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Abstract: The first step in the synchronous reluctance machine design is the selection of rotor flux
barrier type. The literature provides various barrier construction methods with a common goal
of reducing parametric complexity. However, too excessive simplification can lead to decreased
performance, while overly complex geometries tend to increase optimization time. This paper
presents a set of novel flux barrier construction methods with an increased degree of freedom and
minimal geometrical complexity. The paper proposes four topologies based on circular, hyperbolic,
and original Zhukovsky lines. When considering parametrization complexity, the original Zhukovsky
type is the simplest, but it has barrier depth limitations. Other topologies have equal complexity. The
paper proposes a novel Modified Zhukovsky variable depth type based on geometrical conformal
mapping of the original Zhukovsky lines. The step-by-step construction of each topology is presented
in a form of pseudo-code with detailed comments and illustrations. Overall, the presented research
provides a valuable starting point for the designer who wants to investigate different smooth rotor
barrier topologies.

Keywords: synchronous reluctance; barrier comparison; rotor topology; conformal mapping; optimization

1. Introduction

In recent years, the synchronous reluctance machine (SyRM) has become commercially
viable as a high-efficiency alternative to induction (IM) and interior permanent magnet
machines (IPM). The main benefit of the SyRM is that the rotor has no squirrel cage,
windings or magnets, just electric steel plates forming a rotor package.

Due to the highest torque and power density, interior rare earth permanent magnet
synchronous machines (IPM) are preferred for automotive traction. On the other hand, the
use of rare earth permanent magnet (PM) materials, such as neodymium or dysprosium,
has historically been a commercial risk [1,2].

Currently, there is no commercial use of synchronous reluctance machines (SyRM) for
automotive traction, but having in mind the market uncertainties and potential production
cost reduction, they represent a possible alternative [3,4].

On the other hand, commercial vehicles apart from electric traction, have to actuate
additional body systems (usually powered by some sort of hydraulic pump). The interface
towards external systems is referred as electric power take-off (e-PTO). Considering that
the e-PTO needs to be reliable, robust, and cheap, SyRM is the preferred alternative [5–7].

In recent decades, SyRM research has focused on improving the rotor barrier design,
minimizing the torque ripple, and increasing the power factor [8]. Literature provides
references to several barrier topologies: circular [9,10], hyperbolic [11,12], Zhukovsky fluid
type [13,14], segmented, etc. Open-source SyRE project offers more details and instructions
on geometry generation [15].

The common goal in barrier construction strategy is the reduction of parametric com-
plexity. However, too simplified rotor topologies can lead to decreased performance, while
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too complex geometries yield better performance, but also tend to increase optimization
time (increase is proportional to the parametric complexity).

By merging both approaches, this paper presents a set of flux barrier construction
methods with an increased degree of freedom and minimal parametric complexity, based
on non-dimensional rotor parameters.

Considering that sharp edges tend to cause mechanical issues at high rotational speeds,
only barrier topologies based on smooth analytical functions have been analyzed (circular,
hyperbolic, and Zhukovsky).

By definition, Zhukovsky barrier lines are streamlines and cannot be analytically
modified to secure variable barrier depth, in this case, conformal mapping is used to
create a novel Modified Zhukovsky barrier type with variable depth lines. The following
chapters will demonstrate automated barrier design and related pseudo-code for the
following topologies:

1. Circular variable depth (CrVD), Figure 1b
2. Variable eccentricity hyperbolic (HyVE), Figure 1c
3. Original Zhukovsky (Zh), Figure 1d (red)
4. Modified Zhukovsky variable depth (MZhVD), Figure 1d (blue).

Figure 1. (a) SyRM terminology; SyRM rotor barrier types: (b) Circular variable depth; (c) Hyperbolic
variable eccentricity; (d) Modified Zhukovsky (blue), original Zhukovsky (red).

2. Geometric Feasibility

The term feasibility usually refers to the solution and means that the solution satisfies
all the given constraints. There is another type of feasibility called geometric or model feasibil-
ity. A geometrically feasible model is valid for solving if: there are no overlapping edges,
negative lengths, or non-conventional geometric relations that will inevitably produce
issues after optimization starts.

This is especially important when using template-based design software. The gen-
eration of such a non-valid model can be avoided in several ways (e.g., barrier 1 (blue)
collides with barrier 2 (yellow), the collision is marked in red, Figure 2a). In the first case,
the complete set of optimization parameters is initialized until geometric feasibility is
achieved [16].

The alternative is forced feasibility, where each infeasible design is subjected to param-
eter modification until feasibility is reached, e.g., barrier 1 (blue) and barrier 2 (yellow) are
modified until the minimum flux carrier width wc min is reached, Figure 2b [7].

The final approach is to secure that the design is always feasible.
The example is a SyRM with three hyperbolic barriers where barrier depth is varied

by hyperbolic eccentricity of each inner and outer barrier line (Figure 3b).
In some cases, the complete freedom in varying the eccentricity causes the inner and

outer barrier collision (Figure 3a), which inevitably leads to infeasible designs.
On the other hand, if the designer wants to ensure feasibility, one solution is to

parametrize the eccentricity of each outer barrier line relative to the eccentricity of each
inner barrier, e.g., (1).
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e3 in ∈ [1.2 1.3] e3 out ∈ [e3 in 1.35] (1)

e2 in ∈ [e3 out 1.4] e2 out ∈ [e2 in 1.45]

e1 in ∈ [e2 out 1.5] e1 out ∈ [e1 in 1.55]

Unfortunately, this option generates constantly changing parameter limits, which can
lead to a suboptimal design. Considering the specifics of the SyRM rotor, the rotor geometry
can be defined to always yield a feasible design thus achieving absolute feasibility. Instead
of directly using eccentricities as parameters, a better approach is to use dimensionless
inner and outer barrier depth parameters (Din, Dout ∈ [0, 1]) for indirect calculation of
respective eccentricities. The following text provides detailed instructions on absolutely
feasible rotor construction with the corresponding pseudo-code which accepts any pole
and barrier number.

