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Abstract: The impact of the illumination level on the quantitative indicators of mechanical damage
of the rolled strip is investigated. To do so, a physical model experiment was conducted in the
laboratory. The obtained images of defects at light levels in the range of 2-800 1x were recognized by
a neural network model based on the U-net architecture with a decoder based on ResNet152. Two
levels of illumination were identified, at which the total area of recognized defects increased: 50 1x
and 300 Ix. A quantitative assessment of the overall accuracy of defect recognition was conducted
on the basis of comparison with data from images marked by an expert. The best recognition result
(with Dice similarity coefficient DSC = 0.89) was obtained for the illumination of 300 Ix. At lower light
levels (less than 200 Ix), some of the damage remained unrecognized. At high light levels (higher
than 500 Ix), a decrease in DSC was observed, mainly due to the fact that the surface objects are better
visible and the recognized fragments become wider. In addition, more false-positives fragments
were recognized. The obtained results are valuable for further adjustment of industrial systems for
diagnosing technological defects on rolled metal strips.

Keywords: surface defects detection; visual inspection technology; image segmentation; defects
assessment; strip surface; metallurgy

1. Introduction

Metallurgy is one of the high-tech industries where optical and digital control methods
for the rolled metal are actively developing. Computer image analysis has become the
main tool of technical diagnostic systems, which can significantly improve the rolled
metal quality [1-3]. At present, metallurgical plants use optoelectronic systems based
on the analysis of local areas of the rolled strip surface. However, such systems are
limited in understanding the propagation mechanisms of many damages, which can be
inherent in the equipment installed at a particular facility only [4,5]. Under such conditions,
diagnostically important indicators are those that provide for the defect type assessment
based on quantitative statistical parameters, such as the area, curvature, tortuosity, etc.
In addition, stringent requirements are placed on modern systems in terms of reliability;,
accuracy, image processing speed, etc. [6,7]. The existing software systems for analyzing
rolled metal require us to further develop and refine software that measures a full set of
diagnostic defect signs and establishes the reasons for their occurrence [8,9]. Typically, such
systems include image recording tools, band diagnostic information, and most common
tools for image pre-processing, quality improvement, and image labeling.

Previous works [10,11] were focused on deep residual neural networks applied in
order to detect and classify the defect types found on the rolled metal surface. A classifier

Machines 2022, 10, 194. https:/ /doi.org/10.3390/machines10030194

https:/ /www.mdpi.com/journal/machines


https://doi.org/10.3390/machines10030194
https://doi.org/10.3390/machines10030194
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-3001-0512
https://doi.org/10.3390/machines10030194
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10030194?type=check_update&version=2

Machines 2022, 10, 194

20f12

for recognizing defects of three classes was constructed on the basis of the ResNet152 neural
network. Most images were taken from a dataset provided in 2019 by Severstal Russian
Public Company as part of the international Kaggle competition. A total of 14,830 images
of steel surfaces, both undamaged and damaged, were selected. A sample for studying
the neural network classifier was formed using photographs of rolled metal surfaces that
contain various kinds of damage.

The proposed technique makes it possible to recognize and classify surface damage by
its image in real-time with high accuracy. The average binary accuracy of the classification
based on the test data is 97.3%. Neuron activation fields were studied in the convolutional
layers of the model. The areas corresponding to the image areas with damage were shown
to be activated. False-positive and false-negative cases of the classifier application have
been studied. Errors were found to occur most frequently in ambiguous situations when
surface artifacts of different types are similar to each other.

