driven models are proposed
to imitate lane-changing [23–26]. Mahajan et al. presented an end-to-end machine learning
model for predicting lane-change maneuvers from unlabeled data based on support vector
machine (SVM) and long short-term memory (LSTM) [24]. Das et al. modeled lane-change
behavior for AVs using a supervised machine learning approach and compared different
machine-learning-based classifiers [25]. Xie et al. used deep belief network and LSTM
neural network to model the lane-changing decision-making and implementation pro-
cesses [26]. The above-mentioned models for lane-changing take into account many factors
and capture more accurate features. Generally, this kind of modeling method has a great
application prospect in accident prevention and efficiency improvement.

Although a number of studies have been dedicated to lane-changing modeling and
future traffic flow prediction, there has not been any joint neural networks for IVs or
CAVs in terms of lane-changing behavior learning. Moreover, with respect to off-ramp
bottlenecks, research were not as sufficient as the scenarios of on-ramp and basic section
on freeways. Off-ramp is a more complex scenario, and has significant impact on travel



Machines 2022, 10, 109 3 of 18

efficiency and safety. So, it needs more exploration in traffic state prediction and traffic
system evaluation, especially for CAV environment in the future.

Therefore, this paper focuses on the following two issues: (1) models for lane-changing
decision-making and execution behaviors, and (2) analysis of mixed traffic at an off-ramp
bottleneck. Accordingly, the major contributions of this paper are summarized at two levels:
(1) At the micro-level, the whole lane-changing process is divided into two stages and
each stage is modeled by different neural network algorithms. Specifically, lane-changing
decision-making model is based on probabilistic neural network (PNN) and lane-changing
decision-making process is learned by BPNN. Then, calibration and testing experiments
are conducted to prove the validation of the proposed joint neural network. (2) At the
macro-level, the transportation system with human-driving and IVs is analyzed in terms of
efficiency and safety. Moreover, two sensitive variables of the mixed traffic flow near an
off-ramp, penetration rate of CACC vehicles and proportion of exit vehicles, are examined
to achieve optimal performance. Findings of this study contribute to providing guidance
on both theoretical research and potential practical applications.

The remainder of this paper is structured as follows. Methodology of this study is
summarized in Sections 2–4. Specifically, Section 2 describes the simulation testbed, includ-
ing car-following model, lane-changing model, and efficiency and safety evaluation models.
Section 3 presents the results of calibration and testing for the proposed lane-changing
model. Simulated traffic and scenario settings are introduced in Section 4. Numerical simu-
lation results for evaluating the transportation system and analyzing sensitive variables are
summarized in Section 5. Finally, this work is concluded with conclusions in Section 6.

2. Model Descriptions

This section presents the car-following and lane-changing models applied to simulate
vehicles’ behavior in this study. Among them, the IDM and two typical ACC/CACC models
are chosen to imitate the longitudinal control systems for MVs and IVs, respectively [5,9,10].
For lateral control, two typical neural network algorithms—PNN and BPNN—are chosen
to imitate lane-changing behaviors. Finally, evaluation indexes of travel efficiency and
safety are introduced for the following experiments.

2.1. Car-Following Model

(1) MV: The IDM is accepted widely in the field of traffic flow models [5]. It is chosen as
the longitudinal control model for MVs in this paper.

a(t + ∆t) = αm·
[

1−
(

v(t)
v0

)θ

−
(

s∗(t)
g(t)

)2
]

(1)

s∗(t) = s0 + max

[
0, v(t)·TMV +

v(t)·∆v(t)
2
√

αm·β

]
(2)

v(t + ∆t ) = v(t) + a(t)·∆t (3)

x(t + ∆t) = x(t) + v(t)·∆t +
1
2
·a(t)·∆t2 (4)

where a(t), v(t), and x(t) denote the acceleration, speed, and position of the subject vehicle
at time t, respectively. ∆t is the time step. αm denotes the maximum acceleration. v0
is the desired speed, θ represents the acceleration exponent. g denotes the gap distance
between the subject and leading vehicles in the current lane. s0 denotes the minimum gap
distance at standstill. TMV is the time headway for MVs. ∆v denotes the speed difference
between subject and leading vehicles in the current lane. β denotes the desired maximum
deceleration. For the MVs running on freeways, the values of six parameters in IDM are
chosen as follows: v0 = 33.0 m/s, θ = 4, αm = 1.4 m/s2, β = 2.0 m/s2, s0 = 2.0 m, and
TMV = 1.5 s [5,12,21,27]. ∆t is 0.1 s during all simulation experiments.
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(2) ACC: Based on distance and speed errors, the car-following model for ACC vehicles
is described as follows:

a(t + ∆t) = k1·(g(t)− TACC·v(t)) + k2·∆v(t) (5)

where TACC is the time headway for ACC vehicles. k1 and k2 are the gains on both the
positioning and speed errors respectively. The settings of TACC = 2.2 s, k1 = 0.23 s−2 and
k2 = 0.07 s−1 are employed according to the same tests conducted in [8,9].

