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Abstract: During the forging process of automobile front axle, the steel near the surface is often
decarburized for a certain depth. The mechanical properties at the decarburization layer are graded
and different from the inner area, influencing the bending behavior of axles under heavy loads. In
this paper, the decarburized forging of front axle is regarded as a rectangular thick sandwich beam,
composed of a homogeneous core and the functionally graded layer coated on both bottom and
top surface. A Third-order Shear Deformation Theory (TSDT) is employed to investigate the static
bending behaviors under two point−loads. The properties of sandwich FG material are represented
with a piecewise power−law function, and the displacement field governing equations are derived
through the virtual work principle. The Navier analytical method and numerical DQM procedures
are employed to obtain the bending responses under simply supported boundary conditions, and
the results are validated through the comparison with an example in the literature. Then, the trans-
verse deflection, rotation, axial stress, and shear stress are studied in terms of different power−law
exponents, decarburization depth, unsymmetrical decarburization depth, unbalance loading, and
beam sectional dimension. The study reveals the influence of surface decarburization on the bending
behavior of forged automobile front axles, and contributes to the optimization of structure design.

Keywords: automobile front axle forgings; decarburization; static bending analysis; third-order shear
deformation theory; graded sandwich beam

1. Introduction

During the hot forging process of automobile component, such as the front axle,
connecting rod, knuckle, etc., the solid surface reactions of decarburization have adverse
effects, including reduced ductility, reduced strength, and increased susceptibility of crack
initiation [1]. Decarburization is a phenomenon that the amount of carbon reduces in the
surface-adjacent zone of steel, occurs when the metal is heated to temperatures of 700 ◦C
or above when carbon in the metal reacts with gases containing oxygen or hydrogen. In
the hot forging process of automobile front axle, the 42CrMo steel is preheated to about
1200 ◦C, and then experiences a forging forming operation and a quenching operation at
850 ◦C (Figure 1). During a long time at the high temperature, the oxidation of Fe and
the decarburization occurred simultaneously. For decarburization process, the affinity of
carbon is greater than Fe at high temperature, the cementite (Fe3C) in the surface-adjacent
area reacts with the oxygen and hydrogen (O2, H2, H2O, CO2) in the atmosphere, forming
the CO and CH4, and the cementite is reduced to Fe. For the oxidation process, Fe reacts
with the oxidizing gas (O2, H2O, CO2) and forming the oxide (FeO, Fe2O3). [2,3]. When
the decarburization process prevails the oxidation process, the reduction of C content at
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the surface happened, and the decarburization layer appears [4]. The decarburization
degree is determined by the atmosphere, exposure duration, temperature, and the alloying
element of the material. With increasing duration time in high temperature, oxygen
and hydrogen diffuse to the deeper layer, and the carbon atoms migrate to the surface
layer continuously. Thus, the depth of the decarburization increases with the duration
of exposure in high temperature atmosphere with oxygen and hydrogen, and the degree
of decarburization increases from the deep layer to the top surface [5]. As is illustrated
in Figure 2, in the surface-adjacent area, a complete decarburization zone with almost
total removal of carbon appears, and the partial decarburization zone in the deeper area is
produced, where partial carbon is removed. Carbon is one of the primary strengthening
elements in steel. With the decreasing amount of carbon, forming of martensite phases with
high strength is hindered, and thus the amount of the martensite decreases with the degree
of decarburization. The pure ferrite phases with a lower strength and hardness appear at
the complete decarburization zone [6,7].

Figure 1. Schematic diagram of heat treatment process of hot forgings.

Figure 2. (a) OM microstructure of decarburization zone on steel (GB 42CrMo, 4% HNO3 in alcohol
for 10s). (b) Forgings of automobile front axle.

With increasing fractions of ferrite and reduced amount of carbides, pearlite, and
martensite through the thickness, the graded mechanical properties (strength, rigidity, elas-
ticity modulus, and Poisson’s ratio) at the decarburization zone are produced, which may
influence the bending behaviors of automobile front axle beam under heavy loads. For de-
carburization of steel, most researchers investigated the decarburization mechanisms [8,9],
influence factors of decarburization [10,11], crack propagation and fatigue [1,12,13], and the
controlling method [14]. For the forgings of an automobile, most attention is paid to metal
forming optimization, lightweight design of the structure, and material selection [15,16].
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Little attention has been paid to the influence of surface decarburization on the bending
behaviors of forgings.

