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Abstract: This paper proposes a non-contact measurement, analysis, and visualization method for the
overall deviation of gears based on a laser displacement sensor. We implement error compensation
and coordinate transformation on the tooth profile data collected by the laser probe through an
algorithm, and fit all the data points to the gear surface using a 3 × 3 degree spline function.
According to the established actual surface model of the gear, the tooth profile curve on any section
of the gear and its various deviations can be obtained. To find the overall deviation on the tooth
profile surface, the deviation data is refined and fitted into a curved surface by the Newton difference
method. The overall deviation can be represented on the gear surface in the form of a color map, and
then the color map of the overall deviation of the gear can be obtained. In addition, it can intuitively
analyze the distribution of the overall deviation on the gear surface, and realize the visual expression
of the deviation. Finally, through experimental verification, we prove that this method can quickly
and accurately analyze the various deviations of the gears and the distribution of the deviation, and
can effectively improve the detection accuracy and efficiency of the gears.

Keywords: laser displacement sensor; non-contact measurement; gear deviation; surface fitting;
overall deviation; color mapping; visual expression

1. Introduction

As one of the most important components in transmission, gears are widely used in
various mechanical equipment. They are conducive to high efficiency, smooth movement,
and compact structure in the transmission process. With the rapid development of the
high-end manufacturing industry, the demand for high-precision gears has increased.
Therefore, it is more necessary to accurately measure important parameters, such as the
gear tooth profile, pitch, and helix angle. Gear precision measurement methods are divided
into contact type and non-contact type. To date, contact detection is the most widely
used. It mainly contains the CNC (Computerized Numerical Control) three-coordinate
measurement and the gear single-mesh instrument measurement, while the non-contact
measurement includes laser measurement, holographic image measurement, and speckle
interferometry [1]. Compared with contact measurement, the non-contact measurement
method achieves a higher efficiency, accuracy, and wider application scope. For this reason,
more and more research work has been put into the non-contact measurement field of gears.

Shi et al. established digital images of the upper and lower ends of a helical gear
based on the holographic influence system and processed the image morphologically
to obtain accurate helical angle parameters of the helical gear more quickly [2]. Song
et al. used the dual CMOS (Complementary Metal Oxide Semiconductor) camera to
collect image information of the end and side of the gear, and applied computer image
processing to obtain various parameters of the gear to improve the reliability of non-contact
measurement [3]. Xu et al. employed visual image sensors to capture the position of gears
in the gearbox, and then use laser displacement sensors to precisely measure the gear
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chamfering [4]. This method does not need to design specific detection fixtures, which can
effectively improve the detection efficiency and achieve automatic measurement. However,
there are still some drawbacks in the analysis and expression of data acquisition accuracy
and deviation results. Song et al. put forward a non-contact detection method of gear tooth
accuracy based on the laser displacement sensor [5]. However, this method cannot realize
the horizontal movement of the laser sensor. The gear to be measured needs to be calibrated
manually, which will directly affect the reliability and efficiency of data collection [6]. Marc
Pillarz et al. experimented with a triangular measuring sensor and confocal color difference
sensor to analyze the effect of various uncertainty errors in the data acquisition process [7].
Su et al. proved through experiments that the specific influence of the inclination and
roughness of gear surface on the acquisition accuracy of the laser triangulation method,
and put forward a linear interpolation correction method based on spot distribution [8].
However, the calculation process of this method is very cumbersome and requires a great
deal of data analysis and calculation. Li et al. improved the laser triangulation method
by adjusting the incident laser angle to reduce the inclination error in the data acquisition
process [9]. This method needs to be calculated according to the range of the inclination
angle of the surface to be measured to select the optimum laser incident angle. Therefore, it
is tedious of the preparation process in the early stage of measurement.