(3) CACC: Based on the field tests, the CACC model proposed by PATH is shown as
follows [8,9]. It can capture the features of time-gap error regulation, which is caused
by cooperative wireless communications in a connected environment.

e(t) = g(t)− TCACC·v(t) (6)

v(t + ∆t) = v(t) + kp·e(t) + kd·
.
e(t) (7)

where e represents the gap error of the subject vehicle k. TCACC denotes the time headway
for CACC vehicles.

.
e is the derivative of gap error. kp and kd represent the model coefficients,

which are used to adjust the time-gap error with respect to the leading vehicle. Parameters
here are determined by the above-mentioned experimental tests (kp = 0.45, kd = 0.25 and
TCACC = 1.1 s).

2.2. Lane-Changing Models

In this paper, next generation simulation (NGSIM) dataset is used as the data source to
calibrate and validate the joint neural network [28]. The NGSIM dataset consists of vehicle
trajectories and aggregate loop detector data from two freeway sites in California: I-80 in
San Francisco Bay area and US-101 in Los Angeles, as shown in Figure 1. A total of over
100,000 vehicle trajectories were processed by the NGVIDEO software, and thousands of
lane changes were observed according to the NGSIM report. Lots of studies have used the
NGSIM dataset as their data source to support their models [5,12,17,21,22,27].
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making and execution processes, as shown in Figure 2. Specifically, PNN is trained to 
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subject vehicles. Both PNN and BPNN algorithms take surrounding vehicles’ information 
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Figure 1. Freeway sites where NGSIM vehicle trajectory data are obtained.

PNN and BPNN algorithms are respectively used to model lane-changing decision-
making and execution processes, as shown in Figure 2. Specifically, PNN is trained to
choose one target gap for lane-changing, and BPNN is designed to control speed of the
subject vehicles. Both PNN and BPNN algorithms take surrounding vehicles’ information
into consideration, which ensures that the joint neural network model can depict the
lane-changing process more realistically and reasonably.
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(1) Lane-changing decision-making model: The PNN algorithm takes three kinds of
gaps into consideration, including adjacent gap, backward gap, and forward gap in
the target lane, as shown in Figure 3. Therefore, the problem is simplified to the “one
out of three” choice of gaps for lane-changing. Specifically, the model is described
as follows:
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MLCD
out = F

(
MLCD
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)
(8)

MLCD
out (t) = argmax

g

{
yg(x)

}
(9)

MLCD
in

(t) = {∆vL_SL, ∆vA_SL, ∆vA_SF, ∆vF_SF, dL_SL, dA_SL, dA_SF, dF_SF} (10)

where MLCD
in

(t) is input and MLCD
out (t) is the output of the algorithm at time t. Lane-

changing decision-making process is denoted by F(·). The vector x represents all parameters
for each lane change. The class g denotes the types of lane-changing gaps. G = {1, 2, 3},
which respectively represents forward gap, adjacent gap, and backward gap. ∆vL_SL is
speed difference between the subject and leading vehicles in the forward gap. ∆vA_SL is
speed difference between the subject and leading vehicles in the adjacent gap. ∆vA_SF is
speed difference between the subject and following vehicles in the adjacent gap. ∆vF_SF is
speed difference between the subject and following vehicles in the backward gap. Corre-
spondingly, dL_SL, dA_SL, dA_SF, and dF_SF are distances between the subject vehicle and the
four adjacent vehicles in the target lane.

The probability density function yg(x) defines the concentration of the data of class g
around the vector x, and it can be expressed as follows:

yg(x) =
1

lg(2π)n/2∏n
j=1 δj

lg

∑
i=1

exp

− n

∑
j=1

(
x(g)

ij − xj

)2

2δ2
j

 (11)
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where σj is a smoothing parameter for the jth coordinate. lg is the number of class examples.

In the ith training vector, x(g)
ij denotes the jth element. i = 1, . . . , lg. xj is the jth coordinate

of the vector x. Equation (11) aims to solve the “one out of three” problem.

(2) Lane-changing execution model: When a vehicle starts to change to the target lane,
it will interact with the leading and following vehicles in the target lane. Therefore,
the parameters related to these vehicles have significant impact on lane-changing
execution, such as speed difference and distance. General descriptions of the model
are presented as follows:

MLCE
out = H

(
MLCE

in

)
(12)

MLCE
out (t + 1) = {vS_LD, vS_LT} (13)

MLCE
in

(t) = {vS_LD, vS_LT , ∆vL, ∆vF, dL, dF, dLane} (14)

where MLCE
out (t + 1) is the output at time t +1 and MLCE

in
(t) is the input at time t for the

BPNN algorithm. H(·) denotes the function for lane-changing execution process. vS_LD
and vS_LT represent respectively longitudinal and lateral speeds of the subject vehicle. ∆vL
and ∆vF denote speed differences between the subject vehicle and the leader and follower
vehicles in the target gap, respectively. dL and dF are distances between the subject vehicle
and two adjacent vehicles in the target gap. dLane is the lateral distance to the target lane for
the subject vehicle. Specifically, it denotes the minimum distance between the middle point
of vehicle’s front bumper and the centerline of the target lane.