Currently, Functionally Graded Materials (FGM) [17] is increasingly used in aerospace,
marine, automotive, mechanical, and civil engineering field as new material. FGMs are
composites made from a mixture of two materials with the continuous variation of frac-
tions along one or two directions, such as the ceramic and metal or polymer, and thus
have continuous material properties from one surface to another, eliminating the stress
concentration found in laminated composites [18]. FGMs can be tailored to plates or beams
with different dimensions for various applications and service environments. Numerous
theories have been developed to analyze the bending, bulking and vibration characteristics
of FGMs plates and beams, such as the Classical Euler–Bernoulli Beam Theory (CBT) with
the Kirchhoff hypothesis, ignoring the transverse shear deformation effect, which is limited
to the slender beam of plate [19]; the First-order Shear Deformation Theory (FSDT) includ-
ing the transverse deformation through the assumption that the transverse shear strain is
constant across the beam thickness, and a shear correction factor is introduced to correct the
deviation of transverse shear deformation between the actual condition and the assumptive
linear variation [20]. Plenty of higher-order beam theories (HSDTs) are proposed to describe
the transverse shear deformation accurately, such as the Sinusoidal Shear Deformation
Theory (SSDT) [21], Exponential Shear Deformation Theory (ESDT) [22], Third-order Shear
Deformation Theory (TSDT) [23], quasi-3D theory considering the thickness stretching
effects [24], which employ higher-order polynomials in the expansion of displacement
through the thickness, and are suitable for both thin and thick beams.

For the material with graded physical and mechanical properties, the power−law
function, exponential function, or polynomial function are often used to represent the
variation of density, elasticity modulus, and Poisson’s ratio [25]. Usually, the classical or
first-order beam theory are not enough to express the nonlinear deformation response of
the FGMs beam or plate [26]. Kadoli et al. [27] analyzed the static bending response of
metal-ceramic FG beams using third-order shear deformation theory; the deflection and
stresses under different boundary conditions and power−law exponents were investigated
through a finite element procedure. Zhang [28] studied the nonlinear bending behaviors of
FGM beams based on physical neutral surface and third-order shear deformation theory;
the Ritz method is adopted to obtain approximate solutions. Niknam et al. [29] investigated
the nonlinear bending of FG tapered beams subjected to thermal and mechanical loading.
The linear variation was considered for the thickness, an exponential function was used
to describe the material properties, and the Glerkin and GDQ approaches were used to
obtain the solution. Belarbi Ouejdi et al. [30] studied the static bending behaviors of
FG sandwich curved beams via a new refined fifth-order shear deformation theory with
three unknowns, a finite element models and Navier analytical method were employed
to solve the governing equations under simply supported, camped, and free boundaries
and distributed loads. Şimşek et al. [31] used a Navier analytical solution for bending
and buckling of FG nano-beams based on the non-local Timoshenko beam theory under
distributed and point load. Nejad et al. [32] employed the non-local elasticity theory and
Euler–Bernoulli beam theory for bending analysis of two-directional FG nano-beams, and
the Generalized Differential Quadrature Method (GDQM) was used to obtain the transverse
defection with various boundary conditions. Eftekhari [33] used the DQM procedure for
in-plane vibration analysis of variable thickness circular arches traversed by a moving
point load.

The graded mechanical properties at decarburization zone on surface of forgings are
analogous to the functionally graded material mentioned in the literature. Therefore, in
Section 2 of this paper, the automobile front axle forgings are regarded as a thick rectan-
gular beam with the functionally graded layer coated on both sides, namely a rectangular
sandwich beam with FG surface and homogeneous core. The sandwich FG material is
represented with a piecewise power−law function. A third-order shear deformation theory
(TSDT) is adopted to investigate the static bending behaviors of automobile front axles
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with surface decarburization, and the displacement field governing equations are derived
through the virtual work principle. The Navier analytical method and numerical DQM
procedures are employed to obtain the bending responses under two point−loads. Then,
in Section 3, the model reliability and accuracy are validated through the comparison
with an example in the literature. The transverse deflection, rotation, axial stress, and
shear stress are studied in terms of different power−law exponents, decarburization depth,
unsymmetrical decarburization depth, unbalance loading, and beam sectional dimension.
The results can reveal the influence of surface decarburization on the bending behavior of
forged automobile front axles, and contribute to the optimization of structure design.

2. Materials and Methods
2.1. Materials

Material of the automobile forging front axle is AISI 4140 (GB 42CrMo), and the
element content is shown in Table 1. The material contains 0.9~1.2% Cr element, which help
form the carbide and improve the hardness, corrosion resistance; 0.15~0.25% Mo element,
can help refine the grain, improve the hardenability, and heat endurance. The material
is a kind of high-strength steel, with excellent strength (σs ≥ 930 MPa), toughness, and
hardenability. The good fatigue resistance and impact resistance can be obtained through
the quenched-tempered heat treatment. The material is usually applied for the automobile
bearing component, such as the front axle, knuckle, gear and mould [34].

Table 1. Chemical composition of AISI 4140 (GB 42CrMo) (wt.%).

Element Content

C 0.38~0.45
Si 0.17~0.37

Mn 0.50~0.80
Cr 0.9~1.2
Mo 0.15~0.25
Ni ≤0.03
Cu ≤0.03
S ≤0.03
P ≤0.03

2.2. Mechanical Properties of Beams with Surface Decarburization

For the automobile front axle forging with surface decarburization, the metal at the
surface is fully decarburized, which is constituted of ferrite phases. The core material
experienced the quenching heat treatment, which is mainly constituted of the martensite
phases, and the amount of the martensite decreases from the top surface to the core area,
while the amount of the ferrite increases. Therefore, the automobile front axle forging
with surface decarburization is simplified as a simply supported sandwich beam [35] with
functionally graded surface and homogeneous core, as is illustrated in Figure 3. The length
is L = 1900 mm, width is b = 90 mm, and height is h = 108 mm. The FG beam is subjected to
two point−loads (F1 = F2 = 70,000 N) representing the body load of the automobile, where
the distances between the load position (x1, x2) to both ends are L1 = L1 = 0.28L. The
decarburization depth (Hd) is denoted through the distance between h1 and h2 to bottom
and top surface (z = ±h/2).