Figure 2. Infeasible geometry (a) and forced feasibility (b).

Figure 3. Illustration of infeasible (a) and feasible geometry (b).

3. Design Automation

The following figures are drawn for illustrative purposes and valid for a three barrier
rotor (k = 3), naming and description of all parameters is explained in Table 1. Vector
variables are bolded, e.g., R is a variable vector, while R represents a scalar variable.

The initial step in rotor construction (Figure 4a) is to specify number of pole pairs (p),
rotor barriers (k) and barrier bridge thickness (wbb). The user then specifies dimensionless
ϑmin, ϑmax ∈ [0, 1] (Table 1, 18–19). Temporary construction points vector E1..k temp is then
created with equidistant angular spacing ∆ϑr = (ϑmax − ϑmin)/k. Barrier notch point
(En) is defined via additional parameter ϑnotch (Table 1, 20) relative to ϑmin with radial
component equal to rotor radius. Note that the entire geometry is initially constructed in
vertical manner (center pole axis is at the angle of 90◦).
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Figure 4. Rotor barrier construction procedure. Initial rotor construction step (a); Construction of
inner and outer barrier line starting points (b); calculation of barrier intersection points (c); calculation
of barrier vertices (d); vertex mirroring (e); rotation around center and addition of barrier fillets (f).

The second step (Figure 4b) is the construction of inner and outer barrier line starting
points (Ein, Eout). The points are calculated relative to E1..k temp, based on additional set of
dimensionless parameters ϑ1..k in, ϑ1..k out ∈ [0, 1] (Table 1, 6–11).

The third step is rotation around the center point by the specified angle (in this case
α1 = −π/2). Barrier line starting points Ein, Eout, En (and additional depth parameters
Din, Dout, Dn depending of the barrier type) are forwarded to the selected construction
function which calculates barrier line intersection points (xin, xout). The intersection points
are calculated based on depth parameters and feasibility conditions listed in Figure 4c.
The function returns all inner and outer barrier line vertices (Xin, Yin, Xout, Yout, Xn, Yn),
Figure 4d.

The next step is mirroring line vertices around the horizontal axis (Figure 4e).
The final step is the rotation around the center point by the angle αF = π/(2p). Barrier

fillets (r1..kin , r1..kout ∈ [0, 1], Table 1, 12–17) responsible for securing mechanical integrity
of the rotor are added to the geometry, and final rotor geometry is exported as to the FEA
tool (Figure 4f). Adding precise fillets to the discrete lines is a complex problem which is
planned to be explained in the future publications. Detail barrier construction steps from
Figure 4b–d are discussed in the following sections.
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Table 1. Example list of design parameters. Color coding is according to Figure 4 variables.

No: Description Symbol Value/Range Unit

1 Rotor diameter Dr 100 mm
2 Shaft diameter Dsh 54 mm
3 Barrier number k 3 -
4 Pole pairs p 2 -
5 Barrier bridge wbb 0.3 mm

6 Point angle in ϑ1in [0.2 , 0.5] -
7 Point angle out ϑ1out 0 -
8 Point angle in ϑ2in [0 , 0.3] -
9 Point angle out ϑ2out [0 , 0.2] -

10 Point angle in ϑ3in 0 -
11 Point angle out ϑ3out [0 , 0.5] -

12–14 Corner rad. in r1..kin [0 , 1] -
15–17 Corner rad. out r1..kout [0 , 1] -

18 Min. angle ϑmin [0.15 , 0.3] -
19 Max. angle ϑmax [0.9 , 0.95] -
20 Notch angle ϑn [0.1 , 1] -

22–24 Barrier depths in D1..kin [0.2 , 1] -
25–27 Barrier depths out D1..kout [0.2 , 1] -

28 Notch depth Dn [0 , 1] -

Barrier Depth Variation

Considering that the barrier width has a substantial impact on the machine perfor-
mance, this section will explain how inner and outer barrier depth coefficients affect each
of the studied topologies, with a simplified presumption of equal line starting points.

Width of the each barrier depends on initial inner and outer line starting points
Ein, Eout, and depth coefficients Din, Dout. Depending on the depth parameter combination,
barrier width can be variable, or uniform. Uniform width is a special case where CrVD
barriers are concentric (Figure 5a, green). HyVE barriers can be approximately uniform
when they have equal eccentricity (Figure 5b, green). These variants are included in CrVD
and HyVE pseudo-code, and will not be studied in detail.

In general, CrVD and HyVE depth variation is unconstrained resulting in variable
barrier width (Figure 5a,b, blue).

Zh barrier type (Figure 5c) is a special case because it does not support any depth
variation. Barrier line depths are defined directly from starting points and cannot be
modified. In order to explore the possible benefits of depth variation, Zh type has been
modified as MZhVD where barrier depths have full freedom (Figure 5d).

An example of different barrier line depth parameter combinations is provided in the
(Table 2).

Figure 5. Barrier depth variation influence on different 2-barrier (k = 2) SyRM topologies. Circular
(a); Hyperbolic (b), Zhukovsky (c) and Modified Zhukovsky barrier types (d).
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Table 2. Illustrative depth coefficient table for Figure 5.