hk
p = f

(
netk

p

)
(15)

netk
p =

Nk

∑
p=1

Wk
pqhk−1

q +bk
p (16)

netk
p and hk

p are the input and output of the pth neuron in the kth layer. f (·) denotes
the activation function, and neurons of single hidden layer in this paper are activated with
sigmoidal activation function. Nk is the number of neurons in the kth layer. Wk

pq is the
weight or strength of the connection between the pth and qth neurons. bk

p are the bias for the
pth neuron in the kth layer. In this paper, the BPNN algorithm is designed with 3 hidden
layers, and each hidden layer has 5 nodes.

2.3. Efficiency and Safety Evaluation Models

The road capacity is defined as the flow rate equivalent to the maximum 15-min
moving average traffic count. To remove any random effects, each simulation is repeated
by ten times, and the average value is treated as the final result.

C = q15min × 4 (17)

where C represents the road capacity. q15min denotes the maximum number of vehicles in a
15-min interval.

The index of time-to-collision (TTC) is one of most typical surrogate measures for
traffic safety evaluation [27]. One TTC value can be calculated as follows:

TTC(i, t) =
g(t)

v(i, t)− v(i + 1, t)
(18)

where v(i, t) and v(i+1, t) are the speed of the subject and leading vehicles. According to
the definition, a TTC value exists only when the subject vehicle is faster than the leader.
Therefore, there is a constraint of v(i, t) > v(i+1, t).
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The second index for safety evaluation is rear-end collision risk indexes (RCRI). It is
based on an emergency condition, where a leading vehicle decelerates at the maximum
deceleration rate. In this case, the subject vehicle has to brake to avoid a rear-end collision.
The mathematical expression is as follows.

RCRI =
{

0, SSDL > SSDS
1, SSDL ≤ SSDS

(19)

MRCRI =

T
∑

t=1

N
∑

i=1
RCRI

T
∑

t=1

N
∑

i=1
f lag

(20)

where SSDL and SSDS are safe stopping distance of the leading and subject vehicles,
respectively. ar is the deceleration and td is the delay before braking. T is the total time
and N is the total number of vehicles. flag denotes the number of samples. MRCRI is the
average RCRI of all space-time points. According to a previous study [29], ar = 3.4 m·s−2

and td = 0.1 s.
Rear-end collision risk criteria for freeway safety can be stated in terms of the average

RCRI as shown in Table 1 [29].

Table 1. Rear-end collision risk criteria.

Safety Level MRCRI Range Safety Level MRCRI Range Safety Level MRCRI Range

A [0, 0.251] B (0.251, 0.306] C (0.306, 0.355]
D (0.355, 0.416] E (0.416, 0.510] F (0.510, 1]

3. Model Calibration and Testing

In this section, the proposed joint neural network model is calibrated and tested based
on the NGSIM dataset. Specifically, 651 lane-changing samples are extracted. These selected
lane-changing samples are randomly divided into two groups: 80% for training and 20%
for testing. Moreover, two existing methods are used for comparison with our method.
Bi et al. proposed a data-driven lane-changing model based on a randomized forest
algorithm [30], while Sewall et al. used state-of-the-art agent-based models to simulate
driver behaviors [31].

3.1. Test Results of Lane-Changing Decision-Making Model

As shown in Table 2, 49% of vehicles prefer adjacent gap rather than the other two gaps
in the real world. However, over 80% of vehicles choose adjacent and forward gaps for
lane-changing in Bi et al.’s method. There are only 17% of vehicles choosing the backward
gap, which reflects a clear difference in comparison with the ground truth traffic. In Sewall
et al.’s method, all agent-based vehicles focus on the adjacent gap and completely ignore
the other two gaps when there is lane-changing motivation. Obviously, these two methods
have great disparity between them with the real world.

Table 2. Lane-changing decision-making result comparisons.

Groups Backward Gap Adjacent Gap Forward Gap Total

Ground truth traffic 30% 49% 21% 100%
Bi et al.’s method 17% 56% 27% 100%

Sewall et al.’s method 0% 100% 0% 100%
Our method 23% 51% 26% 100%

It is clear that results of our method are quite close to the ground truth traffic in
terms of gap selection. About 26% of vehicles choose the forward gaps for changing their
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lanes and about half select the adjacent gaps. The remaining 23% of vehicles choose the
backward ones. The largest difference occurs in the choice on backward gap, and the other
two differences are lower than 6%. From this point of view, the proposed model is a suitable
tool to simulate lane-changing decision-making behaviors.

