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Abstract: This paper gives a comprehensive comparison among two fault-tolerant axial field modular
flux-switching (AFFSPM) machines with different stator modular segments (U- and E-core) and stator-
slots/pole-pairs combinations. The topologies of two AFFSPM machines are introduced, each with
two feasible stator slots and rotor pole-pairs combinations with high winding factors based on the
slot-conductor back-EMF star vectors theory. Then, the static performance including the air-gap flux
density, flux linkage, back-electromagnetic force (back-EMF), and electromagnetic torque are analyzed
and compared. Moreover, the fault-tolerant capability is then investigated by the torque performance
under one- and two-phase open-circuit conditions in which the corresponding fault-tolerant control
strategies are applied. The predicted results confirm that the 6-stator slot/11-rotor-pole-pair E-core
AFFSPM machine exhibits the best performance of the four candidates.

Keywords: axial field flux-switching permanent magnet (AFFSPM) machine; winding factor; fault
tolerant; rotating field reconstruction

1. Introduction

In recent decades, electrical vehicles (EVs) have become an effective solution for the
energy shortage crisis and decreasing environmental pollution [1]. Traditional interior
permanent magnet (IPM) machines have been widely used in EVs, like the BMW i3, Toyota
Prius, etc. [2–4]. However, the PMs in these vehicles are located at the rotor, where the
intense heat generated by eddy currents is difficult to dissipate. Furthermore, the long end
winding of distributed winding configuration leads to extra copper loss. Both eddy current
loss and copper loss increase the risk of the PM demagnetization. In order to overcome the
potential defections above, a stator-permanent magnet machine called the flux-switching
permanent magnet (FSPM) machine is proposed, in which the PMs are moved to the stator
from the rotor [5]. Due to their high efficiency and robust structure, FSPM machines have
attracted considerable attention, and a great deal of research has been implemented [6–8].
In these models, the PM is located at the stator yoke, which easily dissipates the heat [9].
However, this positioning will also lead to a unipolar PM flux linkage and lower back-
electromotive force (back-EMF). In this paper, a 12 stator slots/10 rotor pole-pairs (12s/10p)
FSPM machine with different winding configurations is analyzed to obtain a bipolar EMF
and larger torque [10,11]. The axial field flux-switching permanent magnet (AFFSPM)
machine is also proposed to make axial length shorter and direct a better torque density
and power density. The AFFSPM machine can be grouped by different stator topologies,
i.e., U-core and E-core stators segments modules. A novel dual rotor U-core AFFSPM
machine is investigated, and the cogging torque is optimized by various shapes of stator
and rotor teeth [12–14]. A fault-tolerant U-core AFFSPM machine with different stator and
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rotor combinations are analyzed to achieve a high winding factor and less eddy current
loss [15]. A hybrid-excited U-core stator axial field flux-switching permanent magnet
machine is also investigated, in which the air-gap field can be easily regulated, and the
mutual inductance is largely reduced [16,17]. Another novel hybrid excitation 6s/10p E-
core AFFSPM machine is studied to realize a wide speed range by flux regulation [18] and a
harmonic field current injection method, and three novel topologies are further investigated
for cogging torque reduction [19]. A 3-D magnetic equivalent circuit network that integrates
the hysteresis model of an axial field flux-switching memory machine is presented to offer
reasonable accuracy with moderate computational effort [20]. Several topologies of a
6s/4p C-core AFFSPM machine with a shifting angle between the stator and rotor are
analyzed for the elimination of second-harmonic component [21]. A comparison between
one stator permanent magnet flux-switching machine and one rotor permanent magnet
flux-switching machine conducted from electromagnetic torque production mechanism
and torque-sizing equation is given in [22]. A multi-tooth FSPM with a pair of magnets
located in the upper apex of the stator tooth on the basis of the conventional 12s/17p FSPM
machine is proposed, and four different rotor teeth combinations are compared and the
results reveal that 6s/17p is the optimal combination [23]. Additionally, an axial field
flux-switching permanent magnet machine and a radial field flux-switching permanent
magnet machine are compared under the same conditions, and the results indicate that
the axial field machine has greater torque in the constant power range [24]. It is important
to note that this investigation is mainly limited by the design and optimization of radial
and axial field FSPM machine with novel structures, as the comparison between different
AFFSPM machines is rarely reported.