In terms of the calculation and expression of gear deviation, Shi et al. carried out a
zonal non-contact measurement of gears and obtained the error curve and cross-correlation
function of the whole gear to evaluate the gear deviation comprehensively [10]. However,
this result can only be expressed comprehensively for the deviations in a particular region,
and the representation is still limited to the graphical form. To date, the optical metrology
equipment of Klingelnberg can also measure the gears in an overall way. However, the
results of measurement and analysis are still limited to a certain section of the gear, and the
overall situation of the gear deviations cannot be fully expressed.

Aiming at the current research deficiencies, this paper proposes a method for the non-
contact overall measurement of the deviation of important parameters, such as the tooth
profile, pitch, and helix angle of gears. In this method, the tooth surface is measured by a
laser displacement sensor and the inclination error is compensated directly by algorithm.
Compared with using offset or tilt measurements to reduce error, this method is more
convenient and can effectively improve the accuracy of measurement data [11]. Then,
based on the principle of B-spline surface fitting, the actual tooth profile surface and its
normal vector model are established, and various deviation values of any point on the gear
are obtained. Finally, the deviation points are refined by the Newton difference method,
and the overall deviation surface model and corresponding color map are established.
Compared with the current gear deviation analysis method generally based on a specific
section [12], this method for gear analysis as a whole obtains more comprehensive data. The
deviation value at any point on the tooth surface can also be obtained to make the deviation
evaluation more comprehensive and accurate. In addition, the software for measuring
motion control and overall error analysis is developed to realize the precise movement of
laser probes in space and to realize automatic centering and data acquisition according to
the gear to be measured. The accurate measurement and visual expression of the multiple
deviations on the full tooth surface of the gear are realized. The measurement results are
accurate and reliable, and the visual expression results are clear.

2. Design and Principle of the Gear Laser Measuring Platform
2.1. Principles of Laser Triangulation

The laser displacement sensor performs non-contact detection based on the principle
of triangulation. During the measurement process, the laser inside the sensor emits a
concentrated beam as the measurement light source, which irradiates the surface of the
measured object and reflects. After the reflected laser beam is refracted by the imaging lens,
a corresponding light spot will be formed on the linear array CCD image sensor [13]. As
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shown in Figure 1, according to the change of the spot position, the relative displacement,
y, of the measured object can be obtained to realize the non-contact measurement.
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Figure 1. Schematic diagram of the laser triangulation method.

2.2. Structure of the Laser Measurement Platform

The principle diagram of the deviation measurement of the gear based on the point
laser displacement sensor is shown in Figure 2. The structure consists of four main parts: a
positioning and rotating chuck, laser probe, three-axis motion control system, and computer
data analysis system. The laser probe is installed on the attitude adjustment mechanism
and can be accurately moved to any position in the three-dimensional space under the
drive of the three-axis motion control system. The gear to be tested is installed on the
rotating chuck, and the levelness can be accurately calibrated by the leveling fine-tuning
mechanism on the chuck. During the measurement process, the computer terminal can
control the movement of the laser probe and the gear to be measured, and collect the
relative displacement data transmitted by the laser probe and the corresponding chuck
rotation angle data.
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3. Error Compensation and 3D Coordinate Transformation of the Collected Data

As shown in Figure 3, H(xH , yH) is any point on the involute of the gear, O(x0, y0) is
the center of the root circle, ro is the radius of the root circle, and αH is the pressure angle
at point H on the tooth profile. H1 is the starting point of the laser measurement, θ is the
angle of gear rotation during the measurement. l1 is the normal line at the point H on the
involute, and β is the angle between the incident laser and the normal l1.
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During the data acquisition, there is a certain angle between the incident laser and the
normal line of the tooth profile surface, resulting in some deviation in the center of the mass
between the actual spot and the ideal spot. An inclination error will occur and affect data
acquisition accuracy [14]. The relationship between the inclination error ∆y and angle β
during the laser probe acquisition can be deduced by consulting the relevant data [8]. Its
equation expression is as follows:

∆y = y
(

R
c

)2(
1 + 2

y
c

cos α
)
[tan α− tan(α + β)] (1)

In the formula, y is the relative displacement of the measured surface, β is the angle
between the incident laser and the normal line of the measuring plane, α is the angle
between the reflected laser, c is the actual working distance of the laser probe, and R is the
radius of the imaging lens.