3.2. Test Results of Lane-Changing Execution Model

In this part, Vehicle #2719 (V2719) and Vehicle #2823 (V2823) are chosen as examples.
Figure 4 shows the speed comparisons in four scenarios, including the ground-truth from
NGSIM dataset, Bi et al.’s method, Sewall et al.’s method, and our simulation results [30,31].
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Figure 4. Speed comparison of different methods. (a,b) respectively denote the longitudinal and
lateral speeds of V2719. (c,d) respectively denote the longitudinal and lateral speeds of V2823.

As shown in Figure 4a,d, the longitudinal speeds simulated by our method and
Bi et al.’s method are significantly close to the ground truth traffic. However, Sewall et al.’s
method cannot precisely capture lane-changing characteristics. Moreover, our method can
produce more similar lane-changing trajectory patterns in terms of acceleration (V2719)
or deceleration (V2832) processes. In Figure 4b,d, it is easier for all methods to extract
the changes in lateral speed. For the lateral speed of V2719, Sewall et al.’s method seems
to predict more accurately than Bi et al.’s. On the contrary, our method can reappear the
changes of lateral speed during a lane change executed by the subject vehicle. Generally,
our method shows the best performance in both longitudinal and lateral speeds.

Furthermore, Figure 5 shows the position comparison of three methods and the ground
truth traffic. It consists of trajectory and gap. Each trajectory describes position changes in
x- and y- axis directions, as shown in Figure 5a,c. Gap denotes the distance between the
subject vehicle and the leader, as shown in Figure 5b,d. From the perspective of position,
Figure 5 implies that the smallest difference can be observed between our method and the
ground truth traffic. It is consistent with the findings in Figure 4.
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Specifically, Figure 5a,c indicates that all three methods can track changes of direction,
especially for V2719. Compared with Sewall et al.’s method, the other two methods show
a shorter delay since the blue trajectory is above the others in each subfigure. The lines
referred to Sewall et al.’s method present some fluctuations in Figure 5b,d. Contrarily, our
method and Bi et al.’s method can provide a high-degree fitting in maintenance of the
proper gap between the subject and leading vehicles. However, the former still has distinct
advantages over the latter.

Generally, our method performs best in the test of lane-changing decision-making and
execution models. Therefore, the calibration and test results demonstrate that the proposed
joint neural network model is suitable for modeling traffic systems. In this paper, it also
indirectly proves that the proposed model has the ability to simulate and predict the state
of heterogeneous traffic.

4. Simulation Preparations

Frequent lane-changing maneuvers at high traffic demand can be observed at an off-
ramp bottleneck, especially at high traffic demand. As illustrated in Figure 6, the simulated
scenario is a three-lane freeway, which has a one-lane off-ramp for exit vehicles.

The freeway contains four segments along the traffic direction. As shown in Figure 6,
Segment A is the warm-up space for all vehicles. They can run at a desired and steady
speed. In Segment B, exit vehicles intend to leave the mainline and change to the outer
lanes, so there are frequent lane-changing movements in this segment. In this case, lane-
changing models are used to control lateral trajectories. In order to avoid conflict with exit
vehicles, through vehicles can only change to inner lanes both in Segment B and Segment C.
Only through vehicles can be observed in Segment D, and thus only car-following models
are applied in longitudinal control for MVs and IVs.
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Simulation parameters are set as follows. The maximum speeds of mainline and ramps
are 33 m/s and 22 m/s, respectively. (x1, x2, x3, x4) = (500, 1500, 1700, 2000) and the lane
width is 3.6 m. Traffic demand is 1500 vehicles per hour per lane (vphpl). Additionally, the
proportion of exit vehicles Pexit is 20% and they are evenly distributed in median, center
and shoulder lanes.

5. Simulation Results and Discussion

After applying the proposed joint neural network model, we predict the state of
future traffic flow and evaluate it from the aspects of speed, efficiency, and safety. The
heterogeneous traffic flow consists of MVs and IVs. PCACC denotes market penetration rate
(MPR) of CACC vehicles. This section focuses on the impact of exit vehicles and CACC
vehicles on evaluation indexes. In this case, PCACC and Pexit are two key variables needed
to be analyzed quantitatively at off-ramp bottlenecks.

5.1. Impact on Average Speed

Figure 7 shows the spatiotemporal dynamics of average speed of three lanes in the
mainline. In this group of experiments, PCACC and Pexit are set to be 50% and 15%, respectively.
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Figure 7. Characteristics of average speed in different lanes. Characteristics of average speed in
different lanes. (a–c) respectively the median, center and shoulder lanes.

Obviously, lane-changing behaviors have negative impact on the traffic flow because
they often produce some traffic interruptions and destroy the stability of the traffic flow.
However, the impact varies in different lanes. For the median and shoulder lanes, the
influencing areas begin at x = 1000 m and end at x = 1550 m. The congestion spontaneously
dissipates quickly within the 550-m range. In the center lane, severe congestion tends to
propagate upstream from x = 1600 m to even x = 300 m. From the perspective of propagation
time, each shock wave lasts over 10 min in the center lane, while it decreases sharply to
about one minute during congested periods in the other two lanes.

