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Abstract: Prognostics and health management (PHM) is a framework to identify damage prior to
its occurrence which leads to the reduction of both maintenance costs and safety hazards. Based
on the data collected in condition monitoring, the degradation of the part is predicted. Studies
show that most failures are caused by faults in rolling element bearing, which highlights that a
bearing is one of the most important mechanical components of any machine. Thus, it becomes
important to monitor bearing degradation to make sure that it is utilized properly. Generally, machine
learning (ML) or deep learning (DL) techniques are utilized to predict bearing degradation using
a data-driven approach, where signals are captured from the machine. There should be a large
amount of data to apply either ML or DL techniques, but it is difficult to collect that amount of
data directly from any machine. In this study, health assessment is carried out using the correlation
coefficient to divide the bearing life into two degradation stages. The raw signal is processed using
discrete wavelet transform (DWT), where mutual information (MI) is used to rank and select the
base wavelet, after which tabular generative adversarial networks (TGAN) are used to generate the
artificial coefficients. Statistical features are calculated from the real data (DWT coefficients) and the
artificial data (generated from TGAN). The constructed feature vector is then used as an input to train
machine learning models, namely ensemble bagged tree (EBT) and Gaussian process regression with
the squared exponential kernel function (SEGPR), to estimate bearing degradation conditions. Both
the machine learning models were validated on the publicly available experimental data of FEMTO
bearing. Obtained results showed that the developed EBT and SEGPR models accurately predicted
the bearing degradation conditions with the average lowest RMSE value of 0.0045 and MAE value
of 0.0037.

Keywords: bearing; prognostics and health management (PHM); discrete wavelet transform; GAN;
TGAN; Gaussian process regression; ensemble bagged tree; bearing degradation

1. Introduction

In the past decade, prognostics and health management (PHM) methods have received
wide attention due to an increase in prediction accuracy, which results in a reduction of
maintenance costs [1,2]. Vibration in the bearing generates a significant amount of noise
and will lead to degradation of the product quality. These vibrations are generated by two
types of defects; the first one is the distributed defects where surface roughness, off-size
rolling elements and misaligned races play a role, while the second type of defect is the
local defect where cracks, spalls and corrosion play a role [3,4]. Bearing degradation is a
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part of prognostics, in which degradation performance is studied using either a data-driven
approach or model-based approach, or a combination of both approaches (hybrid), and
identifies the forthcoming failure of a machine part [5,6].

As per the finding by P.F. Albrecht et al. [7], around 45% of machine failure incidents
are only caused by rolling element bearing, so it becomes very important to monitor/predict
bearing degradation. In the case of using a model-based approach, a mathematical model
is constructed for prediction. Yaguo Lei et al. [8] proposed a two-stage model; in the
first stage, the weighted minimum quantization error is calculated as a health indicator
using mutual information (MI) to correlate with the degradation process; in the second
stage, particle filtering is used to predict the RUL. However, it is very difficult to make
a mathematical model of a machine, as it depends on the operation of the machine in
different environments and the complexity of the machine.

In the case of a data-driven approach, along with the machine’s complexity and the
working environment, data collected from sensors such as vibration signals, acoustic sig-
nals or temperature reveals the health conditions of the bearing [9,10]. Various statistical
features are extracted from time domains, frequency domains and time–frequency domains
which are used to form a feature vector. The constructed feature vector is then used as
an input to train various ML models such as support vector machines (SVM), decision
trees, k-nearest neighbors (K-NN), or deep learning models such as artificial neural net-
works (ANN), for either finding the type of fault or bearing health conditions [11–14].
Xiang Li et al. [15] proposed the usage of a convolution neural network (CNN) as a
multi-feature identifier, as well as a predictor for the estimation of the degradation of
the bearing. Jun Zhu et al. [16] proposed a multi-scale convolution neural network
(MSCNN) on a time–frequency representation made using wavelets to predict the RUL.
Mehdi Behzad et al. [17] proposed to use features, namely, the root mean square (RMS) and
kurtosis, along with a special feature known as high-frequency root mean square (HFRMS),
to train a feed-forward neural network and estimate the degradation of the bearing. Wentao
Mao et al. [18] proposed an LSTM model on time–frequency images generated using the
Hilbert–Huang transform for predicting bearing degradation. Youngji Yoo and Jun-Geol
Baek [19] proposed CNN on the wavelet power spectrum image generated using the con-
tinuous wavelet transform. Biao Wang et al. [20] proposed a hybrid prognostic approach
where degradation data are sparsely presented using relevance vector machine regression
and bearing degradation is estimated using the exponential degradation model. The study
conducted by Xinlai Ye et al. [21] focused on the development of a novel health index for the
successful identification of bearing degradation. Their results showed improvements in the
detection of the accuracy of incipient bearing degradation. B Savić et al. [22] implemented a
non-linear regression model for analyzing the condition of rolling bearings. Testing results
of their used model showed a prediction error within the limits. Blaut et al. [23] used the
Teager–Kaiser method to evaluate rotor imbalance in hydrodynamic bearings. In another
study conducted by Kubik et al. [24], test methods have been developed for diagnosing the
technical condition of rolling bearings in road wheels.