Material at decarburization zone is a mixture of low-strength ferrite and other high-
strength phases (martensite, residual austenite). The fraction of ferrite is 100% at the
surface and reduces to zeros continuously to the height h1 and h2; while the fraction of the
martensite is zero at the surface, and increases continuously through the thickness to h1
and h2. The effective material properties (elasticity modulus, Poisson’s ratio, or density)
can be expressed z dependent based on the mixture rule as follows:

P(z) = Pf Vf + PmVm (1)
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where Pf is properties of ferrite phases at surface, Pm is properties of martensite phases at
core. Vf and Vm are the volume fractions, respectively, and Vf + Vm = 1.

Figure 3. Geometry, loadings, and constraints of the graded beam.

Considering that the FG sandwich beam constitutes two FG surface layers and one
homogeneous core layer, a piecewise function for the effective material properties is con-
structed with the varying volume fractions Vm(z) as the following formula:

Vm(z) =



(
z + h/2
h1 + h/2

)p
, z ∈ [−h/2, h1]

1 , z ∈ [h1, h2](
z− h/2
h2 − h/2

)p
, z ∈ [h2, h/2]

(2)

where p is the non-negative power−law exponent (p ∈ [0,+∞]), denoting the material
properties variation profile across the beam height h. The parameter p = 0 represents the
complete martensite phases, while p = +∞ denotes the full ferrite phases.

The elasticity modulus of pure ferrite phases at bottom and top surface is Ef = 178 GPa [36];
while that of martensite phases at core area is Em = 215 GPa [37]; The influence of Poisson’s
ratio on the deflection is much less than that of elasticity modulus [38]. Therefore, Poisson’s
ratio of the graded beams is assumed to be constant at 0.3. Variation of the elasticity
modulus E through the beam height h in terms of power−law index p is shown in Figure 4.
The power−law index p increases with the concentration of ferrite phases, and the elasticity
modulus decreases with the increasing ferrite phases, namely the index p. The effective
elasticity modulus varies smoothly across the beam height; the value at the surface of both
sides is equal to pure ferrite phases, while that at the core area is equal to the martensite
phases. Different power−law exponents describe the various profile. When p = 0, properties
at the decarburization area is equal to the core area, which degenerate to a homogeneous
beam; when p = +∞, properties at the decarburization area is entirely equal to pure ferrite
phases, which is similar to the laminated beam with a drastic change of properties; when
p ∈ (0,+∞), the properties vary smoothly, denoting a functionally graded characteristic.

2.3. Methods

Based on the third-order parabolic shear deformation theory (TSDT), the displacement
field at any position of the beam is expressed as follows [27]:

u(x, z) = u0(x) + zφ(x)− 4
3h2 z3

[
φ(x) +

dw0

dx

]
v(x, z) = 0
w(x, z) = w0(x)

(3)

where u(x, z), v(x, z), and w(x, z) are the axial displacements and transverse defection of any
point on the beam along x, y, and z direction. u0(x) and w0(x) are the axial and transverse
displacement of a point on the middle surface (z = 0) along x and z direction, φ(x) is the
bending rotation of the cross-sections at the neural axis about y axes.
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Figure 4. Variation of elasticity modulus through beam height in terms of power−law index.

The non-zero axial and shear strain field is calculated according to the following
equations:

εx =
du
dx

=
du0

dx
+ z

dφ

dx
− αz3

[
dφ

dx
+

d2w0

dx2

]
γxz =

du
dz

+
dw
dx

= φx +
dw0

dx
− βz2

[
φ +

dw0

dx

]
=
(
1− βz2)(φ +

dw0

dx

) (4)

where, α = 4/3h2, β = 4/h2.
The axial and shear stress can be obtained via the stress-strain relations expressed as

Equation (5), where the elasticity modulus E(z) varies across the beam height according to
Equations (1) and (2), and shear modulus G(z) is calculated according to Equation (6).{

σx = E(z)εx
τxz = G(z)γxz

(5)

G(z) =
E(z)

2[1 + v]
(6)

The virtual work principle [39] is employed to derive the governing equations of
motion and boundary conditions. The internal strain energy δU performed by axial and
shear stress is given by:

δU =
∫ L

0

∫
A(σxxδεxx + σxzδγxz)dAdx

=
∫ L

0

∫
A

{
σxx

[
dδu0

dx
+ z

dδφ

dx
− αz3

(
dδφ

dx
+

d2δw0

dx2

)]
+σxz

[(
1− βz2)(δφ +

dδw0

dx

)]}
dAdx

=
∫ L

0

[
Nxx

dδu0

dx
+ (Mxx − αPxx)

dδφ

dx
− αPxx

d2δw0

dx2

+(Qxz − βRxz)