Baseline Barrier Depths Modified Barrier Depths

Abbr. D1out D1in D2out D2in D1out D1in D2out D2in
(a) CrVD 0.35 0.50 0.65 0.90 0.40 0.55 0.70 0.80
(b) HyVE 0.40 0.50 0.80 0.90 0.35 0.45 0.60 0.85
(c) Zh 0.10 0.45 0.60 0.85 - - - -
(d) MZhVD 0.10 0.45 0.60 0.85 0.20 0.40 0.80 0.90

4. Standard Rotor Barriers
4.1. Zhukovsky Barrier Construction

After definition of all inner and outer barrier line starting points (Ein, Eout, En), Figure 6a,
the entire geometry is rotated by α1 Zh = −(π/2− τpole/2) (Algorithm 1: ln:2, Figure 6b,
τpole = (2π)/(2p) = π/p is the angular pole step.). This partial rotation must be performed
because Zhukovsky equations are defined on angular range [0, π/p].

Algorithm 1 Construction of Zhukovsky barriers
1: τpole = 2π/(2p)
2: Rotate all by α1 Zh = −(π/2− τpole/2) and get: Ein, Eout, En
3: ∆r = 0
4: [Xin, Yin, Xout, Yout, Xn, Yn]= GETZHUKOVSKYLINES(Ein, Eout, En)

5: function GETZHUKOVSKYLINES(Ein, Eout, En)
6: k = Nbarrier . Calculate inner and outer barrier lines
7: [Xin, Yin] = GETZHUKLINES(Ein, k)
8: [Xout, Yout] =GETZHUKLINES(Eout, k)

. Calculate notch line
9: kn = 1 . Notch has only one barrier line

10: [Xn, Yn] = GETZHUKLINES(En, kn)

11: function GETZHUKLINES(E, k)

12: C = sin(p · ϑE) ·
[(

rE+∆r
Dsh/2

)2p
− 1
]

/
(

rE+∆r
Dsh/2

)p

. Calculate barrier polar angles
13: ϕstart = ϑE
14: ϕend = τpole/2

15: for i = 1 : k do
16: ϑ(:, i) = LINSPACE(ϕstart(i), ϕend, Npoints)

. Calculate barrier line vertices

17: r = Dsh
2

p

√(
C +

√
C2 + 4 sin2(pϑ)

)
/
(
2 sin(pϑ)

)
18: [X, Y ] = pol2cart(ϑ, r)
19: return X, Y

20: Rotate all by α2 Zh = −τpole/2

21: return Xin, Yin, Xout, Yout, Xn, Yn
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Figure 6. Zhukovsky barrier construction. Subfigures (a)–(e) are explained in the Sections 4.1–4.1.3.

4.1.1. Inner Line Calculation

The first step is the calculation of GETZHUKLINES barrier line function (Algorithm 1:
ln:7) based on Ein and number of barriers k. Note that there are no depth parameters. By
definition Zhukovsky barriers are streamlines which cannot mutually intersect. Barrier
line profiles (Figure 6e) are derived from conformal mapping theory and the Zhukovsky
airflow potential formulation [14,15]. This was originally developed to describe the flow
paths of fluids channeled by two infinite plates forming an angle π/p, and a plug centred
at the origin of the reference frame. In the solid rotor context, the plug represents the
non-magnetic shaft with a radius of Dsh/2. Equations Algorithm 1: ln:12 and Algorithm 1:
ln:17 express the magnetic field potential lines in parametric form [7].

Next, polar barrier vertices r, ϑ are calculated based on coefficient vector C, starting
point polar coordinates ϑE and number of barriers k (Algorithm 1: ln:12–18). Finally,
GETZHUKLINES function returns Xin, Yin vertices.

4.1.2. Outer Line Calculation

Outer barrier line vertices Xout, Yout (Algorithm 1: ln:8) are calculated in the same way
as inner lines.

4.1.3. Notch Line Calculation

Notch is specific because it has only one barrier line (kn = 1) (Algorithm 1: ln:10). The
function GETZHUKLINES returns Xn, Yn which completes the calculation of all barrier lines
(Figure 6c). Finally, to be compatible with the rest of the barrier construction procedures,
the geometry is rotated by α2 Zh = −τpole/2 (Algorithm 1: ln:20, Figure 6d).

The next steps (not described within Algorithm 1) are mirroring vertices around
horizontal axis (Figure 4e), adding barrier fillets, and geometry rotation around center
point (Figure 4f).

Note that Zhukovsky construction pseudo-code is the simplest of all alternatives due
to the polar streamline equations (Algorithm 1: ln:12, 17).

4.2. Circular Barrier Construction

After definition of all inner and outer barrier line starting points and depth parameters
(Ein, Eout, En, Din, Dout, Dn), Figure 7a, the entire geometry is rotated by α1 CrVD = −π/2
(Algorithm 2: ln:1, Figure 7b).
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Figure 7. Circular barrier construction. Subfigures (a)–(d) are explained within the Sections 4.2–4.2.3.

4.2.1. Inner line calculation

Lets first consider GETINNERLINES function which calculates inner line vertices
(Xin, Yin) and intersections (xin) based on Ein, Din and number of barriers k (Algorithm 2:
ln:6).

The intersections (Figure 4d) are critical for barrier calculation and in case of circular
barriers, they depend on the inequality xE − x <

∣∣yE
∣∣ where x represents the inner or outer

intersection. If the condition is fulfilled, the constructed circle is feasible (Figure 7d, green)
and the intersection can be calculated based on inner barrier limits (Algorithm 2: ln:15, 20).
Otherwise, the circle is infeasible (Figure 7d, red) and the intersection point is calculated
from barrier line starting point (Algorithm 2: ln:17, 22).