Moreover, average speeds of all lanes exceed 30 m/s in Segment A and Segment D,
which means vehicles run at a desired speed. But in Segment B and Segment C, average
speeds decrease remarkably because more and more exit vehicles change to target lanes.
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These vehicles may decelerate or even run at an extremely low speed until they find a
proper gap. Taking the center lane as an example, the parts in red color indicate that average
speeds are less than 10 m/s in congested areas. Although some jams occur within [1000 m,
1600 m] in the median and shoulder lanes, the traffic is still mildly congested. Generally,
the traffic system is most vulnerable to the center lane in a congestion-prone condition.

Figure 8 shows the spatiotemporal patterns corresponding to the traffic breakdown
and the transition from synchronized flow to jam. Vehicle trajectories in the center lane are
displayed for 10 min within [500 m, 1000 m]. Pexit value maintains 15%. In contrast, PCACC
changes from 0 to 100% with a 20-percent interval. Clearly, the lane-changing influencing
area gets bigger before PCACC increases to 40%. One of the reasons for this congested
phenomenon is that more and more ACC vehicles are degraded from CACC ones. Because
of longer headway, ACC vehicles need more space in the target lane for lane changes. It is
difficult to find a proper gap for lane-changing at the current speed, and thus deceleration
potentially occurs during the lane-changing decision-making process. Meanwhile, conges-
tions tend to propagate upstream, and the influencing area is approximately 200 m long, as
shown in Figure 8c. Fortunately, such congestions can dissipate by themselves in near-term
deployment scenarios where MPR of CACC vehicles is relatively low.

Machines 2022, 10, x FOR PEER REVIEW 12 of 20 
 

 

 

Figure 8. Temporal-spatial pattern of vehicle trajectories. (a) PCACC=0, (b) PCACC=20%, (c) PCACC=40%, 
(d) PCACC=60%, (e) PCACC=80%, and (f) PCACC=100%. 

When PCACC rises from 60% to 100%, the risk of congestion caused by forced lane 
changes gradually decreases. Specifically, the length of high-density area is limited to 200 
m in Figure 8d, while congestion is suppressed around the position x = 1000 m. Addition-
ally, typically short jams form in Figure 8e,f. Congestion hardly can be observed when 
PCACC is more than 80%. Finally, traffic flow gradually becomes homogeneous when all 
vehicles are replaced by CACC vehicles. 

Generally, lane-changing behaviors may induce severe congestions, especially when 
MPR of CACC vehicles ranges from 40% to 60%. Congestions resulting from forced lane-
changing maneuvers propagate at upstream of the off-ramp bottleneck, and the length of 
influencing area is several hundred meters. The severity and propagation range are af-
fected by at least two variables PCACC and Pexit. However, congestions dissipate in the sce-
nario with low PCACC, where a transition from congested traffic to free flow can be observed 
clearly. Moreover, the traffic system with high PCACC performs best since CACC vehicles 
help smooth the traffic flow by smaller headway and faster lane changes. This means that 
the negative impact of exit vehicles is compensated by the advantages of CACC vehicles 
to some extent. 

Figure 9 shows the impact of Pexit on average speed in the center lane when the traffic 
demand is 1500 vphpl. Pexit increases from 5% to 25% with a 5-percentage interval. Obvi-
ously, exit vehicles have significant negative influence on the travel efficiency near the off-
ramp. Increasing exit vehicles means more lane-changing requirements, which may cause 
deceleration. Because exit vehicles tend to slow down and look for a proper gap to change 
to the target lane, it easily results in severe upstream congestion of the off-ramp. In such 
heavy traffic, both lane-changing decision-making and execution processes are completed 
in low-speed state since localized jams cannot dissipate by themselves. 

(a) (b) (c)

(d) (e) (f)

500 1000750
Distance (m)

0

5

10

Ti
m

e 
(m

in
)

500 1000750
Distance (m)

0

5

10

Ti
m

e 
(m

in
)

500 1000750
Distance (m)

0

5

10

Ti
m

e 
(m

in
)

500 1000750
Distance (m)

0

5

10

Ti
m

e 
(m

in
)

500 1000750
Distance (m)

0

5

10

Ti
m

e 
(m

in
)

500 1000750
Distance (m)

0

5

10

Ti
m

e 
(m

in
)

Figure 8. Temporal-spatial pattern of vehicle trajectories. (a) PCACC=0, (b) PCACC=20%,
(c) PCACC=40%, (d) PCACC=60%, (e) PCACC=80%, and (f) PCACC=100%.

When PCACC rises from 60% to 100%, the risk of congestion caused by forced lane
changes gradually decreases. Specifically, the length of high-density area is limited to 200 m
in Figure 8d, while congestion is suppressed around the position x = 1000 m. Additionally,
typically short jams form in Figure 8e,f. Congestion hardly can be observed when PCACC is
more than 80%. Finally, traffic flow gradually becomes homogeneous when all vehicles are
replaced by CACC vehicles.