It is noteworthy that increasingly tougher demands placed on diagnostic equipment of
metallurgical plants necessitate using new strip lighting tools and image recording cameras.
Modern defectometric control systems are based on the analysis of gray-scale strip surface
images of different intensities [12]. The reflected light is captured by the camera sensor
and creates an image of the defective surface. Therefore, the content and accuracy of such
systems depend both on the analyzed surfaces” ability to reflect light (which may differ
even within one batch of rolled metal) and on the lighting system. Lighting is one of
the determining factors that impact the result of the digital image recognition of metal
surfaces. Creating optimal lighting conditions is a complex technical task, which is part
of the general problem consisting in improving the accuracy of systems for identifying
technological defects in rolled metal. In addition to theoretical calculations, the creation
of the optimal lighting conditions requires direct experiments [13,14]. Front lighting is
commonly used in practice, which provides for uniform light distribution and a small
number of shadows or illuminated areas [1,2]. This type of lighting has proven itself well
for surfaces with significant reflectivity. However, using such lighting for metal strips with
a rough surface may lead to images with blurred defect edges or low contrast between the
surface and the defect [15,16].

The detection of defects on metal surfaces is an important task that allows effective
quality control and ensures the safe use of metal constructions. The recognition of digital
images of metal surfaces using neural networks allows locating defects with sufficient accu-
racy and calculate their quantitative parameters (area, size, orientation, etc.). Quantitative
parameters of damage allow automatically assessing the condition of the surface, excluding
the subjective factor of the operator. However, lighting conditions affect both the accuracy
of defect identification and the value of the obtained quantitative parameters of damage.
Therefore, it is important to investigate the variance of the values of quantitative parameters
obtained for the same surface at different light levels. It is also important to provide the
optimal lighting range for defect recognition. The aim of our study is to investigate the
change in the quantitative characteristics of damage when changing lighting, as well as to
choose the optimal value of illumination, at which the recognition accuracy is the best.

2. Research Methodology

To study the impact of the lighting intensity on defect recognition, a metal plate
with scratch-like defects was photographed in laboratory conditions under regulated and
controlled lighting [17]. The scheme of the experimental setup for obtaining images of the
damaged metal surface is shown in Figure 1. The test was performed by the “light field
method”, which is widely used for analyzing the surface, etched metal sections, biological
tissues, and various minerals. During the analysis, the surface of the metal strip divided
into sections was lit from above. Since different parts of the metal strip reflect the light
falling on them differently, the reflected rays have different intensities [18]. Owing to this,
the image was obtained. Under the proposed lighting scheme, the camera receives most
of the reflected light. This is the so-called “light field” analysis. The directed lighting is
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almost perpendicular to the metal surface under study. Under such shooting conditions,
the surface is bright gray, and the defects are clearly visible.

Figure 1. The scheme of obtaining images in areas of the metal strip (I-IV) with damage: 1—lamp;
2—camera; 3—metal strip with damage; L is a light meter.

The metal strip with defects pre-applied onto its surface was divided into several
zones (I-1V). A Nikon D5600 camera was used to capture images of these areas. A 60-watt
incandescent lamp was used to light the metal plate. During image acquisition, the light
brightness was adjusted and controlled by a light meter that remained stationary. Pho-
tographs of all areas were obtained at a fixed point of shooting, as shown in Figure 1 for
zone II. This made the shooting conditions identical and allowed us to compare images
both within one area and between different areas. Images were obtained at light levels of 2,
50, 100, 200, 300, 400, 500, 600, 700, and 800 Ix. Figure 2 shows examples of images obtained
at different light levels.

(a)

(b) () (d)

Figure 2. Images of damage in zones I (a,b) and II (c,d) at two light levels: 2 Ix (a,c) and 600 1x (b,d).

3. Image Recognition Using Convolutional Neural Network

A deep convolutional neural network model based on the U-net architecture with a
decoder based on ResNet152 was used to recognize damage [11]. The model was trained
on rolled metal surface images provided by Severstal steel company as part of the Analytics
and Modeling Competition organized on the Kaggle platform in 2019. From the array of
images, we selected those that correspond to the scratch-like defects analyzed.