In case of the most inner line (i = k), the feasibility limit is rotor shaft (xM), and the
intersection xin(i) is calculated via (Algorithm 2: ln:15). For the second most inner line
(i = k− 1), feasibility limit is xin(i + 1) and the intersection is calculated via (Algorithm 2:
ln:20). All inner line intersections are then iteratively calculated following the Algorithm 2:
ln:12–22 procedure.

Next, GETCRCVTX function (Algorithm 2: ln:23) based on calculated intersections xin,
starting point coordinates xEin , yEin and k, calculates the circle origins x0 and radius Rr, and
returns barrier vertices Xin, Yin (Algorithm 2: ln:39–50). Finally, GETINNERLINES returns
Xin, Yin, xin.

4.2.2. Outer Line Calculation

At this point all inner barrier intersections xin are defined and now present feasibility
limits for outer barrier line construction (Algorithm 2: ln:7). The rest of the GETOUTERLINES

code (Algorithm 2: ln:25–38) is executed in the similar manner as in GETINNERLINES. The
function in the end returns Xout, Yout, xout.

4.2.3. Notch Line Calculation

Notch is specific because it has only one barrier line (kn = 1) and depends on the most
outer intersection xout(1) (Algorithm 2: ln:9). Finally, GETOUTERLINES returns Xn, Yn, xn
which completes the calculation of all barrier lines (Figure 7c).

The next steps (not described within Algorithm 2) are mirroring vertices around
horizontal axis (Figure 4e), adding barrier fillets, and geometry rotation around center
point (Figure 4f).

4.3. Hyperbolic Barrier Construction

After definition of all inner and outer barrier line starting points and depth parameters
(Ein, Eout, En, Din, Dout, Dn), Figure 8a, the entire geometry is rotated by α1 HyVE = −π/2
(Algorithm 3: ln:1, Figure 8b).
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Algorithm 2 Construction of circular barriers
1: Rotate all by α1 CrVD = −π/2
2: Get: Ein, Eout, En, Din, Dout, Dn
3: [Xin, Yin, Xout, Yout, Xn, Yn]= GETCRCLINES(Ein, Eout, En, Din, Dout, Dn)
4: function GETCRCLINES(Ein, Eout, En, Din, Dout, Dn)
5: k = Nbarrier . Calculate inner and outer lines
6: [Xin, Yin, xin] = GETINNERLINES(Ein, Din, k)
7: [Xout, Yout, xout] =GETOUTERLINES(Eout, Dout, xin, k)

. Calculate notch line
8: kn = 1 . Notch has only one barrier line
9: [Xn, Yn, xn] = GETOUTERLINES(En, Dn, xout(1), kn)

10: function GETINNERLINES(Ein, Din, k)
11: xM = Dsh/2
12: for i = k : 1 do
13: if i==k then
14: if xEin (i)− xM <

∣∣∣yEin (i)
∣∣∣ then

15: xin(i) = xM + (xEin (i)− xM) · Din(i)
16: else
17: xin(i) = xEin (i)−

∣∣∣yEin (i)
∣∣∣ · Din(i)

18: else
19: if xEin (i)− xin(i + 1) <

∣∣∣yEin (i)
∣∣∣ then

20: xin(i) = xin(i + 1) + (xEin (i)− xin(i + 1)) · Din(i)
21: else
22: xin(i) = xEin (i)−

∣∣∣yEin (i)
∣∣∣ · Din(i)

23: [Xin, Yin] = GETCRCVTX(xin, xEin , yEin , k)

24: return Xin, Yin, xin
25: function GETOUTERLINES(Eout, Dout, xin, k)
26: for i = k : 1 do
27: if i > 1 then
28: if xEout (i) > xin(i− 1) then
29: xout(i) = xin(i) + (xin(i− 1)− xin(i)) · Dout(i)
30: else
31: xout(i) = xin(i) + (xEout (i)− xin(i)) · Dout(i)
32: else
33: if xEout (i)− xin(i) <

∣∣yEout (i)
∣∣ then

34: xout(i) = xin(i) + (xEout (i)− xin(i)) · Dout(i)
35: else
36: xout(i) = xEout (i)−

∣∣yEout (i)
∣∣ · Dout(i)

37: [Xout, Yout] = GETCRCVTX(xout, xEout , yEout , k)
38: return Xout, Yout, xout
39: function GETCRCVTX(x, xE, yE, k)

. Calculate barrier center
40: F = (xE − x0)

2 + y2
E == (x− x0)

2

41: for i = 1 : k do
42: x0 = SOLVE(F(i))
43: Rr = |x− x0|

. Calculate barrier polar angles
44: ϕstart = π − ATAN2(yE, (x0 − xE))
45: ϕend = π
46: for i = 1 : k do
47: ϑ(:, i) = LINSPACE(ϕstart(i), ϕend, Npoints)

. Calculate barrier line vertices
48: X = Rr · cos(ϑ) + x0
49: Y = Rr · sin(ϑ)
50: return X, Y

51: return Xin, Yin, Xout, Yout, Xn, Yn
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Algorithm 3 Construction of Hyperbolic barriers
1: Rotate all by α1 HyVE = −π/2
2: Get: Ein, Eout, En, Din, Dout, Dn
3: K = 1.1 . Max eccentricity coefficient
4: [Xin, Yin, Xout, Yout, Xn, Yn]= GETHYPLINES(Ein, Eout, En, Din, Dout, Dn)
5: function GETHYPLINES(Ein, Eout, En, Din, Dout, Dn)
6: k = Nbarrier . Calculate inner and outer barrier lines
7: [Xin, Yin, xin] = GETINNERLINES(Ein, Din, k)
8: [Xout, Yout, xout] =GETOUTERLINES(Eout, Dout, xin, k)