It is very difficult to capture the vibration signal for every possible type of failure of any
machine component due to its operationality in different conditions. Generative adversarial
networks (GAN) have gained popularity in the past decade, as they can generate artificial
data from the original data. David Verstraete et al. [25] have predicted bearing degradation,
using a generative adversarial network (GAN), variational autoencoders (VAE) and an
adversarial–variational model, and compared them. Xiang Li et al. [26] divided the whole
bearing life into two stages and calculated the first prediction time (FPT), and then GAN
was used to generate artificial data. The real and the artificial data was then fed to CNN to
extract the features and predict bearing degradation.

Several studies have been carried out for the prediction of bearing degradation. In the
present study, bearing degradation is divided into two stages using correlation coefficients,
and then discrete wavelet transform is applied to raw vibration signals to calculate statistical
features. As a large amount of data are needed to predict bearing degradation using ML
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models, authors have therefore utilized tabular generative adversarial networks (TGAN) to
generate artificial data for prediction. Finally, the feature vector was formed from DWT
and TGAN, which was fed into ML models to estimate bearing degradation. TGAN is a
data augmentation technique specifically applied on tabular data. It would be applicable to
a variety of manufacturing applications where the available experimental dataset is limited,
such as for the prediction of MRR, surface roughness, tool wear rate, etc.

Figure 1 shows the flow chart of the proposed methodology. In this paper, as shown in
Figure 1, the first section is about the FEMTO bearing dataset. The second section is about
the preprocessing of the data, where a health assessment is carried out to identify bearing
degradation. The second part of section two is about discrete wavelet transform (DWT) and
the selection of the base wavelet using mutual information (MI). The next part of section
two is about making artificial data using a tabular generative neural network (TGAN).
The last parts of section two are about the extraction of time–domain statistical features
calculated on both the real data as well as on artificial data, followed by a short description
of machine learning models. In the seventh section, bearing degradation is estimated using
the machine learning models, followed by the last section of the conclusion.
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2. Materials and Method
2.1. Dataset

The FEMTO bearing dataset of prognostic and health management (PHM)’s IEEE chal-
lenge 2012, provided by the National Aeronautics and Space Administration (NASA) [27],
is used. Figure 2 is an experimental setup of PRONOSTIA, used to test and validate the
bearing’s fault detection and prognostics.

Table 1 shows the FEMTO bearing dataset generated by PRONOSTIA, which has
acceleration values collected at a sampling frequency of 25.6 kHz as the data for a total
of seventeen bearings, of which, seven were in condition 1 and 2, while three were in
condition 3. In this study, the vibration data of six bearings operated at the radial load of
4000 N and 1800 rpm is used. Figure 3 shows the plot of the vibration signal against time
for bearing 11 and bearing 13.

2.2. Health Assessment

In this study, the complete bearing life was first divided into two health stages; the
first was the normal degradation stage, while the second was the fast degradation stage,
as shown in Figure 4 for all the bearing conditions, using a criterion, namely, singular
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value decomposition (SVD) normalized correlation coefficients, as proposed by Wentao
Mao et al. [18]. The equation used to calculate the SVD normalized coefficient is

SVDj =
∑

q
i=1 xiyi√

∑
q
i=1 x2

i ∑
q
i=1 y2

i

where x and y are the singular value vectors of the signal and j = 1 . . . N, q represents the
length of singular value vectors.
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Table 1. FEMTO bearing dataset [27].