According to the involute structure equation, the normal equation of H at any point
on the involute can be deduced as follows:{

y = k(x− xH) + yH

k = tan
(

arctan
(

yH+y0
xH+x0

)
+ π

2 − αH

) (2)

From Figure 3, we can see that the incident angle of the laser is fixed and always
coincides with the X-axis, which means β = arctan(k), and that the angle of error of ∆yH at
point H(xH , yH) can be obtained by introducing it into the error formula of the tilt angle (1).
After compensating for the data yH collected at point H, the relative displacement y′H at
point H can be obtained, that is, y′H = yH + ∆yH .

To facilitate the analysis of gear deviations, the measured relative displacement data
need to be converted into corresponding points in a three-dimensional space coordinate
system. As can be seen from Figure 3, H1 is the starting point for measurement, and the
distance from H1 to the center of the gear wheel is d1, (d1 = y′1 + r0), whose coordinates
can be expressed as H1(0, d1, z1). z1 is the vertical distance from the laser point H1 on the
tooth profile surface to the lower end face of the gear wheel. The point H is the laser spot
on the profile of the gear after rotating the o angle from the initial measuring point, and
the distance from the point H to the gear center is dH , (dH = y′H + r0). Therefore, the
three-dimensional coordinate of any point, H, on the tooth profile can be expressed as
H(dHsin θ, dHcos θ, zH).

4. Calculation and Expression Principle of the Overall Deviation
4.1. The Establishment of the Real 3D Surface Model of the Gear

Based on the transformation method of the three-dimensional space coordinate point
set described in the previous section, this paper proposes to use the principle of non-
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uniform rational B-splines (NURBSs) to perform cubic surface fitting on the transformed
tooth profile coordinate points. This method allows for an optimal tooth surface function
model based on a large number of collected tooth profile coordinate points, and then
establishes the actual surface model of the gear according to the optimal function. The
generated gear surface can accurately approximate the real gear surface. According to the
actual surface model, the tooth profile curve on any section of the gear and its corresponding
deviations can be obtained. The specific process of establishing the actual surface model of
the gear is as follows.

The recurrence formula of the DeBoolean–Coxsky function Ni,k(u) of the k-th B-spline
is as follows [15]:  Ni,0(u) =

{
1 if si 6 u < si+1
0 otherwise

Ni,k(u) =
(u−si)Ni,k−1(u)

si+k−1−si
+

(si+k−u)Ni+1,k−1(u)
si+k−si+1

(3)

In the above formula, i is the node on the B-spline curve, k is the degree of fitting
the curve, and u is the vector in the direction of the node i parameter. To improve the
smoothness of the final fitting curve and ensure the approximation degree between the
characteristic polygon and the real curve, this paper selects the most widely used 3-order
B-spline basis function Ni,3(u) as the recursive basis for curve fitting [16]. According to the
definition of the 3 × 3 order non-uniform rational B-spline surface [17], it is easy to know
that the general rational basis function of the real tooth profile surface can be expressed as: S(u, v) =

m
∑

i=0

n
∑

j=0
Pi,jRi,3;j,3(u, v)

Ri,3:j,3(u, v) = wi,jNi,3(u)Nj,3(v)
(4)

m and n are the times of fitting B-spline curves in the direction of parameter u and v,
respectively, and u, v ∈ [0, 1].

Based on the expression (4), the three-dimensional coordinate form of the acquisition
point on the tooth profile needs to be converted into the form of the three-dimensional data
point matrix, that is:

H =
{

Ha,b = (xa,b, ya,b, za,b)
}

=
{

Ha,b = ((dHsin θ)a,b, (dH cos θ)a,b, (zH)a,b)
} (5)

Formulas a and b in Formula (5) represent the row and column serial numbers of
the data point matrix, respectively. By transforming the collected data into a matrix form
through Formula (5) and carrying it into Formula (4) for recursive calculation and analysis,
the functional model of the actual gear surface can be obtained.