Generally, lane-changing behaviors may induce severe congestions, especially when
MPR of CACC vehicles ranges from 40% to 60%. Congestions resulting from forced lane-
changing maneuvers propagate at upstream of the off-ramp bottleneck, and the length of
influencing area is several hundred meters. The severity and propagation range are affected
by at least two variables PCACC and Pexit. However, congestions dissipate in the scenario
with low PCACC, where a transition from congested traffic to free flow can be observed
clearly. Moreover, the traffic system with high PCACC performs best since CACC vehicles
help smooth the traffic flow by smaller headway and faster lane changes. This means that
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the negative impact of exit vehicles is compensated by the advantages of CACC vehicles to
some extent.

Figure 9 shows the impact of Pexit on average speed in the center lane when the
traffic demand is 1500 vphpl. Pexit increases from 5% to 25% with a 5-percentage interval.
Obviously, exit vehicles have significant negative influence on the travel efficiency near
the off-ramp. Increasing exit vehicles means more lane-changing requirements, which may
cause deceleration. Because exit vehicles tend to slow down and look for a proper gap to
change to the target lane, it easily results in severe upstream congestion of the off-ramp.
In such heavy traffic, both lane-changing decision-making and execution processes are
completed in low-speed state since localized jams cannot dissipate by themselves.
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Figure 9. Spatiotemporal dynamics of average speed in the center lane. (a) Pexit = 5%,(b) Pexit = 10%,
(c) Pexit = 15%, (d) Pexit = 20%, and (e) Pexit = 25%.

Specially, the congested area is within [820 m, 1520 m] and the average speed is over
15 m/s, when Pexit = 5%. The length of congested area respectively increases to 900 m and
1320 m, when Pexit rises to 10% and 15%. Red blocks in Figure 9c,d demonstrate that severe
congestions occur in some areas, where average speeds are below 10 m/s. With the increase
of Pexit value, more and more vehicles gather in the center lane. Moreover, lots of vehicles
decelerate and queue at the off-ramp bottleneck. The jam waves propagate upstream and
even affect the vehicle entrance at the starting point x = 0 m, as shown in Figure 9e.

Distribution of average speeds is summarized in Figure 10. Obviously, the smaller
the Pexit value or the bigger the PCACC value, the faster the average speed of all vehicles.
Besides, Figure 10 is clearly divided into three sections: (1) average speeds in Section I are
less than 10 m/s; (2) Section II denotes the average speeds ranged from 10 m/s to 25 m/s;
and (3) the remaining are over 25 m/s in Section III. From a horizontal perspective, the
boundary between Section I and Section II is approximately close to the horizontal line
Pexit = 15%. Another boundary between Section II and Section III is the horizontal line
Pexit = 5% when PCACC is lower than 70%. Therefore, average speed is more sensitive to
Pexit than PCACC before CACC vehicles occupy a position of absolute predominance.
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Figure 10. Summary of average speed in different traffic scenarios.

It is worth noting that the lowest speed always exists when PCACC = 50%, as shown in
the centerline of Figure 10. This means that MVs and IVs sharing the same MPR is the worst
scenario. For the scenario with high MPR of CACC vehicles, the average speeds are even
more than 25 m/s when Pexit ranges from 5% to 17.5%. In this case, these average speeds
belong to Section II instead of Section III. Therefore, the distribution of these three sections
is completely asymmetric. This finding indirectly demonstrates that CACC vehicles help
to increase average speed and offset many negative effects of numerous lane change
maneuvers at an upstream off-ramp.

5.2. Impact on Road Capacity

Figure 11 presents the impact of MPR of CACC vehicles and proportion of exit vehicles
on road capacity. The section chosen for capacity calculation is x = 2900 m in Figure 6.
Simulation result of the proposed joint neural network is compared with that of PATH
estimation and theoretical prediction [32], as shown in Figure 10. One can see that road
capacity monotonically increases with the increase of PCACC in the latter two methods, since
CACC→ACC degradation is not taken into consideration. Results of theoretical prediction
are remarkably higher than that of the other two methods. Moreover, the two lines denoting
our method and PATH estimation are close to each other, and even partially intersecting.
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Figure 11. Road capacities in different traffic scenarios. (a) denotes capacity changes over PCACC, and
(b) denotes capacity change rates over PCACC and Pexit.



Machines 2022, 10, 109 14 of 18

Compared with theoretical prediction, the result of our method is much closer to that
estimated by PATH, especially when PCACC is within [0%, 70%]. Specifically, road capacity
from PATH estimation is smaller than that from our method, but the gap between these
two methods is narrowing before PCACC increases to 40%. Conversely, the road capacity of
our method is slightly lower than that of PATH estimation when PCACC ranges from 40%
to 60%. After that, road capacity increases rapidly to the maximum. Taking PCACC = 90%
as an example, the difference between our method and PATH estimation is 527 vphpl.
Furthermore, the gap exceeds 700 vphpl when PCACC = 100%. For theoretical prediction,
road capacity increases from 2500 vphpl to over 4000 vphpl, since it neglects CACC→ACC
degradation and strong negative disturbance of lane-changing maneuvers.