(
δφ +

dδw0

dx

)]
dx

(7)
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where Nxx, Mxx, and Qxz are usual axial force, bending moment, and shear force, re-
spectively. Pxx and Rxz are high-order stress resultants, as is calculated by the following
equations:

Nxx =
∫

A σxxdA =
∫

A E(z)ε(x, z)dA

= A1
du0

dx
+ A2

dφ

dx
+ A3

d2w0

dx2

(8)

Mxx =
∫

A zσxxdA =
∫

A E(z)ε(x, z)zdA

= B1
du0

dx
+ B2

dφ

dx
+ B3

d2w0

dx2

(9)

Pxx =
∫

A z3σxxdA =
∫

A E(z)ε(x, z)z3dA

= C1
du0

dx
+ C2

dφ

dx
+ C3

d2w0

dx2

(10)

Qxz =
∫

A σxzdA =
∫

A G(z)γ(x, z)dA

= D1φx + D2
dw0

dx
(11)

Rxz =
∫

A z2σxzdA =
∫

A G(z)γ(x, z)z2dA

= F1φx + F2
dw0

dx
(12)

The coefficients {Ai, Bi, Ci, Di, Fi} are calculated through the following integral
formula (13) about the variable z, elasticity modulus E(z), and shear modulus G(z). The
modulus varies through the piecewise power−law function, and thus the coefficients reflect
the variation of material properties.

{A1, A2, A3} = b
∫ h/2
−h/2

{
1,
(
z− αz3),−αz3}E(z)dz

{B1, B2, B3} = b
∫ h/2
−h/2

{
z,
(
z2 − αz4),−αz4}E(z)dz

{C1, C2, C3} = b
∫ h/2
−h/2

{
z3,
(
z4 − αz6),−αz6}E(z)dz

D1 = D2 = b
∫ h/2
−h/2 G(z)

(
1− βz2)dz

F1 = F2 = b
∫ h/2
−h/2 G(z)

(
z2 − βz4)dz

(13)

The external virtual potential energy performed by transverse distributed load q and
virtual displacement δw0 is expressed as follows:

δV = −
∫ L

0
q(x)δw0dx (14)

Based on the principle of minimum potential energy [40], equilibrium equation of the
energy in the displacement field is given by:

δW = δU + δV = 0 (15)

By substituting Equations (7) and (14) into Equation (15), the final expression is written
as follows:

δW =
∫ L

0

[
Nxx

dδu0

dx
+ (Mxx − αPxx)

dδφ

dx
− αPxx

d2δw0

dx2

+(Qx − βRx)

(
δφ +

dδw0

dx

)
− q(x)δw0

]
dx

=
∫ L

0


−dNxx

dx
δu0 +

(
−d(Mxx − αPxx)

dx
+ (Qxz − βRxz)

)
δφ

+

(
−α

d2Pxx

dx2 −
d(Qxz − βRxz)

dx
− q

)
δw0

dx

+

[
Nxxδu0 + (Mxx − αPxx)δφ +

(
α

dPxx

dx
+ Qxz

)
δwR

0 − αPxx
dδw0

dx

]L

0
= 0

(16)
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To satisfy Equation (15), the coefficients of δu0, δφ, and δw0 in Equation (16) should
be zeros, and thus the equilibrium equations based on the third-order shear deformation
theory are developed as follows:

dNxx

dx
= 0

d(Mxx − αPxx)

dx
− (Qxz − βRxz) = 0

d2Mxx

dx2 + q = 0

(17)

By substituting the Equations (8) to (12) into Equation (17), and applying the derivative
method, the final expression is given by:

A1
d2u0

dx2 + A2
d2φ

dx2 + A3
d3w0

dx2 = 0

(B1 − αC1)
d2u0

dx2 − (D1 − βF1)φ + (B2 − αC2)
d2φ

dx2

−(D2 − βF2)
dw0

dx
+ (B3 − αC3)

d3w0

dx3 = 0

B1
d3u0

dx3 + B2
d3φ

dx3 + B3
d4w0

dx4 + q = 0

(18)

For boundary conditions of the simplified beam with graded decarburization layers,
one end of the beam is fixed simply supported, and the other end is movable simply
supported. The expression of boundary conditions can be given as:

Fixed simply supported (Sf) at x = 0:

u0 = 0; w0 = 0; Mxx = 0; (19)

Movable simply supported (Sm) at x = L:

Nxx = 0; w0 = 0; Mxx = 0; (20)

2.4. Analytical Solution with Navier Method

The Navier method is adopted to obtain an analytical solution of the bending behaviors.
Variables of displacement filed can be written as follows:

u0(x) =
∞
∑

n=1
un cos(

nπ

L
x)

φ(x) =
∞
∑

n=1
φn cos(

nπ

L
x)

w0(x) =
∞
∑

n=1
wn sin(

nπ

L
x)

n = 1, 2, 3, · · · , N (21)

where un, φn, and wn are the coefficients of the nth terms, and it means that the displacement
is approached by the sum of trigonometric functions. It should be noted that the expressions
of displacement with Equation (21) satisfy the boundary conditions with Equations (19)
and (20).