Operating Condition

Condition 1 Condition 2 Condition 3

Radial load (N) 4000 4200 5000

Speed (RPM) 1800 1650 1500

Dataset

Bearing11 Bearing21 Bearing31

Bearing12 Bearing22 Bearing32

Bearing13 Bearing23 Bearing33

Bearing14 Bearing24

Bearing15 Bearing25

Bearing16 Bearing26

Bearing17 Bearing27

As per Mao et al. [18], normal degradation and fast degradation can be identified on
the basis of the correlation coefficient. If the correlation coefficient value lies consistently
below 0.95, then it can be considered as being the bearing fast degradation state. The idea
is to use the robustness of SVD, as with change, the correlation coefficient of SVD for the
normal stage is comparatively higher than the correlation coefficient of SVD for the faulty
stage. SVD also takes into account the noise, and minor deviations to the health assessment
as the change in its value will be slight if the deviation is small, and if the signal varies
greatly, it will show a large amount of change in its values. Thus, Wentao Mao et al. [18]
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concluded that the singular value decomposition (SVD) normalized correlation coefficient
can be used to accurately find the change in a bearing’s health state when the vibration
signal varies drastically.
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2.3. Tabular Generative Adversarial Networks

Machine learning algorithms require ample, adequate and reliable data, especially
for unconventional and intricate applications performed by complex techniques [28,29].
For this study, collecting an ample amount of data was a major challenge, as collecting
vibration data for the different parameters for different types of faults/defects is very
time-consuming, costly and laborious. In recent years, GAN, i.e., generative adversarial
networks, which were first developed by Goodfellow et al. [30], became a very popular
and effective deep learning algorithm to generate feasible “fake data” from original data.
Two neural networks, generator and discriminator, compete with each other in a min–max
game, where the discriminator tries to identify the difference between the original data
and the artificial data, while the generator tries to generate the artificial data in such a
way that discriminator does not distinguish between the data. GANs are widely used to
generate realistic and high-quality images in the field of computer vision. Various GANs
such as the least squares GAN (LSGAN) [31], Wasserstein GAN (WGAN) [32], conditional
GAN (CGAN) [33], information maximizing GAN (InfoGAN) [34], auxiliary classifier GAN
(AC-GAN) [35], semi-supervised GAN (SGAN) [36], and tabular GANs (TGAN) [37] were
developed and used for specific tasks, including fault detection, fraud detection, improving
healthcare and improving cybersecurity [38]. In this study, tabular generative adversarial
networks (TGAN), developed by Lei Xu and Kalyan Veeramachaneni [37], used a single
table consisting of numerical as well as categorical variables to find the data distribution, to
generate “fake data.” The synthetic table, Tsynth, consists of continuous variables (C1, C2, C3
. . . . . . . . . , Cnr) with multinomial discrete random variables (Dmr1, Dmr2, Dmr3 . . . . . . . . . ,
Dnr) and should follow a joint probability distribution and be sampled independently. The
goal was to develop a generative model G (P C1, P Dmr1) such that the sample generated
represented a synthetic table Tsynth which essentially resembled the original table, with
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slight variations. In this study, the authors have used 100 hidden units and 100 hidden
layers to characterize LSTM cells.
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As observed in Figure 5, the generator was developed using a long short-term memory
(LSTM) neural network with a hidden vector xt = tanh(Vtki), where ki was the output of
LSTM and Vt was the learned parameter in the network. The input to the LSTM was the
random noise z, the hidden vector x and the weight vector y. The output was calculated as
ai = bi = ci = softmax(Vtxt) for discrete variables. A cross-entropy loss, along with KL
divergence, was used as a loss function. For the discriminator, a multi-layer perceptron
(MLP), an n-layer fully connected neural network, was used, and a1:n, b1:n and c1:n were fed
in a concatenated manner. The first layer and the ith layer were calculated as,

x1 = LeakyReLU
(

BN
(

V(C)
1 (a1:n ⊕ b1:n ⊕ c1:n)

))
(1)

xi = LeakyReLU
(

BN
(

V(C)
i

(
x(C)i−1 ⊕ diversity

(
x(C)i−1

))))
, i = 2 : n (2)
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where ⊕ is the concatenation operator, diversity is the mini-batch discrimination vector,
BN is batch normalization, and Leaky ReLU is the activation function. A conventional
cross-entropy loss was used as a loss function. In this study, the artificial coefficients of the
DWT were generated using TGAN.
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2.4. Feature Extraction