. Calculate notch line
9: kn = 1 . Notch has only one barrier line

10: [Xn, Yn, xn] = GETOUTERLINES(En, Dn, xout(1), kn)
11: function GETINNERLINES(Ein, Din, k)
12: xM = Dsh/2
13: for i = k : 1 do
14: if i==k then
15: emin(i) = (rEin (i)− xM)/(xEin (i)− xM)
16: else
17: emin(i) =

rEin
(i)−xin(i+1)

xEin
(i)−xin(i+1)

18: emax(i) = K · emin(i) . Est. max eccentricity

19: ein(i) = (emax(i)− emin(i)) · Din(i) + emin(i)

20: xdin (i) =
rEin

(i)
ein(i)

− xEin (i) . Left directrix
21: xin(i) = ein(i) · xdin (i)/(1 + ein(i) · sgn(xdin (i)))

22: [Xin, Yin] = GETHYPVTX(xdin , ein, ϑEin , k)

23: return Xin, Yin, xin
24: function GETOUTERLINES(Eout, Dout, xin, k)
25: for i = k : 1 do
26: emin(i) =

rEout (i)−xin(i)
xEout (i)−xin(i)

27: if i > 1 then
28: emax(i) =

rEout (i)−xin(i+1)
xEout (i)−xin(i+1))

29: else
30: emax(i) = K · emin(i) . Est. max eccentricity
31: eout(i) = (emax(i)− emin(i)) · Dout(i) + emin(i)

32: xdout (i) =
rEout (i)
eout(i)

− xEout (i) . Left directrix

33: xout(i) =
eout ·xdout (i)

1+eout(i)·sgn(xdout (i))

34: [Xout, Yout] = GETHYPVTX(xdout , eout, ϑEout , k)
35: return Xout, Yout, xout
36: function GETHYPVTX(xd, e, ϑE, k)

. Calculate barrier polar angles
37: ϕstart = 0;ϕend = ϑE

38: for i = 1 : k do
39: ϑ(:, i) = LINSPACE(ϕstart,ϕend(i), Npoints)

. Calculate barrier line vertices
40: r = e · xd/(1 + e · sgn(xd) · cos(ϑ))
41: [X, Y ] = pol2cart(ϑ, r)
42: return X, Y
43: return Xin, Yin, Xout, Yout, Xn, Yn
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Figure 8. Hyperbolic barrier construction. Subfigures (a)–(d) are explained in the Sections 4.3–4.3.3.

4.3.1. Inner Line Calculation

Lets first consider GETINNERLINES function which calculates inner lines vertices
(Xin, Yin) and intersections (xin) based on Ein, Din and number of barriers k (Algorithm 3:
ln:7).

To simplify the construction, the left focus is constructed in the origin of the coordinate
system (Figure 8d, blue). The intersections with y = 0 (Figure 4d) are critical for barrier cal-
culation and they depend on the minimum eccentricity Equation emin = (rE − x)/(xE − x),
x is the inner or outer intersection limit.

In case of the most inner line (i = k), the feasibility limit is rotor shaft (xM), the
minimum eccentricity emin(i) is calculated via Algorithm 3: ln:15. For the second most
inner line (i = k− 1), emin(i + 1) is calculated via Algorithm 3: ln:17.

If particular barrier has eccentricity within the limits e ∈ [emin, ∞], the construction is
feasible (Figure 8d, green). Otherwise the barrier is infeasible (Figure 8d, red, magenta).
This is why it is important to limit maximum eccentricity (Algorithm 3: ln:18), where
K = 1.1 is empirically determined coefficient. The final eccentricity is then calculated
depending of the depth parameter (Algorithm 3: ln:19). The next steps are calculation of
the left directrix (Algorithm 3: ln:20) and intersection point (xin) based on polar hyperbola
Equation (Algorithm 3: ln:21).

All inner line intersections are then iteratively calculated following the described
procedure (Algorithm 3: ln:13–21).

Next, GETHYPVTX function (Algorithm 3: ln:22) based on calculated directrices xdin ,
eccentricities ein, angular starting point coordinates ϑEin and k, calculates the hyperbolic
vertices in polar coordinates r, ϑ, and returns barrier vertices Xin, Yin (Algorithm 3: ln:36–41).

Finally, GETINNERLINES returns Xin, Yin, xin.

4.3.2. Outer line calculation

At this point all inner barrier intersections xin are defined and now present feasibility
limits for outer barrier line construction (Algorithm 3: ln:8). The rest of the GETOUTERLINES

code (Algorithm 3: ln:24–34) is executed in the similar manner as in GETINNERLINES. The
function returns Xout, Yout, xout.

4.3.3. Notch line calculation

Notch is specific because it has only one barrier line (kn = 1) and depends on the most
outer intersection xout(1) (Algorithm 3: ln:10). Finally, GETOUTERLINES returns Xn, Yn, xn
which completes the calculation of all barrier lines (Figure 7c).

The next steps (not described within Algorithm 3) are mirroring vertices around
horizontal axis (Figure 4e), adding barrier fillets, and geometry rotation around center
point (Figure 4f).
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5. Conformal Modifications
5.1. Conformal Mapping

A conformal or angle-preserving transformation also called conformal mapping is a
transformation w = f (z) that preserves local angles. An analytic function is conformal at
any point where it has a nonzero derivative [17].

Conformal transformations can prove extremely useful in solving physical problems.
If the selected complex function w = f (z) satisfies the condition that the real and imaginary
parts of w satisfy the Cauchy–Riemann equations and Laplace’s equation, they automati-
cally provide a scalar potential and a so-called stream function [17] (e.g., Zhukovski barrier
lines, Figure 1d, red).