For the application of automobile front axle, two transverse point-loads F1 and F2 are
applied at different positions of the beam, as is illustrated in Figure 3. The point loads
are transferred to a distributed load through the Dirac delta function q(x) = Fδ

(
x− xp

)
,

where F is the magnitude of the point-load force, xp is the coordinate of applying position.
To obtain the analytical solution, the transverse distributed load is expanded in Fourier
series as:

q(x) =
N

∑
n=1

Qn sin
(nπ

L
x
)

n = 1, 2, 3 · · ·N (22)
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where Qn is the coefficient of the nth term, which is calculated as the following formula:

Qn =
2
L

∫ L

0
q(x) sin

(nπ

L
x
)

dx =
2F
L

sin
(nπ

L
xp

)
n = 1, 2, 3 · · ·N (23)

With two point−loads F1 and F2 applied at x1 and x2 respectively, the coefficient is
obtained as Equation (24), and load distribution with different N is shown in Figure 5.
Similarity of the expanded Fourier series and original point loads δ(·) increases with the
number N.

Qnd =
2F1

L
sin
(nπ

L
x1

)
+

2F2

L
sin
(nπ

L
x2

)
n = 1, 2, 3 · · ·N (24)

Figure 5. Distribution of two point−loads expressed with Fourier series.

By substituting Equations (21), (22) and (24), and their derivatives of different orders
into the final equilibrium Equation (18), 3× N linear system of equations including 3× N
unknowns, and (n ∈ [1, 2, 3 · · · , N]) can be obtained. The coefficients can be solved through
the elimination method, and the displacement, strain, and stress can be further calculated.

2.5. Differential Quadrature Method (DQM)

In order to validate the analytical solution with Navier method, another numerical
method named differential quadrature method (DQM) [41] is also employed, which is an
effective method for the differential equations. The domain is discretized into N points
a = x1 < x2 < · · · < xN = b, according to the Chebyshev–Gauss–Lobatto method [42] as
Equation (25), with the function value f1, f2, f3, · · · , fN . The derivatives at any point are
approximately calculated with a weighted nonlinear summation of all functional values as
Equations (26) and (27).

xi =
L
2

[
1− cos

(
i− 1
N − 1

)]
, i = 1, 2, 3, · · · , N (25)

f (x) =
N

∑
j=1

lj(x) f
(
xj
)
=

N

∑
j=1

lj(x) f j (26)

f (k)i =
N

∑
j=1

Aij
(k) f j, (i = 1, 2, · · · , N) (27)

where the weighted coefficients lj(x) are expressed with Lagrange interpolation func-
tions [43], Aij

(k) is the weighted coefficient of kth order derivative, which can be calculated
with Equation (28).
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By substituting Equations (28), (29) and their derivatives with different orders into the
final equilibrium Equation (18) and the boundary conditions Equations (19) and (20), 3×N + 6
linear system of equations including 3×N unknowns u0i, φi, and w0i (i ∈ [1, 2, 3, · · · , N]) can
be obtained. The coefficients can also be solved through the elimination method.

3. Results and Discussion
3.1. Numerical Verification

Before further analysis of bending behaviors, the reliability and accuracy are verified.
Since there is no previous published data for the bending of graded beam with decarburiza-
tion layers, an example with the functionally graded material sandwich beam consisting of
the aluminum and Al2O3 ceramic is calculated through present model, and the results are
compared with the literature. The comparison of center deflection is shown in Table 2. It can
be found that the center deflections in terms of power−law index p with the method in this
paper are in good agreement with that of Koutoati et al. [44] using finite element approach.
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Table 2. Comparison of center deflection w between the method in this paper and the literature
(Em = 70 GPa, Ec = 380 GPa, v = 0.3, L = 2000 mm, h = 200 mm, b = 50 mm, h1 = −0.3h, h2 = 0.7h ).

Method Koutoati et al. [44] Present-Navier Present-DQM

p = 0.0 84.29 84.29 84.29
p = 0.5 126.59 126.60 126.60
p = 1.0 162.00 162.00 162.00
p = 5.0 281.12 281.12 281.12

p = 10.0 314.74 314.74 314.74

Meanwhile, the center deflection and maximum rotation for beams with graded
decarburization layer calculated with the analytical Navier method and DQM are compared,
as is shown in Table 3 and Figure 7. With different power−law indexes indicating the
profile of material properties, the results are also in good agreement with each other, with
the maximum deviation less than 0.31%. It demonstrates that the method with third-order
shear deformation theory of graded beam to predict the bending behavior has an excellent
reliability and accuracy.

Table 3. Comparison of center deflection and maximum rotation with different solution methods for
beam with graded decarburization layer.

Method Navier DQM Deviation

p = 0.2 φ 0.0127 0.0127 −0.31%
w −7.6190 −7.5994 −0.26%

p = 1.0 φ 0.0133 0.0132 −0.31%
w −7.9319 −7.9114 −0.26%

p = 5.0 φ 0.0138 0.0137 −0.31%
w −8.2277 −8.2064 −0.26%
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Figure 7. Comparison of deflection and rotation with different solution method (p = 1.0). (a) Deflection
w. (b) Rotation ϕ.