It is worth mentioning that the two sets of armature windings in AFFSPM machines
located at both sides of the stator provide a natural physical isolation. This helps a novel
double three-phase armature winding configuration to be derived, which is helpful for
the fault-tolerant operation and gives a better torque performance than the radial field
machine. However, the comparison of the fault-tolerant capability of AFFSPM machines
has not been studied yet. Therefore, a comparative investigation between U- and E-core
AFFSPM machines with different stator slots and rotor pole-pairs combinations will be
given in detail in this paper.

Through the investigation and comparison of the AFFSPM machines with various
topologies, an effective general design guide regarding the stator slots/rotor pole-pairs
combinations, static characteristics and fault-tolerant capability can be obtained. In Sec-
tion 2, the topologies of AFFSPM machines are introduced, and the feasible candidates
with higher winding factor is confirmed by corresponding stator slots/rotor pole-pairs
combinations principles in Section 3. In Section 4, the static characteristics, i.e., air gap flux
distribution, PM flux linkage, back-EMF, winding inductance, and torque performance are
analyzed and compared. In Section 5, the fault-tolerant capability of the machines is evalu-
ated through the torque performance under one- and two-phase open-circuit conditions. In
Section 6, some conclusions of the investigation are summarized.

2. Topologies of AFFSPM Machines

The topology of AFFSPM machines with U- and E-core stator segments are presented
in Figure 1, respectively. The rotor structure is only laminated by iron sheets. The stator is
constituted of stator segments that are sandwiched by circumferentially magnetized PMs
with alternate polarity, which is given in Figure 2. Contrarily to the U-core segments, the
middle-tooth of the E-core segment reduces the number of PMs and stator segments by half
that of the U-core AFFSPM machine. As Figure 3 shows, the open winding configuration is
applied to the machines and each phase is supplied with a H-bridge converter and isolated
from the others, allowing high fault-tolerant capability to be achieved. The armature
windings are wound across the PM and adjacent stator teeth. Therefore, the single layer
concentrated winding is arranged in the E-core AFFSPM machine, and the U-core AFFSPM
machine adopts the double layers concentrated windings. For fair comparison, the key
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geometric parameters, including stator outside diameter, stack length, airgap are kept same,
and the material of PM and iron cores are also identical, as listed in Table 1. It should be
noted that the key dimensions of both AFFSPM machines have already been multi-objective
optimized in the previous investigation to ensure that they carry out the best performance
under the conditions in this paper. The AFFSPM machine can work in both generator
and motor two modes. From a “generator-oriented” perspective, the PM flux linkage
of the individual coil changes periodically as the rotor rotates continually, which can be
explained by flux-switching theory [10,12]. Moreover, magnetic field modulation principle
is reiterated from a motor-oriented perspective [24,25], where it can be found that the
torque is mainly contributed by the dominant harmonics in PM field and armature reaction
field with the same order and rotating speed.
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Figure 1. Topology of two AFFSPM machines. (a) AFFSPM machine with U-core stator segments;
(b) AFFSPM machine with E-core stator segments.
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Figure 2. Configuration of two different modular stator segments. (a) U-core stator segments and
PMs; (b) E-core stator segments and PMs.
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Table 1. Key specifications and dimensions of two axial field flux-switching machines.

Specifications U-Core AFFSPM Machine E-Core AFFSPM Machine

Based speed nb (rpm) 1500
Axial length ha (mm) 67

Air gap length g (mm) 1
Outer diameter Do (mm) 198.4
Inner diameter Di (mm) 109.1 119
Stator teeth arc βst (deg.) 9 7.5

Stator middle teeth βsmt (deg.) 15 –
Rotor teeth arc βrt (deg.) 14.5 12.5
Stator slot arc βrs (deg.) 7.25 7.5
PM width βPM (deg.) 12.5 7.55
PM height hPM (mm) 25.5 21