The U-net neural network was developed in 2015 for the processing of medical images.
Its architecture results from the development and improvement of conventional convolu-
tional neural networks. As regards defectometry tasks, we need to classify images into
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those that contain defects and those that do not contain them. Damage location should be
precise in this case. Apart from improving the product quality control, this will make it
possible to calculate the quantitative characteristics of damage (area, direction, etc.). This,
in turn, will give us a better understanding of the damage’s nature and allow us to develop
steps to eliminate it. The U-net neural network provides for the semantic segmentation of
the image, in which each pixel is classified as belonging to either a damaged or undamaged
area. In this case, the input and output images have the same size.

The U-net architecture consists of an encoder that detects feature maps inherent
in the damage of interest and a decoder that projects those areas that best match the
discovered features to the original image (Figure 3). The encoder contains five stages.
Each stage contains sequentially connected convolutional layers, and batch normalization
is performed using these layers. The decoder also contains five stages, each of which is
connected to the outputs of the corresponding encoder stages and performs upsampling
and generalization of its feature maps. The original layer of the neural network has a shape
of 256 x 256 neurons with a sigmoid activation function. This makes it possible to obtain
values on the output layer’s neurons in the range from 0 to 1, which reflects the degree of
reliability with which the model recognizes the corresponding pixel as part of the damage.

Input image 256x256
Segmented map 256x256

Encoder | ' Decoder

Figure 3. General architecture of the U-net-based segmentation model.

The model of semantic segmentation developed and trained in the course of previous
research was used [10,11]. The Dice similarity coefficient (DSC) is used to assess the
segmentation quality. The Dice coefficient shows the area of overlap versus the actual area
of the object recognized in a percentage:

2‘ Yirue N Y prea

DSC = 1)

|Ytrue| + ‘Ypred

where Y}, represents a set of pixels of the actual damage object according to the marking,
and Y4 represents the set of pixels of the recognized object after segmentation.

When recognizing images from the test sample, the model demonstrated the Dice
coefficient of 0.93. An image of 256 x 256 pixels was fed to the neural network’s input. The
neural network was trained using the SGD (Stochastic Gradient Descent) optimizer and
binary cross-entropy loss function.

The damage recognition model is implemented in Python 3.8 using the TensorFlow
and Keras libraries, version 2.6.0. An OpenCV library developed by Intel was used to work
with images. It contains convenient tools for processing and analyzing image content.

Figure 4 shows the general sequence of operations used when recognizing defects
with a neural network. Only images of 256 x 256 pixels can be fed to the input of the
neural network. Nevertheless, images of the metal surface can be of any size. Therefore, to
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Input
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recognize the entire surface, fragments were cut from the input image so that they cover its
entire area. To this end, we used a sliding window of 256 x 256 pixels, which was moved
with a certain fixed step (equal to 23 of the window width) along the horizontal axis first,
and after reaching the edge of the image, along the vertical axis. Since image recognition
often results in edge effects that account for a poor recognition accuracy near edges, the
fragments were cut so that they overlap. Thus, a tensor with fragments was built for the
input image, which was then fed to the input of the neural network for recognition.

Slidi ind :
iding window CNN U-net Output .
rg tensor i
Mom——— ] |t ol I1= N :
) | (il [) =-m
W)l e e P Li
- Csv o
Preparation of input Predicted Parameters
tensor for CNN Semantic segmentation image  Thresholding calculation

Figure 4. The general sequence of operations in the recognition of defects using the neural network
in the image of any shape.

After recognizing a set of fragments in the input image using a neural network model,
a set of fragments is obtained at its output, in which each fragment recognized corresponds
to the input fragment. To obtain a picture of the damage caused to the original image, it
must be synthesized from the fragments recognized by folding (and superimposing) in the
correct order. The pixels of the overlapping image fragments will have different intensity
values. Therefore, two strategies were used and investigated that provide for the synthesis
of the general image with damage:

e  Averaging. When superimposing two fragments, the pixel intensity is calculated as
the arithmetic mean. This is consistent with the hypothesis that both fragments are
considered equally accurate in recognition. Then, the initial value will be averaged
from the two obtained ones;

e  Choosing max. In this case, for a pixel in the fragment overlay area, the maximum
value of intensity is selected from the values obtained for two corresponding pixel
fragments. This is consistent with the hypothesis that if one of the models is more
confident of damage, then it is “right”.