3.2. Effect of Power−Law Index of Graded Decarburization Layer

The effect of power−law index p of graded decarburization layer is firstly investigated,
with the decarburization depth at both sides are equal and constant. Figure 8 shows
variations of the beam deflection and rotation through the length, under simply supported
boundary conditions. The axial displacement at middle surface is zeros, the maximum
deflection is at the center point, and the maximum rotation is at two ends. When p = 0,
Vm(z) = 1, z ∈ [−h/2, h1] ∪ [h2, h/2], the elasticity modulus of the decarburization layer is
constant and utterly equal to the inner area without decarburization, and it can be regarded
as homogeneous material, the deflection and rotation are the slightest; when p = 100.0,
Vm(z)→ 0 , z ∈ [−h/2, h1] ∪ [h2, h/2], the elasticity modulus is almost equal to the soft
ferrite phases, and changes sharply at the interface, which is similar to the laminated
beam, the deflection and rotation are the most significant, since the rigidity of the complete
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decarburization layer is the lowest; when p ∈ (0, 100.0), the rigidity is between the above
two extreme cases, which results in that the deflection and rotation is also between the two
cases. Figure 9 depicts the variation of maximum deflection and rotation with different
power−law indexes. With the increasing p, the maximum deflection and rotation increase
drastically and reach a quasi-steady state at p ≈ 10, because when p > 10, the variation of
the elasticity modulus and rigidity is not significant.

Figure 8. Variations of beam deflection and rotation through the length with different power−law
indexes. (a) Deflection w. (b) Rotation ϕ.

Figure 9. Variation of the maximum deflection and rotation with different power−law indexes.

Variations of beam axial and shear stress through the length with different power−law
index are shown in Figure 10. The axial stress at top half side of the beam is compressive
and tensile at the bottom half side, and both stresses are symmetrical about the geometrical
middle surface (z = 0), which coincides with the physical neutral surface, for the equal
decarburization distribution at two sides. When p = 0, the axial stress increases linearly
in terms of the beam height, for the homogeneous material properties. The value reaches
the peak point at bottom and top surface, and equals zero at the middle surface (z = 0); the
shear stress varies parabolically through the beam height, and reaches the maximum value
at middle surface and equals zero at bottom and top surfaces. Since the shape function
of shear deformation in the third order theory is expressed with a parabolic function [39]
ψ(z) = z

[
1− 4z2/

(
3h2)]. When p = 100.0, the axial and shear stress decrease dramatically

for the reduced elasticity and discontinuous properties of decarburization layer and the
inner area, which may result in the stress concentration and early fatigue failure of the
component. When p ∈ (0, 100.0), the axial and shear stress change smoothly near the
interface without the saltation. At the inner homogeneous area, the stresses increase
with the power−law index. At the decarburization area, when p ∈ (0, 1.0), the elasticity
modulus decreases rapidly near the surface, leading to the simultaneous reduction of
axial stress; when p ∈ (1.0, 100.0), the elasticity modulus decreases rapidly near the inner
interface, thus leading to the simultaneous reduction near the interface; at these occasions,
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the influence on the stress caused by the reduction of elasticity modulus is more significant
than the increasing beam height. When p = 1.0, the variation at both inner interface and
surface are smooth.

Figure 10. Variations of beam axial stress and shear stress through the length with different
power−law index (x = 425 mm). (a) Axial stress. (b) Shear stress.

Distribution of axial and shear stress on longitudinal and cross section of the beam is
illustrated in Figure 11. It is observed that the axial and shear stress are symmetrical about
the middle surface for both sections. On the longitudinal-section (y = 0), the axial stress
is zero at both ends and reaches the crest value at center point; the shear stress is nearly
zero between x1 and x2, and reaches the peak value at both ends, which is caused by the
point−loads acting at position x1 and x2. On the cross-section (x = 425 mm), the axial stress
is zero at the middle surface, increases linearly with the beam height to the interface, and
increases nonlinearly at the decarburization area, determined by the graded variation of
material properties. The shear stress is zeros at both side surfaces and reaches the greatest
at middle surface.

Figure 11. Distribution of axial and shear stress on longitudinal and cross-section of the beam (p = 1.0).
(a) Axial stress on longitudinal-section. (b) Shear stress on longitudinal-section. (c) Axial stress on
cross-section. (d) Shear stress on cross-section.

3.3. Effect of Depth of Graded Decarburization Layer

The effect of decarburization depth (Hd) near bottom and top surface on the bending
behavior is then inspected. Figure 12 shows the variations of beam deflection and rotation
through the length, and Figure 13 shows variation of the maximum deflection and rotation
with different decarburization depth. The maximum deflection and rotation increase with
the decarburization depth, since the elasticity modulus of the surface decarburization layer
is lower than the inner area, and rigidity of the beam decreases with the decarburization
depth. The increment of maximum deflection and rotation decreases with the decarbur-
ization depth, and when the depth is between 0~15 mm, the increment of deflection and
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rotation is between 0.02~0.035 mm, and 3.7 × 10−5~6.0 × 10−5 rad respectively, for every
millimeter of increment for the decarburization depth.