FEA is typically used for electromagnetic performance calculations in electric machine
design. Depending on the complexity of the calculation and mesh density, it can take
several minutes before the calculation is completed. The simulation time can be reduced if a
conformal mapping is used for calculation of the analytical airgap magnetic field [16]. The
method conformally transforms electric machine cross-section to w-plane thus enabling
quick analytic calculations. The w-plane results are then inversely mapped to the real plane.
Compared to FEA simulation, this approach yields results within seconds [11,12,16]. On the
other hand, the disadvantage is the difficult implementation on complex rotor geometries.

This paper proposes a method for geometrical modification of any SyRM barrier
geometry using conformal mapping.

5.2. Mapping Workflow

Generated rotor barrier lines are defined by sorted vertices (Xin, Yin, Xout, Yout, Xn, Yn)
containing corresponding x, y coordinates which can be drawn on a 2D real Euclidean
plane (Figure 9a). For easier manipulation purposes, real plain coordinates are redefined in
complex z-plane (z = x + jy), Figure 9b. Considering that the vertices are the same in real
and complex plane, this is a trivial transformation.

Figure 9. Mapping workflow, Subfigures (a)–(c) are explained within the Section 5.2.

SyRM rotor has a circular layout which can be exploited by selecting the convenient
complex function f (z) and applying forward conformal mapping to a complex w-plane
(w = u + jv), Figure 9c. Geometrical modifications of the barrier geometry are then
performed in w-plane and upon completion, returned back to z (and real) plane via inverse
conformal mapping. The benefit of the approach is easier barrier modification which leads
to simplified software coding.

5.3. Complex Functions

The principal objects of study are complex-valued functions f (z), depending on a
single complex variable z = x + jy ∈ C. In general, the function f : Ω→ C is defined on an
open subdomain, z ∈ Ω ⊂ C, of the complex plane. Any complex function can be uniquely
written as a complex combination f (z) = f (x + iy) = Re u(x, y) + jIm v(x, y) [18].
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5.3.1. Forward Conformal Mapping

When working with circular shapes, it is useful to use polar form z = rejθ . Considering
that electric machines can have an arbitrary number of pole pairs, it is very convenient
to select a complex function that somehow ignores angle changes when the number of
poles is increased or decreased. This kind of functionality can be achieved by a complex
natural logarithm. In terms of polar coordinates, the complex logarithm has the form
w = ln z = ln(rejθ) = ln r + ln ejθ = ln r + jθ.

Thus, the logarithm of a complex number has a real part which is a well-defined
harmonic function save for a logarithmic singularity at the origin x = y = 0. The imaginary
part of the complex logarithm is the polar angle, known in complex analysis as the phase.

u(x, y) = Re(ln z) = ln r =
1
2

ln(x2 + y2) (2)

v(x, y) = Im(ln z) = θ = arctan
y
x

(3)

Due to inherent symmetry, it is enough to analyze one electric machine pole. A
minimum number of poles is 2, which equals to [0, π] radian angular span in z-plane,
which is mapped to the same vertical span in w-plane. Figure 10 illustrates mapping of
different combination of pole geometries. To summarize, w = ln z always maps z to the
upper half-plane with vertical boundaries v ∈ [0, π/p] (p is the number of pole pairs) and
horizontal boundaries of u ∈ [ln xM, ln R].

Note that ln z always maps SyRM barrier lines horizontally (Figure 10, w-plane),
regardless of the number of poles. This feature is exploited for the creation of the Modified
Zhukovsky variable depth barrier lines (MZhVD).

5.3.2. Inverse Conformal Mapping

Inverse function for return to z-plane is a complex exponential z = ew = eu+jv. Since
w ∈ C is a non-zero complex number, the equation can be written as z = eu · (cos vs. +
j sin v) with real and imaginary parts equal to:

x(u, v) = Re(ew) = eu · cos v (4)

y(u, v) = Im(ew) = eu · sin v (5)

0 xM R

x

y

0 xM R

x

y

0 xM R

x

y

lnxM lnR
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(a) p = 1, (2 poles)
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0

π
4
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3π
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(b) p = 2, (4 poles)

lnxM lnR
0

π
4

π
2
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4

π

u

v

(c) p = 4, (8 poles)

Figure 10. Real z-plane (upper row); Conformal mapping to w = ln z plane (bottom row).
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5.4. Depth Modification

To summarize, original Zhukovsky barrier lines (Xin, Yin, Xout, Yout, Xn, Yn) with cor-
responding x, y vertices are written as z = x + jy (Figure 11a, red) and conformally
transformed to w-plane via w = ln z as w = u + jv (Figure 11b, red). As previously men-
tioned, Zhukovsky lines cannot mutually intersect. To secure barrier depth variability and
improve machine performance, we are introducing Zhukovsky barrier depth modification
(MZhVD) via dimensionless depth parameters Din, Dout, Dn.

Depth variability is secured via addition of cosine offsets to the w-plane barrier lines
according to Equations (6) and (7). In theory, any even function can be used for generation
of ∆ offset (7), cosine has been selected due to implementation simplicity.

T = 2 ·
[
Max(VZhk)−Min(VZhk)

]
(6)

∆ = ∆Dpth · cos
[π

T
(VZhk − vE)− π/2

]
(7)

Upon modification (Figure 11b, blue), barrier lines are inversely mapped to z-plane
via function z = ew (Figure 11a, blue). The main benefit of the proposed procedure is a
simplified modification of SyRM barriers without any influence on simulation time. The
following section explains the modification procedure step by step.

Figure 11. Modification of Zhukovski lines via conformal mapping. Subfigures (a) and (b) are
explained within the Section 5.4 and related subsections.

5.5. Modified Zh Barrier Construction

After definition of all inner and outer barrier line starting points (Ein, Eout, En), Figure 12a,
the entire geometry is rotated by α1 MZhVD = −(π/2− τpole/2) (Algorithm 4: ln:2, Figure 12b).