Non-linearity is generally observed when a vibration signal is captured using the
sensors from a bearing, as noise can be generated either due to surrounding environmental
conditions or by faults in the bearing itself. Thus, it becomes very important to select
appropriate signal processing techniques to extract useful information (features) about the
health stage of the bearing. Three types of features can be extracted from captured vibration
signals; time–domain features, frequency–domain features and time–frequency–domain
features. Time–domain statistical features are extracted from the time waveforms of the
captured vibration signals of the bearing [39–41]. In the current study, 13 time–domain
statistical features including the mean, sum and skewness, were calculated from original
db1 wavelet coefficients and the coefficients generated by TGAN. The equations used to
calculate the feature vectors are shown in Table 2.

2.5. Machine Learning Models
2.5.1. Ensemble Bagged Trees

Ensemble methods utilize the combination of several decision trees so as to obtain
better predictions, as compared to single tree classifiers. The core idea behind the building
of an ensemble model is that a set of weak learners join together to become a strong learner.
As a result, we have a collection of various models and the average of all predictions from
various trees is utilized, which is more reliable than a single decision tree classifier. In EBT,
bagging is applied to minimize the variance in the decision tree classifier. There are N
readings and F features in a feature vector, and a subset of M features are selected, and the
feature which gives the best split is chosen to split the nodes iteratively. The procedure is
repeated N times, and a prediction is made based on the sum of predictions from N trees.
In Figure 6, the color represents the various extracted features applied for training, testing
and cross-validation of ML models.
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Table 2. Equations of Statistical Time-Domain Features.

Name Description Formula

Mean The average value of
the vibration signal xm = 1

K ∗
K
∑

k=1
x(k) (3)

Standard Deviation
Deviation from the
mean value of the
vibration signal

xstd =√
∑K

k=1(x(k)−xm)
2

(K−1)

(4)

Variance Square of standard
deviation xvar =

∑K
k=1(x(k)−xm)

2

(K−1)
(5)

Sum Sum of signal Sum =
K
∑

k=1
x(k) (6)

Skewness A measure of lack of
symmetry xskew = ∑K

k=1(x(k)−xm)
3

(K−1) ∗ x3
std

(7)

Kurtosis

A measure of the
spikiness of the signal
relative to a normal

distribution

xkurt =
∑K

k=1(x(k)−xm)
4

(K−1) ∗ x4
std

(8)

Root Mean Square
(RMS)

The square root of the
mean of squares of

a signal
xrms =

K
∑

k=1

(x(k))2

K
(9)

Peak to Peak Value

Difference between
maximum and

minimum
peak values

xppv = xmax − xmin (10)

Maximum Amplitude
Value of the

maximum amplitude
of the signal

xmax = max(x(k)) (11)

Minimum Amplitude
Value of the

minimum amplitude
of the signal

xmin = min(x(k)) (12)

Crest Factor The ratio of peak
value to RMS value xCF = xmax

xrms
(13)

Shape Factor The ratio of RMS
value and mean-value xSF = xrms

xm
(14)

Impulse Factor The ratio of max
value and mean value xIF = xmax

xm
(15)

2.5.2. Squared Exponential Gaussian Processes Regression (SEGPR)

This method is one of the supervised learning algorithms specifically designed to solve
the regression problem. Usually, the calculation of the probability distribution is carried
on a specific function, but in Gaussian processes regression, the probability distribution is
calculated by fitting the data over all the functions. In this study, the squared exponential
kernel (exponentiated quadratic or radial basis function) was used with Gaussian processes
regression as it is infinitely differentiable, which states that if used as a covariance function,
then it will be very smooth as it includes mean square derivatives of all orders [42,43]. It is
based on equations such as

s
(
ui, uj

)
= σ2

stde
[− 1

2
‖ui−uj‖

2

σ2
lc

]
(16)

where σlc is the characteristic length scale, σstd is the standard deviation of the signal and
ui, and uj denotes the value of the signal at location i and j.
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3. Results and Discussions