Figure 12. Variations of beam deflection and rotation through the length with different decarburiza-
tion depth. (a) Deflection w. (b) Rotation ϕ.

Figure 13. (a) Variation of the maximum deflection and rotation with different decarburization depth.
(b) Variation of the increment of maximum deflection and rotation.

Variations of beam axial and shear stress through the length with different decarbur-
ization depth for p = 1.0 is shown in Figure 14. When the depth Hd < 5.0 mm, the axial
stress increases with the beam height until the interface, and then decreases gradually.
Because when the decarburization depth is small, the elasticity modulus decreases from
the martensite phases to the ferrite phases drastically, leading to the rapid reduction of the
axial stress, which is greater than the effect caused by the increasing beam height. When
the depth Hd > 5.0 mm, the increasing rate of axial stress at the decarburization area is
nonlinear and smaller than the inner area. Because the material properties change slowly
when the depth is considerable, and the reduction caused by elasticity modulus reduction
is smaller than the increment caused by increasing beam height. For the shear stress, the
value decreases with the depth at decarburization layer, and increases with the depth at
middle non-decarburization area.

3.4. Effect of Unsymmetrical Decarburization Depth of Two Sides

Sometimes, the decarburization depth of bottom and top side is different, and thus
the material properties are unsymmetrical about the geometrical middle surface. The effect
of unsymmetrical decarburization is investigated through the different depths at two sides,
as is listed in Table 4. The sum of decarburization at two sides is maintained constant at
21.0 mm, and the power−law index p = 1.0.
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Figure 14. Variations of beam axial stress and shear stress through the length with different decarbur-
ization depth. (a) Axial stress. (b) Shear stress.

Table 4. Decarburization depth of two sides.

No. 1 2 3 4 5 6 7 8

Bottom side Hd1 (mm) 20 18 15 12 9 6 3 1
Top side Hd2 (mm) 1 3 6 9 12 15 18 20

Variations of beam deflection, rotation, and axial displacement through the length
with different decarburization depths are shown in Figure 15. It is observed that the
deflection and rotation with different decarburization distribution are similar with a low
deviation, because the total decarburization depth is constant under the same loads. The
axial displacement is no longer zeros and the maximum value is located at two ends of
the beam, but the displacement is distinct with different depth configurations. With the
increasing depth at bottom side, and the decreasing depth at top side, displacement at left
end of the beam reduces from positive value to negative value, and when the depth at two
sides is similar, and axial displacement is approximate to zero, which is consistent with
the occasions mentioned above with symmetrical cross-sections. The schematic diagram
of axial displacement near the middle surface is illustrated in Figure 16. For group 1 to
4, the decarburization depth at bottom side is less than the top side, and thus the rigidity
of bottom side is higher than the top side. Therefore, the position of physical neutral
surface and axis where the axial displacement and stress exactly equals zero, migrates
to the position below the geometrical middle surface. The material below the physical
neutral surface is stretched, and that above the neutral surface is compressed. Therefore,
for groups 1 to 4, the geometrical middle surface is above the physical neutral surface, so
the axial displacement u0 at left end of middle surface is positive, and that at the right end
is negative. For groups 5 to 8, the variation is on the contrary.

Variation of physical neutral surface, maximum deflection, rotation, and axial displace-
ment through different distribution of unsymmetrical decarburization depth are shown
in Figure 17. Migrating distance of neutral surface increases with the difference of decar-
burization depth at bottom and top sides. The maximum deflection and rotation increase
with the decreasing migrating distance of neutral surface slightly, while the variation of
maximum axial displacement is on the contrary.

Variations of beam axial stress and shear stress through the length with different
unsymmetrical decarburization depth are shown in Figure 18. With the unsymmetrical
decarburization depth at two sides, the axial stress is no longer symmetrical about the
middle surface. The axial stress increases nonlinearly at the decarburization layer, deter-
mined by the depth and power−law index; at the inner non-decarburization area, the
axial stress increases linearly. When the depth is small, the axial stress increase and then
decrease near the interface, caused by the rapid reduction of elasticity modulus, as is
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discussed above. For shear stress, the distribution at the inner area is similar, and different
at the decarburization area of two sides. At bottom side, the shear stress decreases with
the increasing decarburization depth, and at top side, the shear stress increases with the
decreasing decarburization depth.
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Figure 15. Variations of beam deflection, rotation, and axial displacement through the length with
different decarburization depths. (a) Deflection w0. (b) Rotation ϕ. (c) Rotation u0.
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Figure 16. Schematic diagram of axial displacement near geometrical middle surface.
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3.5. Effect of Unbalancing Loading

During automobile running, the loadings on front axle at two points x1 and x2 are
occasionally unbalancing. The unbalancing is expressed with Equation (30):{

F1 + F2 = 140000
F1/F2 = λ

⇒ F1 =
140000λ

(1 + λ)
F2 =

140000
(1 + λ)

(30)

where λ is the unbalance rate, the sum of F1 and F2 is constant, and the decarburization
depth and power−law index are also constant.