PM type N38SH
Iron lamination type 50W310

3. Stator Slots and Rotor Pole-Pairs Combination Principles

The different stator modules result in various stator slots and rotor pole-pairs combina-
tion principles of two machines. The stator slots number Ps and rotor pole-pairs number Pr
of U- and E-core AFFSPM machines satisfies the Equations (1) and (2), respectively [11,26].
In order to reduce the iron loss of the machine and switch loss of the controllers, Pr is
usually less than Ps in U-core AFFSPM machines, and less than 2Ps in E-core AFFSPM
machines. The winding factor (kw) of each combination can be calculated based on the
slot-conductor back-EMF star vectors theory. Therefore, there are four feasible candidates
(12/10 U-core, 12/11 U-core, 6/10 E-core, 6/11 E-core) with higher kw, as outlined in Table 2.
However, the performance of the AFFSPM machine can not only be confirmed by winding
factor, and some static performance should also be analyzed for the selected combinations
of Ps/Pr. {

Ps = mNc
Pr = Ps ± k

(1){
Ps = mNc
Pr = 2Ps ± k

(2)

where m is the phase number; Nc is the coils number of the one-phase winding; k = 1, 2, . . .
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Table 2. Combination of Ps and Pr for U- and E-core AFFSPM machine.

Item m Ps Pr kw

U-core AFFSPM machine 3
12 10 0.866
12 11 0.966

E-core AFFSPM machine 3
6 10 0.866
6 11 0.966

4. Static Performance Evaluation
4.1. Air-Gap Flux Density

According to the field modulation principle, the stator-side PMs provide a stationary
permanent magnet magnetomotive force (PM-MMF) modulated by the magnetic perme-
ance model of the salient rotor poles. Furthermore, the stationary MMF can be modulated
into an air-gap magnetic field composed of abundant harmonics. The open-circuit air-gap
flux density and the flux density harmonic distributions of four feasible combinations
are shown in Figure 4. In addition, the curves of air-gap flux density and the harmonic
distribution of four candidates are obtained by finite elements analysis (FEA) methods.
It can be seen that the peak value of air-gap flux density of U-core AFFSPM machine is
a little higher than that of the E-core AFFSPM machine due to the stronger flux-focusing
effect. The flux density harmonic distribution is obtained through the fast Fourier transform
(FFT) analysis in MATLAB. For both U- and E-core machines, it can be concluded that the
effective harmonics can be classified into two types; the dominant harmonic components
are produced by the primitive PM-MMF (iPPM, i = 1, 2, . . . ) and the other harmonics are
generated by the modulated PM-MMF (|iPPM ± jPr|, i, j = 1, 2, . . . ), which is summarized
in Table 3.

Table 3. Characteristics of no-load air-gap flux-density harmonics of the four candidates.

Item Dominant Harmonics (iPPM) Modulated Harmonics (|iPPM ± jPr|)

12/10 U-core 6 (i = 1), 18 (i = 3)
4, 16 (i = 1, j = 1)
8, 28 (i = 3, j = 1)

14, 34 (i = 4, j = 1)

12/11 U-core 6 (i = 1), 18 (i = 3) 5, 17 (i = 1, j = 1)
7, 29 (i = 3, j = 1)

6/10 E-core 3 (i = 1), 9 (i = 3), 15 (i = 5) 7, 13 (i = 1, j = 1)
5, 25 (i = 5, j = 1)

6/11 E-core 3 (i = 1), 9 (i = 3), 15 (i = 5) 8, 14 (i = 1, j = 1)
4, 26 (i = 5, j = 1)
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4.2. PM Flux Linkage and Back-EMF

The no-load phase PM flux linkage and harmonic distribution of the four candidates
are given in Figure 5. The peak value of the no-load phase PM flux linkage of the U-core
AFFSPM machine is slightly larger than that of the E-core AFFSPM machine because of
the larger air-gap flux density, as indicated in Section 4.1. The U-core AFFSPM machine
contains higher odd order PM flux-linkage harmonics, while the E-core machine has a larger
amount of even numbers. It is worth noting that, for 12/10 U-core and 6/10 E-core AFFSPM
machines, there is no phase shifting in flux-linkage waveform among coils belonging to
the same phase. However, there is a half period of phase angle shifting for 12/11 U-core
and 6/11 E-core machines, which makes harmonic component offset by the combination of
the PM flux of the coil in one phase. Therefore, the PM flux linkage of the 6/11 E-core and
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12/11 U-core machines shows lower total harmonic distortion (THD) than the other two
candidates due to the winding complementarity of AFFSPM machine.