Particularly, the red line representing our method is divided into two parts. Road
capacity decreases gradually from 2192 vphpl to 1898 vphpl before PCACC rises to 50%.
There is a 293-vphpl drop in amplitude, which is consistent with previous studies [15,23,33].
When PCACC is increased from 50% to 100%, road capacity quickly reaches the peak of
3214 vphpl, which is improved by over 60% in comparison with the traffic scenario denoted
by Point B in Figure 11a. It is worth noting that the two traffic scenarios share the same
capacity in Point A and Point C, although the traffic flow components are quite different.
It also proves indirectly that high-performance CACC vehicles help to overcome the
drawbacks of CACC→ACC vehicles from an efficiency perspective.

Figure 11b presents the change rates of road capacity. The scenario of PCACC = 50% and
Pexit = 15% is treated as a reference group. Figure 11b is clearly divided into four sections.
Section I denotes the worst scenarios compared with the reference group. These situations
are associated with high proportion of exit vehicles, and moderate CACC MPR is also
another important reason. The former refers to Pexit > 15% while the latter refers to
PCACC ∈ [0, 70%]. Likewise, the change rate ranges from 0% to 10% in Section II, and
Section III represents the scenarios, where the change rate is within [10%, 30%]. Section II
has the largest area. On the contrary, Section III includes the least cases and it is limited in a
small triangle area, as shown in Figure 11b.

From the perspective of efficiency, the best section is Section IV, where the change rate
of road capacity is over 30%. Obviously, it happens in the scenarios with low Pexit and
high PCACC. In this case, lane changes can hardly disrupt traffic flow and cause capacity
reductions. If it happens in a short time, a large amount of vehicles of CACC vehicles
ensure stability via smoothing the traffic flow. Therefore, it is necessary to take actions to
increase MPR of CACC vehicles, such as vehicle technology innovation, media promotion,
and financial subsidy on IVs.

5.3. Impact on Safety

Furthermore, safety impact is evaluated using surrogate safety measures. TTC is one
of the most typical parameters, and small TTC value means high collision risk. Figure 12
shows safety conditions in the four scenarios denoted by Points A, B, C, and D in Figure 10.
TTC values are calculated for three lanes and mainline section.

Generally, travel safety condition in the center lane is apparently worse than that in
the median and shoulder lanes, especially in Figure 12a,b. In contrast, safety performance
in the shoulder lane is the best according to the severity and influencing area of low TTC
value. For example, the red area in Figure 12(b3) is the shortest, which means vehicles run
across this area at extremely high risk. For the other lanes, longer high-risk areas may bring
about collision.

Specifically, the influencing area ranges from x = 800 m to x = 600 m, and the average
TTC value is less than 1.5 s in the center lane. Besides, the range of high-risk area is [1300 m,
1600 m], and TTC value is even less than 0.5 s. But for the other lanes, the influencing
area is smaller and starts from 1150 m. Moreover, average TTC values in the median
and shoulder lanes are about 1.5 s. The extremely high-risk conditions only exist within
two hundred meters or less at spatial scale.
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Figure 12. Average TTC values in different lanes. (a1)–(d1) denote median lane, (a2)–(d2) denote
center lane, (a3)–(d3) denote shoulder lane and (a4)–(d4) denote mainline section.

Similarly, each lane shares the same trend in the change of TTC values. One can see
that TTC values get smaller when vehicles are close to the off-ramp. This is due to narrower
gaps for lane-changing before the off-ramp bottleneck, which is also one of the reasons for
rear-end collision. As shown in Figure 12a,c, the two scenarios differ from each other in
terms of safety, although they obtain the same road capacity at Point A and Point C. Taking
the center lane as an example, the TTC value is significantly higher than 0.5 s in the range
of [1300 m, 1600 m], as shown in Figure 12(c2). In contrast, the safety condition in Point A
is worse than that in Point C.

For the mainline section, the change trend is consistent with that of the center lane.
The influencing area ranges from x = 1000 m to x = 1600 m, and the high-risk area is within
[1300 m, 1600 m]. For the starting point of influencing area, it only covers about 100 m in
Point B. Compared with Point B, Point D with more CACC vehicles shows the minimum
risk. However, when PCACC rises from 0 in Point A to 50% in Point B, safety performance
of the traffic system decreases. During this process, more ACC vehicles exist and they have
higher requirements on gaps for lane-changing. It may result in high deceleration rates,
and even queuing in the current lane. Finally, exit vehicles spend more time changing to the
target lane at low speed in a congested scenario. Generally, the longer duration time and
smaller gaps of lane-changing maneuvers imply higher risk. It can easily lead to a decrease
in TTC value, and even collisions in a high-density traffic flow, especially at upstream of
the off-ramp.