5.5.1. Inner Line Calculation

The first step is the calculation of GETINNERLINES barrier line function (Algorithm 4:
ln:9). Inner line vertices (Xin, Yin) are calculated based on Ein, Din and number of barriers k.

Next (Algorithm 4: ln:14), original Zhukovsky barrier (Zh) vertices (XZhkin , YZhkin) are
calculated in the same way as in Algorithm 1, Figure 12c. Original vertices (XZhkin , YZhkin) and
barrier starting points (xEin , yEin) are then conformally mapped to w-plane as UZhkin , VZhkin
and uEin , vEin , Algorithm 4: ln:15, 16, Figure 12d, dotted lines.

Intersections uin are critical for Modified Zhukovsky barrier variable depth (MZhVD)
calculation and they are fully tied to original Zhukovsky intersections uZhkin (calculated
via Algorithm 4: ln:17). As previously mentioned, original Zhukovsky barriers cannot
mutually intersect which makes them absolutely feasible, but on the other hand, barrier
depth variability cannot be achieved.

Modified Zhukovsky depth variation is secured by iterative recalculation of intersec-
tion points in w-plane. In case of the most inner line (i = k), the barrier depth limit is
rotor shaft (uM), and the original Zhukovsky intersection uZhkin(i) (Algorithm 4: ln:20). For
the second most inner line (i = k− 1), depth limit is uZhkin(i + 1) and the intersection is
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calculated via (Algorithm 4: ln:22). All inner line intersections are then iteratively calculated
(Algorithm 4: ln:18–22).

Next, inner line depth offset is calculated based on original Zhukovsky and calculated
inner intersections (Algorithm 4: ln:23). CLCDPTH function (Algorithm 4: ln:25) calculates
modified vertices in w-plain (Figure 12d, full lines), performs inverse conformal mapping,
and returns z-plain vertices (Algorithm 4: ln:59–64, Figure 12e).

Finally, GETINNERLINES function returns Xin, Yin vertices.

5.5.2. Outer Line Calculation

At this point all w-plane inner barrier intersections uin are defined and now present
limits for outer barrier line construction. The rest of the GETOUTERLINES code (Algorithm 4:
ln:27–40) is executed in the similar manner as in GETINNERLINES. The function at the end
returns Xout, Yout, xout.

5.5.3. Notch Line Calculation

Notch is specific because it has only one barrier line (kn = 1) and depends on the most
outer w-plain intersection uout(1) (Algorithm 4: ln:12). Finally, GETOUTERLINES returns
Xn, Yn, un which completes the calculation of all barrier lines (Figure 12e). Finally, to be
compatible with the rest of the barrier construction procedures, the geometry is rotated by
α2 MZhVD = −τpole/2 (Algorithm 4: ln:65, Figure 12f).

The next steps (not described within Algorithm 4) are mirroring vertices around
horizontal axis (Figure 4e), adding barrier fillets, and geometry rotation around center
point (Figure 4f).

Algorithm 4 Construction of Modified Zhukovsky barriers
1: τpole = 2π/(2p)
2: Rotate all by α1 MZhVD = −(π/2− τpole/2)
3: Get: Ein, Eout, En
4: ∆r = 0
5: uM = ln(xM) . Shaft limit in w-plane
6: [Xin, Yin, Xout, Yout, Xn, Yn]= GETHYPLINES(Ein, Eout, En, Din, Dout, Dn)
7: function GETMODZHLINES(Ein, Eout, En, Din, Dout, Dn)
8: k = Nbarrier . Calculate inner and outer barrier lines
9: [Xin, Yin, uin] = GETINNERLINES(Ein, Din, k)

10: [Xout, Yout, uout] =GETOUTERLINES(Eout, Dout, uin, k)
. Calculate notch line

11: kn = 1 . Notch has only one barrier line
12: [Xn, Yn] = GETOUTERLINES(En, Dn, uout(1), kn)
13: function GETINNERLINES(Ein, Din, k)
14: [XZhkin , YZhkin ] = GETZHUKLINES(Ein, k)

. Forward conformal transformation
15: [UZhkin , VZhkin ] = FRWCONF(XZhkin , YZhkin )
16: [uEin , vEin ] = FRWCONF (xEin , yEin )

. Original Zhukovsky inner line intersection limits
17: uZhkin = UZhkin (find(max(VZhkin )))
18: for i = k : 1 do
19: if i==k then
20: uin(i) = uM + (uZhkin (i)− uM) · Din(i)
21: else
22: uin(i) = uZhkin (i + 1) + (uZhkin (i)− uZhkin (i + 1)) · Din(i)

23: ∆Dpthin
= uZhkin − uin

24: [Xin, Yin] =
25: CLCDPTH(∆Dpthin

, UZhkin , VZhkin , vEin )

26: return Xin, Yin, uin
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Algorithm 4 Cont.
27: function GETOUTERLINES(Eout, Dout, uin, k)
28: [XZhkout , YZhkout ] = GETZHUKLINES(Eout, k)

. Forward conformal transformation
29: [UZhkout , VZhkout ] = FRWCONF(XZhkout , YZhkout )
30: [uEout , vEout ] = FRWCONF (xEout , yEout )

. Original Zhukovsky outer line intersection limits
31: uZhkout = UZhkout (find(max(VZhkout )))
32: for i = k : 1 do
33: if i > 1 then
34: uout(i) = uin(i) + (uin(i− 1)− uin(i)) · Dout(i)
35: else
36: uout(i) = uin(i) + (uZhkout (i)− uin(i)) · Dout(i)
37: ∆Dpthout