Correspondingly, the amplitude of the fundamental phase back-EMF can be obtained
and the open-circuit phase back-EMF waveforms at 3000 rpm are shown in Figure 6. By
applying the FFT analysis, it can be found that there are the higher harmonic components in
the 10-rotor pole-pair machines, which is in agreement with the PM flux-linkage analysis.
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4.3. Inductance

The influence of both the permanent magnet field and armature magnetic field on the
inductance need to be taken into consideration. The self-inductance and mutual inductance
of three phase armature windings are defined as follows (take phase A as an example):

Laa = (ψa − ψpma)/ia (3)

Man = (ψa − ψpma)/in(n = b or c) (4)
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where Laa is the self-inductance of phase A; Man is the mutual inductance between phase
A and other phases (phase B and phase C); ψpma is the PM flux linkage of phase A; ψa is
the total flux-linkage of phase A; ia is the current of phase A; and in is the current of phase
B or C.

The self-inductance and mutual inductance of the four candidates are given in Figure 7.
It can be seen that the waveforms of three-phase self-inductance and mutual inductance
are approximately sinusoidal. Both the self-inductance and mutual-inductance of the
11-rotor pole-pairs machines are larger than that of the 10 rotor pole-pairs machines. Due
to the single layer winding of the E-core machines, they exhibit less mutual-inductance
and larger self-inductance than U-core AFFSPM machines, which indicates a better fault-
tolerant operation capability. The smaller mutual inductance symbolizes the good magnetic
isolation ability between each phase, which will not cause terrible interference to the
remaining phases when a phase fails. Furthermore, the concentrated windings lead to a
high self-inductance of each phase, which gives an effective limitation of fault current when
the winding short-circuit appears.
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4.4. Electromagnetic Torque

According to the magnetic field modulation principle, the electromagnetic torque of
the machine is produced by both primitive harmonics of PM field and armature reaction
field, and by the corresponding modulated harmonic components. Due to the negligible
difference between d-axis inductance (Ld) and q-axis inductance (Lq), the reluctance torque
can be ignored and id = 0 control strategies are suitable for AFFSPM machines. Therefore,
the electromagnetic torque can be obtained by Equation (5) [24].

Te =
Pe

ωr
=

m
2

NphPrΦPMm Iam (5)

where Pe is the electromagnetic power, m is the phase number, Nph is the winding turns
per phase, Iam is the amplitude of the fundamental phase armature current. The electro-
magnetic torque Te of the four candidates is shown in Figure 8. The torque ripple is mainly
contributed by the cogging torque, which should be reduced by further optimization.
Therefore, it can be seen from Figure 8 that the torque ripple of the 12/10 U-core AFFSPM
machine is the largest, 17.64%, and the 6/11 E-core AFFSPM machine has the smallest
torque ripple, 8.29%.
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5. Fault-Tolerant Operation Performance Comparison

The fault-tolerant operating performance of the four candidates is analyzed and
compared by the 3D FEA method when open-circuit faults occur in one- and two-phase
windings. As given in Figure 3, due to the unique structure of AFFSPM machines, two
sets of three phases armature windings are arranged into two stators, respectively, and the
natural physical isolation between two set windings can give a certain improvement on the
fault-tolerant capability.

During the healthy operation where all coils work, the three-phase armature currents
and the total magnetomotive force are given:

iA1 = iA2 = Im · sin(ωt)
iB1 = iB2 = Im · sin(ωt− 2π/3)
iC1 = iC2 = Im · sin(ωt− 4π/3)

(6)
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ftotal = ( fA1 + fB1 + fC1)+( fA2 + fB2 + fC2)

= 2 ∗ (Fm · sin(ωt) · sin x + Fm · sin(ωt− 2π
3 ) · sin(x− 2π

3 ) + Fm · sin(ωt− 4π
3 ) · sin(x− 4π

3 ))
= 3Fm cos(ωt− x)

(7)

where ω is electrical frequency, Im is the amplitude of the phase current, x is the elec-
tric angle position around the airgap, Fm is the amplitude of single phase fundamental
magnetmotive force.

Generally, for the fault-tolerant control strategy, larger armature current is required to
compensate the MMF produced by the lost phase(s), which has critical requirement on the
power level and cost of the converters. However, the converter power level of the AFFSPM
machine is limited for low-cost consideration. Therefore, the fault-tolerant control strategy
presented in this section makes the amplitude of the armature current limit to the rated
value, and a circular rotating field is achieved by regulating the phase angle of the armature
currents in the remaining phases.