Features extracted using the wavelet transform are very useful in detecting abrupt
variations in the captured vibration signals. Due to the development and vast availability
of the several base functions of the wavelet, it is advantageous to use them to identify the
degradation of the bearing [40]. It is very important to select the appropriate base function
to extract features of the captured vibration signals [44]. Discrete wavelet transform is
performed as it is one of the best tools for signal analysis and signal processing, such as
noise reduction and data compression. A technique known as mutual information (MI) [45],
which measures the dependency between two variables, was used in this study to select
the appropriate base function for DWT-based feature extraction. Mutual information (MI)
measures the dependency between two variables, which is given by the equation

MI·(X;Y) = E(X) − CE(X|Y) (17)

where MI·(X;Y) is the mutual information for X and Y, E(X) is the entropy for X and CE
(X|Y) is the conditional entropy for X given Y, and X and Y are the variables.

A function is selected as a base function when MI shows the maximum amount of
dependency. In this study, the base functions of wavelets compared were Daubechies
(db1), Symlet (sym2), Coiflet (coif1), and reverse Biorthogonal (rbio1.1). All six bearings
were considered at a speed of 1800 rpm and a load of 4000 N to select the base function
of the wavelet. It is clear from Figure 7 that Daubechies (db1) shows the highest MI as
compared to other wavelets functions, and was therefore selected to calculate DWT-based
statistical features.

Availability of experimental data is critical for building machine-learning-based degra-
dation models to better understand the non-linear connection between various extracted
statistical features. Considering the availability of small size datasets, the small amount of
data provided for testing raises concerns about the effectiveness of ML models accuracy,
therefore, the authors have proposed a novel architecture: a tabular generative adversarial
network (TGAN) for enhancing the dataset, which in turn can be useful for improving
accuracy, robustness, and generalisation capabilities for future experimental data which
is previously unknown to the developed model. Figure 8 shows the sample root mean
square value between real and artificial data generated through TGAN. It can be observed
that there were very slight variations in the RMS values between actual experimental data
and the generated data. Furthermore, this shows the utility of generated features through
TGAN, and Table 3 compares the statistical properties of the actual features to those of
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the generated features. As can be seen from Table 3, there were slight deviations in the
statistical parameters for the real features and generated features.
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Figure 7. Wavelet selection based on mutual information.

In the current study, two ML models were used to evaluate the degradation of six
bearings conditions. Initially, training was executed using the real and generated feature
vectors, and afterwards, five-fold cross-validation, ten-fold cross-validation and fifteen-
fold cross-validation were performed on ML models. Cross-validation is a resampling
procedure which is used to evaluate machine learning models, so that bias and overfitting
can be avoided and generalization capability can be improved. In five-fold cross-validation,
datasets are first divided in to five equal parts, and for the first fold, one part is used for
testing and the other four parts are used for training. In the second fold, two parts are
used for testing and three parts are used for training. The procedure repeats for the rest
of the portions and the predictions are generated after averaging all folds. In the present
study, for five-fold, ten-fold and fifteen-fold cross-validation, mean RMSE and MAE were
computed after applying EBT and SEGPR models.

Two performance metrics, the root mean square error (RMSE) and mean absolute error
(MAE), are considered to evaluate the performance of ML models for the predictions of
bearing degradation. Performance metrics were calculated as follows:

3.1. Mean Absolute Error (MAE)

The World Bankreflects the average deviation obtained from the differences between
the experimental/calculated values and the predicted values [41]. It is represented by
the equation:

MAE =
1
N

N

∑
i=0
|ŷi − y| (18)

where ŷi represents the predicted values obtained using ML models, while y shows the
experimental/calculated values.
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3.2. Root Mean Square Error (MAE)

RMSE is the square root of the mean of the squared difference between the experimen-
tal/calculated values and the predicted values. It is a significant parameter widely used to
evaluate the performance of regressions model and is represented mathematically as:

RMSE =

√√√√ 1
N

N

∑
i=0

(ŷi − y)2 (19)

where ŷi represents the predicted values obtained using ML models, while y shows the
experimental/calculated values.
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Table 3. Cont.