4.2. Analysis of the Tooth Profile Deviation on a Single Section

According to the actual gear surface model established in the previous section, the
tooth profile curve on any section above can be obtained, and the corresponding deviations
can be obtained. The specific calculation principle is as follows:

Define the known tooth profile deviation as the relative deviation between the actual
and theoretical tooth profiles [18]. The deviation is parallel to the end plane of the gear and
perpendicular to the theoretical tooth profile involute of the plane in which it is located.
Figure 4 is a schematic diagram of the tooth profile deviation calculation on a single section.
As shown in the figure, the tooth profile deviation Fi at the point, i-th, on the actual tooth
profile curve is the normal distance ∆Si to the theoretical tooth profile curve. However,
in the actual measurement process, some defects on the gear surface cause the normal
distance, s, at the corresponding acquisition point to easily be constant. Therefore, the
singular points in the data need to be removed before the deviation calculation and replaced
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by the arithmetic average of the five points before and after the point. Thereafter, the total
deviation within the effective length of the tooth profile curve is:

FA = Fmax − Fmin = MAX∆S−MIN∆S (6)
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However, the distance between the two adjacent data acquisition points, Hi and Hi+1,
on the actual tooth profile is very small, so the tooth profile curve formed by the two
adjacent data acquisition points can be approximated as a small line segment connecting
the two points. Assuming that the intersection point between the normal line at any point,
G(xG, yG), on the theoretical tooth profile and the actual small line segment is H′(xH′ , yH′),
then the tooth profile deviation, FH′ , at the point H′ is the distance, dGH′ , from point G to
point H′, that is, FH′ = ∆SH′ = dGH′ . The normal equation at any point on the tooth profile
derived from the combined equation (2) can also be used to derive the coordinate equation
of the intersection point, h, on the small line segment as follows:

y = k(x− xG) + yG
y−yi
x−xi

=
yi+1−yi
xi+1−xi

xi ≤ x ≤ xi+1

⇒ xH′ =
(xG − kxG) · (xi+1 − xi)− yixi+1 + xiyi+1

xi+1 − xi − k(xi+1 − xi)
(7)

Therefore, the tooth profile deviation at the H point on the actual tooth profile can be
expressed as:

FH′ = ±
√
(xH′ − xG)

2 + (yH′ − yG)
2 (8)

When the intersection point, H′, on the actual tooth profile is outside the ideal profile
curve, the tooth profile deviation at H′ is positive, and when H′ is inside the ideal profile,
the tooth profile deviation is negative.

Therefore, the total tooth profile deviation on any section can be expressed as:

FA = MAX(FH′)−MIN(FH′) (9)

4.3. Overall Deviation Analysis of the Tooth Profile

To obtain a more accurate overall deviation of the gear profile, the coordinate points of
the tooth profile on a single section need to be refined by Newton’s cubic interpolation prin-
ciple [19]. Select four adjacent tooth profile coordinate points, Hi(xi, yi), Hi+1(xi+1, yi+1),
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Hi+2(xi+2, yi+2), Hi+3(xi+3, yi+3) in turn, and perform the interpolation according to the
differential evolution algorithm. The difference quotient result can be expressed as:

f [xi, xi+1, xi+2, xi+3] =
f [xi+1, xi+2, xi+3, xi+4]− f [xi, xi+1, xi+2, xi+3]

xi+3 − xi
(10)

According to the definition of the Newton interpolation [20], the interpolation expres-
sion of the tooth profile coordinate point is:

F(x) = fi + fi(i+1) × (x− xi) + fi(i+1)(i+2) × (x− xi)× (x− xi+1)

+ fi(i+1)(i+2)(i+3) × (x− xi)× (x− xi+1)× (x− xi+2)

l = ∆Si

(11)

In formula (11), ∆Si is the normal distance from point Hi to the theoretical tooth
profile, and then the iterative calculation is performed with |l − ∆Si| ≤ 10−3 mm as the
interpolation search range condition, and the Newton cubic interpolation of the tooth
profile point can be realized.