5.1. One-Phase Open

As can be seen in Figure 9, phase A1 is the only open-circuited phase, which is
intentional for testing the one-phase open faulty mode. For the fault-tolerant control
strategy targeting the unchanged rotating MMF, a circular rotating field can be achieved
by regulating the phase angle of the armature currents of the remaining phases. For
the remaining phases, the three symmetric phases (A2, B2, C2) can produce a circular
rotating magnetic field and contribute half output torque with initial current phase angle.
In addition, the two asymmetric phases (B1, C1) need to be regulated to reform a circular
rotating magnetic field.
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Suppose that the regulated phase angle of phase B1 and C1 are α1 and α2, respectively.
Since the space position of two phases are unchanged, the regulated magnetomotive force
can be expressed as Equation (8). In order to obtain a circular rotation magnetic field, the
regulated MMF should have the same component as the magnetomotive force given in
Equation (7), of which the component except cos(ωt-x) in Equation (8) should be eliminated.
Hence, the armature current of the remaining phases and the total MMF in one-phase open
condition are shown in Equations (9) and (10). The phasor diagram of the regulated current
under one-phase open-circuit fault tolerant control is given in Figure 10.

The electromagnetic torque under one-phase open and fault-tolerant control are pre-
sented in Figure 11. The average torque between healthy and fault-tolerant condition are
compared in Figure 12 and the torque ripple is also noted. It can be found that the E-core
AFFSPM machines perform lower torque ripple than U-core AFFSPM machines due to
the smaller mutual-inductance of single layer winding. The average torque under the
fault-tolerant control is about 77.36% of healthy torque, which is in accordance with the
total MMF analysis mentioned above. The 12/10 U-core AFFSPM machine has the most
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undesirable torque ripple, and the 6/11 E-core AFFSPM machine exhibits the best torque
performance, 5.37 N·m with 9.54% torque ripple

.

ftotal_regulated = fB1_regulated + fC1_regulated
= Fm · sin(ωt− α1) · sin(x− 2π

3 ) + Fm · sin(ωt− α2) · sin(x + 2π
3 )

= Fm
2 ·
[
cos(ωt− x) · (− 1

2 cos α1 +
√

3
2 sin α1)+ sin(ωt− x) · (− 1

2 sin α1 −
√

3
2 cos α1)

− cos(ωt + x) · (− 1
2 cos α1 −

√
3

2 sin α1)− sin(ωt + x) · (− 1
2 sin α1 +

√
3

2 cos α1)
]

+ Fm
2 ·
[
cos(ωt− x) · (− 1

2 cos α2 −
√

3
2 sin α2)+ sin(ωt− x) · (− 1

2 sin α2 +
√

3
2 cos α2)

− cos(ωt + x) · (− 1
2 cos α2 +

√
3

2 sin α2)− sin(ωt + x) · (− 1
2 sin α2 −

√
3

2 cos α2)
]

(8)


iA2 = Im · sin(ωt)
iB1 = Im · sin(ωt− 5π/6)
iB2 = Im · sin(ωt− 2π/3)
iC1 = Im · sin(ωt + 5π/6)
iC2 = Im · sin(ωt− 4π/3)

(9)
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ftotal_onephaseopen = fA2 + fB1 + fB2 + fC1 + fC2
= Fm · sin(ωt) · sin x + Fm · sin(ωt− 5π

6 ) · sin(x− 2π
3 ) + Fm · sin(ωt + 5π

6 ) · sin(x− 2π
3 )

+Fm · sin(ωt− 4π
3 ) · sin(x− 4π

3 ) + Fm · sin(ωt− 4π
3 ) · sin(x− 4π

3 )

= 3+
√

3
2 Fm cos(ωt− x)

(10)

Machines 2022, 10, x FOR PEER REVIEW 12 of 19 
 

 

_ 2 1 2 1 2= + +
5 2 5 2                    sin( ) sin sin( ) sin( ) sin( ) sin( )
6 3 6 3

4 4 4 4                       sin( ) sin( ) sin( ) sin(
3 3 3

total onephaseopen A B B C C

m m m

m m

f f f f f f

F t x F t x F t x

F t x F t x

π π π πω ω ω

π π π πω ω

+ +

= ⋅ ⋅ + ⋅ − ⋅ − + ⋅ + ⋅ −

+ ⋅ − ⋅ − + ⋅ − ⋅ − )
3

3 3                     = cos( )
2 mF t xω+ −

 (10) 

 

  

(a) (b) 

Figure 11. Electromagnetic torque under one-phase open-circuit and fault-tolerant control opera-
tion condition of four candidates. (a) One-phase open-circuit; (b) fault-tolerant control operation. 