It was found by experiment that the max-method works better for the images ana-
lyzed. It eliminates edge effects, which are mainly manifested in such a way that some
defects from the fragment edges are almost unrecognizable. Therefore, all subsequent
studies were performed using the max-method, which was applied to the synthesis of
images recognized.

An example of the initial image of the damaged surface and the final synthesized
image is shown in Figure 5a,b. As is seen, different areas of damage recognized have
uneven brightness. Moreover, brighter areas correspond to damage, which is classified by
the neural network as belonging more to the set of features it has formed. Therefore, with
some approximation, such areas can be considered as belonging to damage with a greater
degree of reliability.
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(a)

(b) (c)

Figure 5. Initial (a), recognized and synthesized (b), and binary (c) surface image at 50 Ix.

4. Quantitative Parameters of Damage

In order to objectively quantify the surface with damage, it is important to obtain
numerical indicators that characterize the type of existing damage. Individual objects
(combined groups of pixels) recognized by the model represent fragments of surface
defects. In order to identify and differentiate the defect types, their geometric parameters
were determined, which describe the features of each damage fragment found.

First of all, the area was defined as the basic parameter that characterizes the damage
size. To calculate other parameters, we used the “equivalent” ellipse approach (Figure 6)
proposed by the authors of [10,19-22]. The equivalent ellipse has a second moment equal
to the moment of the defect recognized. This approach is simplistic and does not always
describe the morphology of random defects. However, it is effective for defects of the
classes considered.

Figure 6. Defect, equivalent ellipse, and its parameters.
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We assume that (x;, ;) € F is the set of pixels that make up the object. The area of
damage was calculated as the total number of pixels in the F set:

a = len(F) 2)
The center of mass coordinates for the individual damage were calculated by the formulas:

v — LE%i _ LrYi
© " len(F)’ Ye len(F)

®)

The equivalent diameter was calculated as the circle diameter, the area of which is

equal to that of damage:
a
deg = 2, /% 4)

where 4 is the semi-major axis of the equivalent ellipse.

The major axis 2r, of the equivalent ellipse (Figure 6) runs through the object’s cen-
ter of mass (x¢,yc) and has inclination 6 relative to axis x. The orientation 6 may vary
within the range of [—F; 7] and tends to increase in a clockwise manner since axis y is

oriented downwards.

5. Investigating the Influence of Lighting on the Recognition Result

When obtaining the surface image, an important factor that affects the result of defect
recognition is the surface lighting. Therefore, it is important to understand how the
quantitative parameters used to assess surface damage may change while changing lighting.
Figure 7 shows the initial surface images of zone I (Figure 7a) and the damaged area
recognized by the neural network (Figure 7b).

In general, with an increase in the surface lighting, the area of sections recognized as dam-
age increases. The number of damaged fragments found also increases (Figures 7a and 8a).
This is primarily due to small scratches and surface texture elements that become better
visible. In our case, the transition from a very low lighting level (2 1x) to a higher one (50 1x)
is especially noticeable. In the former case, the vertical scratches in the image are not visible
at all, while at 50 1x, most of them are already recognizable. A further increase in lighting
to 800 Ix does not practically contribute to detecting new scratches (except small ones), but
the area of objects already recognized becomes larger upon visual observation.

However, the sensitivity of the neural network used to recognize damage is of special
notice even at very low light levels: all of the most pronounced scratches are well recognized.
Therefore, wherever it is necessary to identify the main, most pronounced damage, low
light may be appropriate. At the same time, the noise level in the image caused by an
increased level of detail with respect to surface formations, which may not represent
damage, is much lower [21,22].