Calculate the tooth profile deviation of all the interpolated tooth profile coordinate
points according to formula (8), and then perform 3× 3 B-spline surface fitting for the tooth
profile deviation on all the sections according to formula (4). The fitting surface model of
the overall tooth profile deviation of the gear can be obtained, and the overall tooth profile
deviation can be expressed on the actual gear surface in the form of color mapping by color
calibration according to the size of the tooth profile deviation.

4.4. Analysis of the Pitch Deviation on a Single Section

Pitch deviation refers to the difference between the actual pitch and the nominal pitch
of one gear tooth at the indexing circle [21]. Based on the actual curve expression of any
section of the previous gear, the coordinate, P(xP, yP), of any intersection point of the actual
profile curve at the indexing circle can be obtained by solving it in conjunction with the
theoretical indexing circle equation. As shown in Figure 5, point Pi and point Pi+2 are any
two adjacent points on the same side profile curve and the theoretical indexing circle radius
is rm, then the actual pitch of any two adjacent profiles on this section can be expressed as:
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Given that the theoretical pitch deviation of the measured gear is P0, the pitch deviation
of the gear at any two adjacent tooth profiles can be expressed as:
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4.5. Overall Deviation Analysis of Pitch

Similar to the overall error analysis of the tooth profile, all coordinate points need to
be refined by Newton’s cubic interpolation principle before calculating the deviation of the
tooth pitch. From the definition of the pitch deviation, all pitch errors on a single section
can be obtained by finding the intersection of all the actual curves of the tooth profile
and the theoretical indexing circle. Therefore, to simplify the data processing process and
improve the efficiency of pitch deviation analysis, only four adjacent tooth profile data
acquisition points that most closely approximate the theoretical indexing circle are selected
as the Newton interpolation intervals on each tooth profile curve, and the four data points
selected are Hi(xi, yi), Hi+1(xi+1, yi+1), Hi+2(xi+2, yi+2), Hi+3(xi+3, yi+3). The four selected
tooth profile points must be on both sides of the theoretical indexing circle. The expression
of interpolated tooth profile curve is the same as that of point P of the intersection of

indexing circle (11), where the range condition becomes l =
√

F(x)
2 + x2 = rm, rm is the

theoretical radius of the indexing circle in the formula above, and |l − rm| ≤ 10−3 mm is
also iterated as the range condition to find the optimal interpolation point.

By this method, a more accurate pitch deviation and cumulative pitch deviation can
be obtained. After fitting the cumulative deviation of the pitch on all the tooth profile
sections into a surface model and calibrating it in the actual model of the gear in the form
of color mapping. Finally, the color mapping of the overall deviation of the gear pitch can
be obtained.

4.6. The Helix Angle Calculation for Any Tooth Profile

It can be observed from the definition that the helix angle of a gear is the angle between
the helix formed by the intersection of the tooth profile surface and the cylindrical surface
where the index circle is located and the gear end plane [22]. Through the established
actual model of the gear, any number of tooth profile sections can be intercepted, and all
the sections can be converted into the same plane coordinate system, as shown in Figure 6.
The set of intersections formed by the intersection of the indexing cylindrical surface and
all tooth profile curves on a certain tooth surface is Q = {Q1, Q2, . . . , Qi}. In this paper, the
least-squares method is used to fit the point set Q, and the angle between the fitting line and
the gear end plane is the helix angle, β, of the helical gear. The equation can be expressed
as z = a0 + a1y, and the sum of the squares of the deviations from the intersections on all
tooth profiles to the fitted straight line can be expressed as:

i

∑
n=1

δ2
n = [zn − (a0 + a1yn)]