Figure 13 shows the distribution of safety levels from two aspects. In Figure 13a,
safety levels vary with the two key variables, Pexit and PCACC. The distribution of Level E
and Level F shows a pyramid-shaped structure with the increase of Pexit. However, the
center of the bottom is chosen to the scenarios with low MPR of CACC vehicles. When
PCACC is within [30%, 60%], the safety level is mainly B in the scenarios of Pexit < 10%.
It is downgraded to Level D and Level E when Pexit rises to 10%–15%. Eventually, the
highest-risk level F accounts for the majority of all safety levels when Pexit is over 17.5%.
Therefore, with increase of exit vehicles, more and more lane-changing maneuvers cause
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frequent variation of gaps and speeds, resulting in higher driving risk. However, when Pexit
reaches 25%, safety level is upgraded from F to D by increasing PCACC to more than 80%.
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Figure 13. Distribution of safety levels. (a) denotes the distribution of safety levels over PCACC and
Pexit, and (b) denotes the distribution of safety levels along the roadway.

Taking Pexit = 15% as an example, Figure 13b presents the distribution of safety levels
along the roadway. Obviously, the safety level distribution is asymmetric, and safety levels
in the lower half of the distribution are remarkably better than those in the upper half. In
detail, high-risk areas are concentrated in [1000 m, 1600 m], while Level F ranges from
1300 m to 1600 m, which is consistent with the findings in Figure 11. With the increase of
PCACC, the safety level is gradually upgraded from F to B within [1000 m, 1600 m]. When
vehicles run downstream the off-ramp, the traffic flow becomes free flow after x = 1700 m.
In this area, lane-changing maneuvers decrease significantly and safety is also improved to
Level A/B.

6. Conclusions

The goal of this paper is to use neural network algorithms to imitate lane-changing
behaviors. PNN and BPNN are respectively chosen to learn lane-changing decision-making
and execution processes. The validation of the proposed method is demonstrated in
comparison with the truth traffic and two selected methods. A freeway with three main-
line lanes and a one-lane off-ramp is designed as the simulation site. Numerical simulation
experiments are conducted to evaluate the traffic system in terms of efficiency and safety.
The major results are concluded as follows:

(1) The proposed hybrid neural network has distinct advantages over the two existing meth-
ods. Compared with the ground truth traffic, our method can accurately predict required
gap for a lane change. Moreover, trajectories controlled by our method are evidently
closer to the ones extracted from NGSIM dataset during lane-changing execution.

(2) Based on car-following and lane-changing models, a simulation platform is established
to investigate various traffic scenarios. The results indicate that the center lane is the
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most delicate lane near an off-ramp bottleneck. Frequent lane-changing maneuvers
have the most negative impact on the center lane in terms of congestion severity. When
PCACC is 50%, average speed in the center lane is dropped to 10 m/s with the increase
of Pexit value. Moreover, severe congestions even cannot dissipate spontaneously
at upstream of the off-ramp. In this case, decreasing Pexit or increasing PCACC is an
efficient solution for traffic congestion reduction. The former can be realized by route
guidance in a traffic network, while the latter makes full use of smaller headway and
faster reaction of CACC vehicles.

(3) The results of evaluation performance on road capacity and travel safety are quite
sensitive to the values of PCACC and Pexit. When PCACC = 100%, road capacity reaches
the peak 3214 vphpl, while the minimum is less than 1900 vphpl with 50% of CACC
vehicles in the traffic system. For safety evaluation, when vehicles run within 600 m
at upstream of the off-ramp, drivers and passengers are at the greatest risk of collision
involvement. However, when PCACC is greater than 80% or Pexit is lower than 15%,
the safety level is significantly improved from Level E to Level B.

(4) Degradation of CACC performance is considered in this paper. So, the number of
ACC vehicles reaches the maximum value when IVs and MVs account for half of the
motor vehicle market. Furthermore, ACC vehicles require the longest headway in
comparison with CACC vehicles and MVs. During a lane-changing process, ACC ve-
hicles need the biggest headway gap between its leading vehicle and following one in
the target lane. Therefore, CACC→ACC degradation can result in worse performance
on efficiency and safety. Besides increasing more CACC vehicles, communication
facilities equipped in more MVs also contribute to a better traffic system.

In our future work, the following aspects need more attention: (1) This paper only
focuses on the comparison of lane-changing trajectories between different methods, and
hence, the performance of traffic system controlled by different methods should be studied
and analyzed in future research. (2) Besides travel efficiency and safety, fuel consumption
and vehicular emissions at the freeway bottleneck should be also further evaluated. (3) The
practicability of the proposed models should be verified in other environments, such as
two-lane freeway, on-ramp bottlenecks and emergency scenarios.
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