  

(a) (b) 

Figure 12. Comparison of electromagnetic torque and torque ripple of four candidates. between 
healthy and one-phase open fault-tolerant control operation. (a) Average electromagnetic torque; 
(b) Torque ripple. 

  

Figure 11. Electromagnetic torque under one-phase open-circuit and fault-tolerant control operation
condition of four candidates. (a) One-phase open-circuit; (b) fault-tolerant control operation.



Machines 2022, 10, 201 12 of 18

Machines 2022, 10, x FOR PEER REVIEW 12 of 19 
 

 

_ 2 1 2 1 2= + +
5 2 5 2                    sin( ) sin sin( ) sin( ) sin( ) sin( )
6 3 6 3

4 4 4 4                       sin( ) sin( ) sin( ) sin(
3 3 3

total onephaseopen A B B C C

m m m

m m

f f f f f f

F t x F t x F t x

F t x F t x

π π π πω ω ω

π π π πω ω

+ +

= ⋅ ⋅ + ⋅ − ⋅ − + ⋅ + ⋅ −

+ ⋅ − ⋅ − + ⋅ − ⋅ − )
3

3 3                     = cos( )
2 mF t xω+ −

 (10) 

 

  

(a) (b) 

Figure 11. Electromagnetic torque under one-phase open-circuit and fault-tolerant control opera-
tion condition of four candidates. (a) One-phase open-circuit; (b) fault-tolerant control operation. 

  

(a) (b) 

Figure 12. Comparison of electromagnetic torque and torque ripple of four candidates. between 
healthy and one-phase open fault-tolerant control operation. (a) Average electromagnetic torque; 
(b) Torque ripple. 

  

Figure 12. Comparison of electromagnetic torque and torque ripple of four candidates. be-
tween healthy and one-phase open fault-tolerant control operation. (a) Average electromagnetic
torque; (b) Torque ripple.

5.2. Two-Phase Open

There are three cases for two-phase-open faults. Case I: same two phases in two sets
(A1 and A2 open); case II: two different phases in two sets (A1 and B2 open); case III: two
different phases in one set (A1 and B1 open), which is sketched in Figure 13. Similar to the
fault-tolerant strategy for one-phase open-circuit fault, the remaining four phases under
three cases of two phases open-circuit can be divided into two-phase groups. Thus, the
current of each group can be regulated to form a circular rotating magnetic field without
any additional conditions. The regulated current of remaining phases corresponding to
each case are given to achieve the maximum output torque in fault-tolerant operation, by
the same method applied in one-phase open condition.
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Figure 13. Winding configurations of two-phases open-circuited under three fault cases. (a) Case I;
(b) Case II; (c) Case III.

In case I, the two groups are phase B1, C1 and phase B2, C2, respectively. The regulated
current and total magnetomotive force are given as Equations (14) and (15), respectively.
And the phasor diagram of the regulated current under Case I is given in the Figure 14
in addition.

group 1 :
{

iB1 = Im · sin(ωt− 5π/6)
iC1 = Im · sin(ωt + 5π/6)

group 2 :
{

iB2 = Im · sin(ωt− 5π/6)
iC2 = Im · sin(ωt + 5π/6)

(11)
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ftotal_caseI = fB1 + fB2 + fC1 + fC2
= Fm · sin(ωt− 5π

6 ) · sin x + Fm · sin(ωt− 5π
6 ) · sin(x− 2π

3 )

+Fm · sin(ωt + 5π
6 ) · sin(x− 4π

3 ) + Fm · sin(ωt + 5π
6 ) · sin(x− 4π

3 )

=
√

3Fm cos(ωt− x)

(12)