Mean Mean Std Std Var Var RMS RMS

Original
Features

Generated
Features

Original
Features

Generated
Features

Original
Features

Generated
Features

Original
Features

Generated
Features

Mean 9.084 8.854 1.467 1.384 6.672 6.445 4.539 4.586
Std 4.088 3.475 0.085 0.076 1.168 1.075 0.713 0.816
Min 3.292 2.745 1.269 1.148 4.189 4.096 3.191 3.091
25 6.293 6.110 1.413 1.388 5.957 5.348 4.043 4.055
50 7.888 7.550 1.463 1.446 6.571 6.412 4.388 4.281
75 10.742 10.314 1.529 1.498 7.525 7.539 5.047 4.889
Max 25.546 250.546 1.700 1.622 10.024 10.024 6.331 5.996

In this study, bearing degradation was predicted using two machine learning algo-
rithms; namely, ensemble bagged tree (EBT) and squared exponential Gaussian processes
regression (SEGPR), for the features extracted through actual experimental data and the
artificial data generated by TGAN. It was observed that the feature vector was randomly
split into training and testing. To avoid bias as well as to minimize misclassification er-
rors, the authors have implemented k-fold cross-validation techniques. RMSE and MAE
have been calculated after applying five-fold cross-validation, ten-fold cross-validation
and fifteen-fold cross-validation procedures in ML models. Figure 9a–c shows the RMSE
obtained when EBT and SEGPR models are applied with five-fold cross-validation, ten-fold
cross-validation and fifteen-fold cross-validation procedures, respectively. From Figure 9a,
it can be seen that the performance of the SEGPR model was better than the EBT model,
as the average RMSE value for all the bearing degradation conditions, as well as original
and generated data, was 0.0046, as compared to 0.0047 with the EBT model. Figure 9b
represents the average RMSE value obtained after applying EBT and SEGPR models with
ten-fold cross-validation. The average RMSE value obtained after applying ML models
were 0.0047 and 0.0048 with SEGPR and EBT models, respectively. Similarly, the average
RMSE value obtained after applying ML models were 0.0045 and 0.0047 with SEGPR and
EBT models, respectively. Figure 9c shows when a fifteen-fold cross validation procedure
was applied. It can be seen that the SEGPR model predicted bearing degradation better
than the EBT model with original and generated bearing degradation data, as well as for
all cross-validation conditions.
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To justify the utility of the proposed methodology, MAE values were calculated and
plotted, which can be observed in Figure 10a–c. From Figure 10a, it can be seen that the
performance of the SEGPR model was better than the EBT model, as the average MAE
value for all the bearing degradation conditions, as well as original and generated data, was
0.0038, as compared to 0.0039 with the EBT model. Figure 10b represents the average MAE
value obtained after applying the EBT and SEGPR models with ten-fold cross-validation.
The average MAE values obtained after applying ML models were 0.0039 and 0.0040 with
SEGPR and EBT models, respectively. Similarly, the average MAE values obtained after
applying ML models were 0.0037 and 0.0039 with SEGPR and EBT models, respectively.
Figure 10c shows when a fifteen-fold cross validation procedure was applied. It can be
seen that, once again, the SEGPR model predicted bearing degradation better than the
EBT model, based on MAE performance metrics. It should be noted that all the RMSE and
MAE values were very small and were under the permissible limit of industry and research
conditions. One of the reasons for the better performance of the SEGPR model is that the
kernel function squared exponential is infinitely differentiable, which generates a smooth
curve, which enables the easy fitting of the data. To verify the effectiveness of the proposed
methodology, a comparison table with the previously published literature, Table 4, was
prepared, in which different authors have used the same bearing degradation dataset. It
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can be seen that with smaller datasets, the prediction results are comparatively better than
when TGAN is utilized with wavelet transform and the SEGPR model.
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Table 4. A comparative study between current work and previously published papers to predict
bearing degradation using different ML models.

References Model Dataset MAE RMSE

Xiang Li et al. [15] CNN 17 19.65882 23.61765

Wentao Mao et al. [18] CNN + LSTM 4 - 80

David Verstraete
et al. [25]

Adversarial–
Variational

Model
3 - 8.173333

Xiang Li et al. [26] GAN + CNN 17 - 34.05882

Jehn-Ruey Jiang
et al. [46]

TSMC + CNN +
ALSTM - 0.0186 0.0268

Qiming Niu et al. [47] NARX 6 1.60 2.94

Proposed TGAN + SEGPR 6
0.00225 (Real) 0.00285 (Real)

0.00529
(Artificial)

0.00629
(Artificial)