2 (14)

Taking the derivation of formula (13), the matrix equation system can be obtained: i
i

∑
n=1

yn

i
∑

n=1
yn

i
∑

n=1
y2

n

[ a0
a1

]
=


i

∑
n=1

zn

i
∑

n=1
znyn

 (15)

From Equation (15), the helix angle can be expressed as β = arctana1.
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5. Experiment Platform Construction and Software Development

In this experiment, according to the measuring platform design schematic diagram
shown in Figure 2, the experimental platform for the gear deviation laser measurement is
built, and the completed physical drawing is shown in Figure 7.

Machines 2022, 10, 158 10 of 17 
 

 

 
Figure 6. Schematic diagram of the helix angle calculation. 

5. Experiment Platform Construction and Software Development 
In this experiment, according to the measuring platform design schematic diagram 

shown in Figure 2, the experimental platform for the gear deviation laser measurement is 
built, and the completed physical drawing is shown in Figure 7. 

 
Figure 7. Physical drawing of the laser measuring platform. 

In the measuring platform shown in Figure 7, the rotating chuck and the three-axis 
motion control mechanism are driven by a high-precision direct-drive motor. The grating 
is installed at the bottom of the positioning rotary chuck and the side of the three-axle 
motion guide, and the pulse drive is realized by coding with ADT850 four-axle control. 

The rotating precision of positioning rotary chuck can reach 0.1''  and the linear motion 
precision of three-axle motion guide can reach 0.1 μm , At the same time, a Keynes LK-
H050 sensor is used for data acquisition. Its linearity is <0.02% F.S (F.S = 20 mm), repeata-
bility is 30.025 μm , measurement resolution is 0.1 μm , and sampling period is 

Figure 7. Physical drawing of the laser measuring platform.

In the measuring platform shown in Figure 7, the rotating chuck and the three-axis
motion control mechanism are driven by a high-precision direct-drive motor. The grating
is installed at the bottom of the positioning rotary chuck and the side of the three-axle
motion guide, and the pulse drive is realized by coding with ADT850 four-axle control. The
rotating precision of positioning rotary chuck can reach 0.1′′ and the linear motion precision
of three-axle motion guide can reach 0.1 µm, At the same time, a Keynes LK-H050 sensor is
used for data acquisition. Its linearity is <0.02% F.S (F.S = 20 mm), repeatability is 0.025 µm3,
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measurement resolution is 0.1 µm, and sampling period is 2.55–1000 µs . Combined with
the high precision motion control system, the accuracy and reliability of data acquisition
can be greatly improved.

Based on the principle of coordinate transformation of space points from the measure-
ment data, the principle of establishing the actual three-dimensional surface of tooth shape,
and the calculation method of gear deviation analysis, this paper develops the software for
measurement control and deviation analysis. This software can control the operation of the
turntable and the sliding guide to realize the data acquisition of the laser probe. The data
acquisition can automatically compensate for the errors and coordinate transformation, to
realize the establishment of the actual surface of the gear and the calculation, analysis, and
visual expression of various deviations. The interface of the software is shown in Figure 8.
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6. Gear Overall Deviation Measurement Experiment

The method of gear actual model establishment and gear overall deviation analysis
proposed above is general and applicable to all kinds of cylindrical gears. To verify the
correctness of the theoretical derivation of gear deviation measurement in this paper, as
well as the accuracy and reliability of the deviation analysis of the built measurement
platform, a 6th-grade gear was used as the measurement material, and the measurement
was carried out on this platform. The relevant parameters of the adopted 6-stage gear were
as follows: the module was 3, the number of teeth was 30, the pressure angle of the end face
was αn = 20◦, the tooth thickness was 30 mm, and the left helix angle was β = 19◦31′42′′ .