In case II, the two groups are phase B1, C1 and phase A2, C2, respectively. The expres-
sion and phase diagram of the regulated current are given in Equation (13) and Figure 15,
respectively. Moreover, the total magnetomotive force are expressed in Equation (14).

group 1 :
{

iB1 = Im · sin(ωt+5π/6)
iC1 = Im · sin(ωt− 5π/6)

group 2 :
{

iA2 = Im · sin(ωt− π/6)
iC2 = Im · sin(ωt + π/2)

(13)
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ftotal_caseI I = fA2 + fB1 + fC1 + fC2
= Fm · sin(ωt− π

6 ) · sin x + Fm · sin(ωt + 5π
6 ) · sin(x− 2π

3 )

+Fm · sin(ωt− 5π
6 ) · sin(x− 4π

3 ) + Fm · sin(ωt + π
2 ) · sin(x− 4π

3 )

=
√

3Fm cos(ωt− x)

(14)
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In case III, the two groups are phase A2, C1 and phase B2, C2, respectively. The
regulated current and total magnetomotive force are presented in Equations (15) and (16).
The phase diagram of two groups current is shown in Figure 16.

group 1 :
{

iA2 = Im · sin(ωt− π/6)
iC1 = Im · sin(ωt + π/2)

group 2 :
{

iB2 = Im · sin(ωt + 5π/6)
iC2 = Im · sin(ωt− 5π/6)

(15)
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The torque performance of four candidates under different fault conditions and corre-
sponding fault-tolerant control is obtained based on the 3-D FEA method, which is outlined
in Figures 17–19, respectively. To make a clear comparison, the average torque between the
healthy and fault-tolerant of three cases are compared in Figure 20, in which the torque
ripple is also recorded.

Although the same circle rotation magnetic field is obtained under the fault-tolerant
control in three cases, the relative positions of the fault-phase result in the varieties in the
torque ripple. Case II has the least torque ripple and Case III accounts for the largest torque
ripple. However, the U-core machines demonstrated a larger torque ripple than the E-core
machines in all three cases.

From the view of the machine topologies and winding configurations, some explana-
tions can be drawn. In Case I, the same phases in two sets open-circuited can be regarded
as a double superposition of one-phase open conditions and results in a larger torque ripple
than the situation analyzed in Section 5.1. There is also one-phase open-circuited in each
set winding in Case II, but the fault-phase is not the same, which makes the torque ripple of
each group partially offset and produces the smoothest waveform of total electromagnetic
torque among the three cases. As for Case III, since two failed phases come from one set,
the remaining one phase needs to be grouped with one phase from another set of wind-
ings. Such a winding group arrangement will lead to an uneven MMF distribution and
undesirable fluctuation in the torque wave, which results in the worst torque performance
of all cases. The small mutual-inductance of E-core machines can increase the magnetic
isolation between the remaining phases and reduce the impact on the uneven distribution
of MMF due to the regulated armature current, so as to make the total MMF as close to the
circle as possible and bring a desirable torque performance with the small torque ripple. In
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addition, due to the winding complementarity, there are the better performance in 12/11
U-core machine and 6/11 E-core machine than the 12/10 U-core machine and 6/10 E-core
machine, respectively.

Machines 2022, 10, x FOR PEER REVIEW 16 of 19 
 

 

  

(a) (b) 

Figure 17. Electromagnetic torque under case I (phase A1, A2 open) and fault-tolerant control con-
dition of four candidates. (a) Case I (phase A1, A2 open-circuit); (b) fault-tolerant control. 

  

(a) (b) 

Figure 18. Electromagnetic torque under case II (phase A1, B2 open) and fault-tolerant control 
condition of four candidates. (a) Case II (phase A1, B2 open-circuit); (b) fault-tolerant control. 

  

(a) (b) 

Figure 17. Electromagnetic torque under case I (phase A1, A2 open) and fault-tolerant control
condition of four candidates. (a) Case I (phase A1, A2 open-circuit); (b) fault-tolerant control.

Machines 2022, 10, x FOR PEER REVIEW 16 of 19 
 

 

  

(a) (b) 

Figure 17. Electromagnetic torque under case I (phase A1, A2 open) and fault-tolerant control con-
dition of four candidates. (a) Case I (phase A1, A2 open-circuit); (b) fault-tolerant control. 