Figure 19 reveals the variations of beam deflection, and rotation through the length
with different unbalance rates. It is observed that the transverse deflection and rotation are
no longer symmetrical about middle axis of the beam (x = L/2). When λ < 1.0, F1 < F2, the
position of maximum deflection migrates to right side of the middle axis; when λ > 1.0,
F1 > F2, the position of maximum deflection migrates to left side, and the migrating
distance and maximum deflection increase with the unbalance rate λ. Similarly, rotation
at the side with heavier loading is larger than the other side, and the migrating distance
increases with the unbalance rate.
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3.6. Effect of Beam Dimension

Finally, the effect of graded beam dimension on the bending behavior is investigated.
The decarburization is maintained symmetrical and constant, and the power−law index
is kept at p = 1.0. Figures 20 and 21 show the variations of beam deflection, and rotation
through the length with different beam height and width, respectively. Figure 22 shows the
variation of the maximum deflection and rotation with different beam heights and widths.
It is observed that the deflection and rotation decrease with the increase of beam height and
width. The increment range of deflection is 0.09~0.64 mm when the beam height changes
from 128 to 78 mm, that of the rotation is 1.59 × 10−4~1.08 × 10−3 rad; The increment
range of deflection is 0.05~0.16 mm when the beam width changes from 110 to 60 mm, that
of the rotation is 8.90 × 10−5~2.79 × 10−4 rad. It indicates that the influence degree of the
beam height is greater than the beam width.

Figure 19. Variations of beam deflection, and rotation through the length with different unbalance
rate. (a) Deflection w0. (b) Rotation ϕ.

Figure 20. Variations of beam deflection, and rotation through the length with different beam height.
(a) Deflection w0. (b) Rotation ϕ.
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Figure 21. Variations of beam deflection, and rotation through the length with different beam width.
(a) Deflection w0. (b) Rotation ∅.

Figure 22. Variation of the maximum deflection and rotation with different beam height and width.
(a) maximum deflection. (b) maximum rotation.

4. Conclusions

According to the decarburization phenomenon of automobile front axle forgings, a
model of rectangular thick sandwich beam with a homogeneous core and functionally
graded layer coated on bottom and top surfaces is constructed. The displacement field
governing equations are derived based on a third-order shear deformation theory (TSDT)
to investigate the static bending behaviors under two point−loads. The Navier analytical
method and numerical DQM procedures are employed to obtain the bending responses
under simply supported boundary conditions.

The results are in good agreement with an example in the literature, and the responses
for the decarburized beam under point−loads obtained by the analytical and numerical
method are also highly consistent with the deviation less than 0.31%. The transverse de-
flection, rotation, axial stress, and shear stress are studied in terms of different power−law
exponents, decarburization depth, unsymmetrical decarburization depth, unbalance load-
ing, and beam sectional dimension.

The results reveal that with the increasing power−law index p, the maximum deflec-
tion and rotation increase drastically and reach a quasi-steady state at p = 10. The axial
and shear stress increase with the beam height linearly at the inner homogenous area and
varies nonlinearly affected by the power−law index and beam height. When p is large
(such as p = 100.0), the stress through the beam height experiences a steep saltation, which
is similar to the laminated beams. At the position where the elasticity modulus reduces
rapidly, the influence on stresses caused by the reduction of material properties is greater
than that caused by increase of beam height.

The maximum deflection and rotation increase with the decarburization depth, the
increment of maximum deflection and rotation decreases with the decarburization depth.
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When the depth is between 0~15 mm, the increment of deflection and rotation is between
0.02~0.035 mm, and 3.7×10−5~6.0×10−5 rad respectively, for every millimeter increment of
decarburization depth. The material properties change slowly when the depth is significant
(Hd > 5.0), and the reduction caused by the elasticity modulus change is smaller than that
caused by the increase of beam height.

The deflection, rotation, axial stress, and shear stress are no longer symmetrical when
the decarburization depth of two sides is different, and the axial displacement is no longer
zero. The migrating distance of the physical neutral surface increases with difference of the
decarburization depth at two sides. The maximum deflection and rotation increase with
the decreasing migrating distance of neutral surface, while the variation of maximum axial
displacement is on the contrary.

The position of maximum deflection migrates with the load unbalance rate and is
approximate to the side with a larger loading. The maximum deflection, rotation, and mi-
grating distance increase with the unbalance rate. The influence degree of the beam height
is greater than the beam width. The increment range of deflection is 0.09~0.64 mm when
the beam height changes from 128 to 78 mm, and that of rotation is 1.59×10−4~1.08×10−3

rad; The increment range of deflection is 0.05~0.16 mm when the beam width changes from
110 to 60 mm, and that of rotation is 8.90×10−5~2.79×10−4 rad.

The results reveal the influence of surface decarburization on the bending behavior
of automobile forging front axle, and help optimize the beam dimension and structure to
reduce the adverse effect caused by the surface decarburization.
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