Figure 8 shows quantitative characteristics of the impact caused by the light level on
the recognition level. The area distribution of individual fragments recognized is shown
by box diagrams (Figure 8a). The main rectangles of the box diagrams contain 50% of
the areas of fragments recognized within the interquartile range IQR = a75 — a5 (where
azs, ays are the 75th and 25th percentiles, respectively). The analysis of the above box
diagrams showed that most fragments have an area of up to 10 thousand pixels, while
areas larger than 30 thousand pixels have only single fragments. The lines indicate values
within & 1.5 interquartile range, with the upper whisker’s length being limited to the
maximum value from the sample that fell within its range; the lower whisker’s length is
limited by the minimum value from the sample that fell into its length. Values exceeding
1.5-IQR are shown in the figure in circles, they are considered outliers.

Figure 8b shows the dependence of the total area of defects recognized on the light
level. There are two jumps in the total area, which occur when increasing the light level to
50 Ix and 300 lx, respectively. With the light level of 300 Ix and higher, relative stabilization
of the total area of damage recognized is noticeable.
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(b)

Figure 7. Initial images of zone I (a) and images detected on them (b) at light levels of 2, 50, 100, 500,
and 800 Ix, respectively.

Filled_Area by Illumination Statistics Total Area of Detected Defects
] Area
80,000
300,000
60,000 - 250,000
3 200,000
< 8
o' 40,000
2 - 150,000
z .
100,000
20,000 4
EEEppllpy
04!...__....—-—-—— B
2 S0 100 200 300 400 500 600 700 800 2 50 100 200 300 400 500 600 700 800
lllumination , lllumination
(a) (b)

Figure 8. Diagram of damage fragments area distribution (a) and their total area (b) at various

lighting; circles—values exceeding 1.5-I1QR.

The lowest scatter of the areas of defects recognized is observed at 2 Ix. This corre-
sponds to a situation where only the most pronounced horizontal damage is found in the
image. At higher light levels, the scatter of areas is greater, which indicates the neural
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network’s ability to recognize both small defects and mergers of individual fragments or
individual defects (for instance, horizontal and vertical bands).

@

@)

®)
4)

©)

The following conclusions can be drawn from the above diagrams:

A simultaneous increase in the number of fragments recognized, their average and
total area with an increase in the light level to 50 Ix indicates an enhanced ability of
the neural network to detect defects and their fragments in general;

An increase in the light level to 300 Ix entails an increase in the number of defects
found and their total area, followed by a simultaneous decrease in the average area.
This indicates the next stage of the neural network’s ability to detect new fragments
with a small area. If we consider the total area of defects detected to be stable at light
levels of 300 1x and above, this tendency will continue with light levels increased
to 400 1x;

A decrease in the number of fragments recognized, followed by an increase in their
average area at 500 Ix, indicates “merging” of defects’ fragments or individual defects;
An increase in the light level up to 700 Ix entails an increase in the number of fragments
recognized, followed by a decrease in the average area with a virtually unchanged
total area. This indicates small defects detected by the neural network, which could
not be recognized at a lower light level;

An increase in the light level to 800 Ix entails a slight decrease in the indicator values
(Figure 8a,b), testifying to a decreased sensitivity of the neural network to defects and
their fragments in general.

Distribution diagrams of the damage fragments’ orientation (Figure 9) indicate that at

low light levels, all the fragments detected have an orientation of about 0 radians, which
corresponds to the horizontal axis of the image. At higher light levels, the defect orientation
range occupies almost the entire range, indicating the recognition of both horizontal and
vertical bands, as well as defects of more complex shapes formed by the intersection
of several linear defects of different orientations (T-shaped, L-shaped, etc.). However,
regardless of the light level, the median is always around 0.

Orientation

Orientation by Illumination Statistics

15 4 © © T \'g T ©
1.0 -
0.5 -

) =

o -
}_I
I

0.0 - |- 1 a
-054 © o
O
-1.0 - 8
-1.5 o 8 |

2 50 100 200 300 400 500 600 700 800
lllumination

Figure 9. Orientation distribution diagram at different light levels; circles—outliers (values whose
absolute values exceed 1.5-IQR).