4. Conclusions

In the current study, the bearing degradation of six bearings computed from original
data and artificial data generated using TGAN has been predicted using two machine
learning models: ensemble bagged tree (EBT) and squared exponential Gaussian processes
regression (SEGPR). Initially, the raw vibration signals were captured and pre-processed
using the selected DWT functions based on the MI criterion. Thirteen statistical features
were calculated, and to demonstrate the utility of TGAN for degradation prediction, an
artificial feature vector was generated. After applying two ML models with five-, ten- and
fifteen-fold cross-validation, observations were as follows:

1. The effectiveness of ML models was assessed with two standard performance metrics:
RMSE and MAE. Least errors have been observed to predict bearing degradation from
both the EBT and SEGPR models.

2. The lowest RMSE value of 0.0045 was observed with the SEGPR model when fifteen-
fold cross-validation was implemented, whereas with the EBT model, the lowest
RMSE was observed as 0.0047 when five-fold cross-validation was implemented.

3. With the SEGPR model, the lowest MAE value observed was 0.0037 when fifteen-fold
cross-validation was implemented, whereas with the EBT model, the lowest MAE
was observed as 0.0038 with five-fold cross-validation.

4. The methodology developed based on hybrid TGAN–SEGPR, which is least explored
for bearing degradation, can be useful to various applications including fault diagno-
sis, fault severity, and manufacturing parameter assessments, when the availability of
experimental data is limited, which makes difficult to develop ML models.

Authors expect that the additional data generated through TGAN will be extremely
useful in a variety of interdisciplinary applications, for classification, as well as regression
analysis, with ML models.

Author Contributions: Conceptualization, K.B., V.V. and J.V.; methodology, K.B., V.V., R.C. and J.V.;
software, V.V.; validation, D.Y.P., K.G. and V.V.; formal analysis, V.V., J.V. and R.C.; investigation,
K.B., V.V., D.Y.P., K.G. and J.V.; resources, V.V. and R.C.; data curation, V.V.; writing—original draft
preparation, K.B., V.V. and R.C.; writing—review and editing, J.V., D.Y.P. and K.G.; visualization, V.V.;
supervision, V.V. and J.V. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Machines 2022, 10, 176 16 of 18

Data Availability Statement: Data presented in this study are available in this article.

Acknowledgments: We would like to thank Patrick Nectoux and his colleagues for conducting the
experiments at the FEMTO Institute, and the National Aeronautics and Space Administration (NASA)
for providing the dataset.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

PHM Prognostics and Health Management
MI Mutual Information
RUL Remaining Useful Life
CNN Convolution Neural Network
DWT Discrete Wavelet Transform
GAN Generative Neural Network
TGAN Tabular Generative Neural Network
BN Batch Normalization
NASA National Aeronautics and Space Administration
SVD Singular Value Decomposition
db Daubechies Wavelet
sym Symlet Wavelet
coif Coiflet Wavelet
rbio Reverse Biorthogonal Wavelet
LSTM Long Short-Term Memory
MLP Multi-Layer Perceptron
ML Machine Learning
EBT Ensemble Bagged Trees
SEGPR Squared Exponential Gaussian Processes Regression
RMSE Root Mean Square Error
MAE Mean Absolute Error
KL Kullback–Leibler

Notation

xt Hidden Vector
ki Output of LSTM, k = a, b, c
K Total number of samples
k Current sample
j 1 . . . N, q represent the length of singular value vectors
x(k) Value of current sample
s(ui,uj) Output of squared exponential kernel function
ui Value of signal at location i
uj Value of signal at location j
Vt Learned parameter in the network
diversity Mini-batch discrimination vector
xm Mean
xstd Standard deviation
xvar Variance
xskew Skewness
xkurt Kurtosis
xrms Root mean square
xppv Peak to peak value
xmax Maximum amplitude
xmin Minimum amplitude
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xIF Impulse factor
xCF Crest factor
xSF Shape factor
y Weight vector
z Random noise
⊕ Concatenation operator
σlc Characteristic length scale
σstd Standard deviation of the signal
Tsynth Synthetic table
C1, C2, C3 . . . , Cnr Continuous variable
Dmr1, Dmr2, Dmr3 . . . . . . , Dnr Multinomial discrete random variables
x, y Singular value vectors of the signal
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