Install the measured gear on the rotating chuck of the measuring platform, use the
developed measuring software to automatically center the laser probe before measuring,
and then set a rated pulse amount to the rotating chuck to make it rotate at a constant speed.
Then, turn on the laser probe through the measurement software and store the measured
relative displacement and its corresponding rotation angle. In this experiment, 12 radial
sections of the helical gear were selected for measurement, and the measurement data were
converted into a three-dimensional space coordinate point set through the above theory,
and the converted coordinate points first used Newton’s cubic interpolation principle to
carry out coordinate points. One of the refined tooth profile point sets is shown in Figure 9a,
which is fitted by the cubic B-spline principle, as shown in Figure 9b.
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Perform 3 × 3 B-spline surface fitting on all the fitted tooth profile curves according 
to formula (4), to establish the surface model of the actual tooth profile, as shown in Figure 
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Figure 11. The normal vector model of the actual tooth profile surface. 

Based on the established normal vector model of the tooth profile surface, the tooth 
profile deviation at any point on the tooth profile can be solved, and then all the deviations 
on the section can be fitted to obtain the tooth profile deviation curve of the corresponding 
section. The deviation curve on one of the tooth profile sections is shown in Figure 12: 

Figure 9. Establishment of the actual tooth profile curve, (a) scatter point of tooth profile coordinates,
and (b) the B-spline fitting tooth profile curve.

Perform 3 × 3 B-spline surface fitting on all the fitted tooth profile curves according to
formula (4), to establish the surface model of the actual tooth profile, as shown in Figure 10.
Then, the tooth profile normal vector model is established according to the actual tooth
profile model, as shown in Figure 11.
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Based on the established normal vector model of the tooth profile surface, the tooth
profile deviation at any point on the tooth profile can be solved, and then all the deviations
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on the section can be fitted to obtain the tooth profile deviation curve of the corresponding
section. The deviation curve on one of the tooth profile sections is shown in Figure 12:
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deviation is the tooth profile section where z = 0, that is, the front end face of the gear. 
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0.0102F mm  , which meets the accuracy requirements of the 6th-grade gear by 
GB/T10095.1-2008. 

Figure 12. Profile deviation curve.

In this experiment, 16 tooth profile sections were selected at equal intervals to draw
the corresponding tooth profile deviation curve, and the corresponding color map was
drawn up according to the required deviation range. As shown in Figure 13, the deviations
at all the calculated points on the tooth profile deviation curve are marked with the colors
in the corresponding color map. After that, 3 × 3 B-spline surface fitting is performed on
all tooth profile deviation curves, and the overall deviation color map of the entire tooth
profile surface is established, as shown in Figure 14.
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Figure 14. Overall deviation color mapping on the tooth profile surface.

It can be observed from Figure 14 that the tooth profile deviation has a larger value
at the tip and root, while the deviation value at the index circle is smaller. By analyzing
the deviation color map, it can be determined that the section with the largest tooth profile
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deviation is the tooth profile section where z = 0, that is, the front end face of the gear.
From the calculation, it can be observed that the total deviation of the tooth profile on
it is Fα = 0.0102 mm, which meets the accuracy requirements of the 6th-grade gear by
GB/T10095.1-2008.

The color mapping of the overall pitch deviation is shown in the same way as above.
Based on the actual model of gear and the formula of the pitch deviation deduced from
the third section, the pitch deviation of each gear teeth can be calculated separately. Then,
interpolate and fit the deviation data, as shown in Figure 15a, calculate the accumulated
deviation of the pitch on 30 equal-pitch gear sections according to the pitch deviation on a
single tooth, and fit the curve based on the cubic B-spline principle, as shown in Figure 15b.
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Figure 15. The fitted curve of the pitch deviation, (a) tooth pitch deviation curve on the individual
teeth, and (b) the cumulative pitch deviation curve.