  

(a) (b) 

Figure 18. Electromagnetic torque under case II (phase A1, B2 open) and fault-tolerant control 
condition of four candidates. (a) Case II (phase A1, B2 open-circuit); (b) fault-tolerant control. 

  

(a) (b) 

Figure 18. Electromagnetic torque under case II (phase A1, B2 open) and fault-tolerant control
condition of four candidates. (a) Case II (phase A1, B2 open-circuit); (b) fault-tolerant control.

Machines 2022, 10, x FOR PEER REVIEW 16 of 19 
 

 

  

(a) (b) 

Figure 17. Electromagnetic torque under case I (phase A1, A2 open) and fault-tolerant control con-
dition of four candidates. (a) Case I (phase A1, A2 open-circuit); (b) fault-tolerant control. 

  

(a) (b) 

Figure 18. Electromagnetic torque under case II (phase A1, B2 open) and fault-tolerant control 
condition of four candidates. (a) Case II (phase A1, B2 open-circuit); (b) fault-tolerant control. 

  

(a) (b) 

Figure 19. Electromagnetic torque under case III (phase A1, B1 open) and fault-tolerant control
condition of four candidates. (a) Case III (phase A1, B1 open-circuit); (b) fault-tolerant control.



Machines 2022, 10, 201 16 of 18

Machines 2022, 10, x FOR PEER REVIEW 17 of 19 
 

 

Figure 19. Electromagnetic torque under case III (phase A1, B1 open) and fault-tolerant control 
condition of four candidates. (a) Case III (phase A1, B1 open-circuit); (b) fault-tolerant control. 

 

(a) 

 

(b) 

Figure 20. Comparison of electromagnetic torque and torque ripple of four candidates between 
healthy and two-phase open-circuited fault-tolerant control operation. (a) Average electromag-
netic torque; (b) torque ripple. 

6. Conclusions 
In this paper, AFFSPM machines with U-core and E-core stator modular segments, 

as well as different slot/pole-pairs combinations, are compared comprehensively between 
four candidates, including the Ps/Pr combination, static characteristics and fault-tolerance 
capability. Some conclusions can be summarized as follows: 
(1) The E- and U-core AFFSPM machines apply different feasible stator-slot/ rotor-pole-

pairs combinations, which can be obtained by the slot-conducotor back-EMF star vec-
tors theory. 

(2) The total harmonic distortion (THD) value of PM flux linkage and back-EMF of 10 
rotor pole-pairs machines is higher than that of the 11-rotor pole-pairs machines be-
cause of the winding complementarity. Furthermore, the effective harmonics of 

Figure 20. Comparison of electromagnetic torque and torque ripple of four candidates between
healthy and two-phase open-circuited fault-tolerant control operation. (a) Average electromagnetic
torque; (b) torque ripple.

6. Conclusions

In this paper, AFFSPM machines with U-core and E-core stator modular segments, as
well as different slot/pole-pairs combinations, are compared comprehensively between
four candidates, including the Ps/Pr combination, static characteristics and fault-tolerance
capability. Some conclusions can be summarized as follows:

(1) The E- and U-core AFFSPM machines apply different feasible stator-slot/ rotor-pole-
pairs combinations, which can be obtained by the slot-conducotor back-EMF star
vectors theory.

(2) The total harmonic distortion (THD) value of PM flux linkage and back-EMF of 10 ro-
tor pole-pairs machines is higher than that of the 11-rotor pole-pairs machines because
of the winding complementarity. Furthermore, the effective harmonics of open-circuit
air-gap flux of four candidates can be classified into the dominant harmonic and
modulated harmonics, which is in agreement with the field modulation theory.
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(3) Both U- and E-core machines consist of two stators and one rotor. The two sets
windings on each stator provide a natural convenience for double three phases config-
urations, which can enhance the fault-tolerant capability.

(4) The middle stator teeth of E-core stator segments lead to an enhancement of the
magnetic isolation and the single layer windings, which significantly improves the
fault-tolerant operation ability under one- and two-phase open-circuited conditions.

(5) The E-core stator segments reduce the number of PMs and increase the distance
between adjacent PMs, which not only leads to a smaller cogging torque and torque
ripple than that of U-core AFFSPM machines, but also provides a lower torque ripple
in the fault tolerant control operation.
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