The comparison of the diagrams in Figures 8 and 9 shows that when the lighting

changes, the scatter of values for the parameter “area” is much smaller than the scatter
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of values of the parameter “orientation”. This means that the “area” parameter is much
more stable and can therefore be used to assess the condition of the damaged surface. At
the same time, the “orientation” parameter is less resistant to lighting change, so it may be
additional when assessing the state of damage.

To assess the effect of lighting on the overall accuracy of defect recognition, the results
were compared with the expert data, Figure 10. The Dice similarity coefficient (1) was
used for evaluation. The DSC coefficient shows the degree to which the area of defects
recognized overlaps the area of real defects. Figure 10 shows the dependence of the DSC
defect-recognition metric on the light level. The best result DSC = 0.89 was obtained at
the light level of 300 Ix. A lower DSC with lower light levels means that some defects are
not recognized yet. Since objects become more visible, DSC declines at high light levels,
resulting in wider fragments being recognized. In addition, more small false-positive
fragments appear at high light levels. The dependence of the neural network’s ability to
recognize surface defects on the light level in real-time is shown in Summary Table 1.

0.9

0.8

0.7 \

r T . . T .

0 200 400 600 800
[[lumination, Ix

Figure 10. Dependence of the DSC coefficient on lighting.

Table 1. Summary of quantitative indicators of defect recognition in real-time.

Ilumination Level, I1x

Indicator
(2; 50) (50; 200) (200; 400) (400; 500) (500; 700) (700; 800)
Number of .
. stabilizes
recognized fragments
Average stabilizes » , stabilizes
area
Total stabilizes v stabilizes stabilizes
area
Orientation about 0 radians acquires all possible meanings

Thus, given the current statement of the problem, the process of surface defect recogni-
tion by the neural network at different light levels has a pronounced staged nature (Table 2).
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Table 2. Surface defect recognition stages by the neural network.

Threshold Values of Light Levels Stage Description

<200 Ix

Major, most visible defects or their fragments are recognized.

Major, most visible defects or their fragments of different orientation are

300 1x recognized, as well as most minor defects.
Major, most visible defects or their fragments are recognized, as well as
400 1x . .
practically all minor defects.
Defects of complex geometry formed by merging of several defects of linear
>500 1x shape are recognized. There is a slight decrease in the neural network’s ability to

recognize defects.

6. Conclusions

The influence of the level of surface lighting on the quantitative indicators of defects
recognized by the neural network is investigated. The area of sections recognized as defects
was found to increase under enhanced surface lighting. The number of defect fragments
recognized also increases. This is primarily due to small scratches and surface texture
elements that become better visible. The high sensitivity of the neural network to defects
has been confirmed even at very low light levels: all most pronounced scratches are well
recognized. Therefore, in the case where it is necessary to detect only major damage, it is
admissible to use even low light. At low lighting, the noise level caused by an increased
detalization is much lower.

The recognition results were investigated at light levels of 2, 50, 100, 200, 300, 400,
500, 600, 700, and 800 Ix. Two light levels, at which the total area of defects recognized
increased, were found to be 50 and 300 Ix. A transition from a very low lighting level to
a higher one (50 1x) allows detecting a significant number of major and minor defects on
the surface. At a light level of 300 1x, almost all defects are clearly visible and recognizable.
At a higher light level, the total area of defects recognized becomes relatively stable upon
visual observation. We found that the “area” parameter is much more stable to illuminance
changes than “orientation”, and therefore, it can be used to assess the damaged surface.
The “orientation” parameter is less resistant to lightning change, so it may be used as an
additional parameter when assessing the state of damage.

To assess the effect of lighting on the overall accuracy of defect recognition, the results
obtained were compared with the expert data. The best result with the Dice similarity
coefficient DSC = 0.89 was obtained at the light level of 300 1x. A lower DSC with lower
light levels means that some defects are not recognized yet. A lower DSC with higher
lighting means rising a count of the false-positive fragments.
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