To facilitate the analysis of the overall deviation of the pitch, the absolute value of all
the pitch deviations is taken first. Then, according to Figure 15b, the cumulative deviation
of the tooth pitch on the selected 30 gear sections is marked on the actual surface of the
gear in the form of color mapping, as shown in Figure 16. According to the cumulative
deviation curve of the pitch, the color mapping surface of the overall deviation of the pitch
on the whole tooth surface is established, as shown in Figure 17.
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Figure 16. Color map of the pitch deviation on the gear section.

It can be observed from the deviation color map in Figure 17 that the cumulative
deviation of the pitch is larger near the end face of the gear, while the deviation in the
middle part of the gear is relatively small and the value tends to zero. According to the
color map of the pitch deviation, the gear section with the largest cumulative deviation
of the pitch is selected for analysis. The calculation shows that the maximum tooth pitch
deviation on the selected tooth profile is max fpt = 0.0194 mm, the minimum tooth pitch
deviation is min fpt = 0.0000 mm, and the cumulative pitch deviation is Fp = −0.0988 mm.
The deviation meets the accuracy requirements of the six-stage cylindrical gear.
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In the same way, this paper also calculates the helix angle of the tooth profile based on
the actual tooth profile surface model established. The results are shown in Figure 18. The
number of helix angles is stable in the range of 19.4∼19.6◦.
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Combine all kinds of deviations of the helical gears measured and check according to
the various accuracy evaluation standards of cylindrical gears. It can be observed that the
measured deviations of the tooth profile, pitch, and helix angle of the helical gears are all
within the 6th-grade gear accuracy range. It also verifies the correctness of the theoretical
innovation and the reliability of the measurement software.

7. Conclusions

In this paper, we proposed an innovative method for measuring and visualizing the
integral deviation of a non-contact gear based on a laser displacement sensor. On the
basis of the theory in this paper, a measurement platform was built and the deviation
measurement analysis software was developed, which realized the precise measurement
and visual expression of various deviations of gears, and effectively improved the accuracy
and efficiency of measurement. At the same time, it also made the deviation evaluation
process more convenient. Compared with the current measurement methods of gear
deviation, the method proposed in this paper has the following characteristics:

(1) Based on the principle of laser triangulation, the inclination error of the collected
data is compensated by an algorithm. Compared with reducing the data acquisition error
by changing the structure of the measurement platform, this method of reducing the data
error through an algorithm is more efficient. It can effectively improve the efficiency and
accuracy of data collection, and make the data collected by the laser probe more accurate
and reliable.

(2) The data measured by the laser probe is converted into three-dimensional space
coordinate points by an algorithm, and the coordinate points are fitted to the actual surface
of the gear through the 3 × 3 B-spline basis function, and then the actual tooth profile
curve on any section of the gear can be obtained. Through this surface fitting method,
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the collected coordinate points can be further refined to obtain more comprehensive tooth
profile data, which provides more data support for subsequent deviation analysis and
calculation. The result of the deviation calculation is more real and reliable.

(3) The deviation curves on all the gear sections are surface-fitted to establish the
overall deviation model on the gear surface, and then the deviation values are expressed on
the actual surface of the gear by color mapping. The overall analysis and visual expression
of the gear deviation can reflect the size and distribution of the gear more accurately and
comprehensively, so that the process of machining accuracy and quality of gear is more
convenient and accurate.

(4)Based on the above theory, a laser measurement platform was built and the gear
measurement control and deviation analysis software was developed. The experiment
shows that the measuring platform can quickly locate, neutralize, and measure the gear.
Moreover, there is no need to plan the measurement path in advance and the measurement
accuracy reaches the micron level. In addition, the detection results can be expressed
visually, making the process of deviation evaluation more convenient.

In general, the method proposed in this paper is more suitable for the accurate mea-
surement of the deviation of some standard gears, but it is difficult to measure the deviation
of some special gears and large gears. In addition, this paper only compensates for the
inclination error that has the greatest impact on the data acquisition error. In fact, there are
many factors affecting the acquisition accuracy of the laser sensor. In the future, the method
will further optimize the accuracy of data acquisition and the applicability of special gears.
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