= uZhkout − uout

38: [Xout, Yout] =
39: CLCDPTH(∆Dpthout

, UZhkout , VZhkout , vEout )

40: return Xout, Yout, uout
41: function GETZHUKLINES(E, k)

42: C = sin(p · ϑE) ·
[(

rE+∆r
Dsh/2

)2p
− 1
]

/
(

rE+∆r
Dsh/2

)p

. Calculate barrier polar angles
43: ϕstart = ϑE
44: ϕend = τpole/2
45: for i = 1 : k do
46: ϑ(:, i) = LINSPACE(ϕstart(i), ϕend, Npoints)

. Calculate barrier line vertices

47: r = Dsh
2

p

√(
C +

√
C2 + 4 sin2(pϑ)

)
/
(
2 sin(pϑ)

)
48: [X, Y ] = pol2cart(ϑ, r)
49: return X, Y
50: function FRWCONF(X, Y)

51: [r, θ] = cart2pol(X, Y)
52: U = ln r
53: V = θ
54: return U, V
55: function INVCONF(U, V )

56: X = eU · cos V
57: Y = eU · sin V
58: return X, Y
59: function CLCDPTH(∆Dpth, UZhk, VZhk, vE)

60: T = 2 ·
(

Max(VZhk)−Min(VZhk)
)

; f = 1
2T

61: ∆ = ∆Dpth · cos
(

2π f (VZhk − vE)− π/2
)

62: Unew = UZhk − ∆

. Inverse conformal transformation
63: [X, Y ] = INVCONF(Unew, VZhk)
64: return X, Y

65: Rotate all by α2 MZhVD = −τpole/2

66: return Xin, Yin, Xout, Yout, Xn, Yn

Figure 12. Modified Zhukovsky barrier construction and rotation steps. Subigures (a)–(f) are ex-
plained within the Sections 5.5–5.5.3.
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6. Parametric Complexity

A high number of optimization variables is associated with a longer optimization
time [19,20], so the imperative is to simplify barrier topology parametrization.
Gamba et al. [14] state that three parameters per barrier (total complexity of 3k, where k is
the number of barriers) are the appropriate number for a fast yet accurate description of
multi-barrier SyRM (barrier fillet parameters are not included). In the previous publication,
our group of authors has reduced the complexity to 2 · k + 1 per barrier [7].

Table 3 shows the calculation of total number of SyRM parameters for for the demon-
strated pseudo-code. Note that the parameters ϑ1out , ϑkin are subtracted from the count
because they are constant and equal to zero (Table 1).

Table 4 lists the complexity comparison of the presented procedures and similar
approaches in [7,10,14]. The examples in [7,10,14] do not have a notch feature, so to
have a fair comparison, the notch is not included in the complexity calculation (Table 3).
Compared to [14], and [7], Zh, respectively, yields smaller complexity (2k), while CrVD,
HyVE, MZhVD have the same complexity as in [10].

Overall, the construction principle explained in Section 3 enables the higher degree of
design freedom. Considering that the simple barrier topologies are sub-optimal compared
to more complex types, developing the set of different parametrization methods with equal
parametric complexity is certainly a novel contribution.

Table 3. Calculation of total parameter number. Color coding is according to Figure 4 variables.

Sum: Description Symbol Topology

1 Min. angle ϑmin
2 Max. angle ϑmax

k + 2 Barrier angle in ϑ1..kin
2k + 2 Barrier angle out ϑ1..kout

2k + 2− 2 Remove constants ϑ1out = ϑkin = 0

2k - - Zh

4k
Barrier depths D1..kin HyVE
Barrier depths D1..kout CrVD

MZhVD

Table 4. Parametric complexity.

Topology Complexity k = 2 k = 3 k = 4

Zhukovsky; Gamba et al. [14] 3k 6 9 12
Circular; Stipetic et al. [10] 4k 8 12 16
Zhukovsky; Ban et al. [7] 2k + 1 5 7 9

Zh 2k 4 6 8

HyVE
4k 8 12 16CrVD

MZhVD
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7. Pseudo-Code Validation

After the implementation of the proposed pseudo-code, a set of questions naturally
arises. Which barrier topology yields the best performance for the given requirements?
Is Modified Zhukovsy barrier type better than alternative topologies? For this reason,
we have conducted a detailed optimization study based on meta-modeling (surrogate
modeling) approach which compared the different barrier topologies (details are available
in [21]).

The optimization process couples automated geometry generation (Matlab), elec-
tromagnetic finite element analysis (Ansys Motor-CAD), and metamodel optimization
(Ansys OptiSlang). Seven rotor topologies have been derived from circular, hyperbolic, and
Zhukovsky barrier types:

1. Circular concentric (CrC)
2. Circular variable depth (CrVD)
3. Hyperbolic with fixed eccentricity (HyFE)
4. Hyperbolic with variable eccentricity (HyVE)
5. Original Zhukovsky (Zh)
6. Modified Zhukovsky variable depth (MZhVD)
7. Modified Zhukovsky with equal barrier depth (MZhED)

The same optimization strategy (maximize torque per volume (TPV), minimize losses)
has been applied to all variants, and results prove that barrier type substantially affects the
final machine performance. For easier comparison, seven designs (one per topology) with
approximately the same losses (5200 W) have been selected (Figure 13, Table 5).

Performance wise, HyFE topology yields the worst results and is considered as baseline
design (Gain = 0%). Performance gain is calculated via: Gain = (Tavg/THyFE avg − 1) ·
100%. The best results are achieved by MZhVD topology. In relation to the worst (baseline)
topology, the performance gain is 14.9% and the power factor is increased from 0.61 to 0.69.
It is important to note that these comparisons are valid for design requirements presented
in [21]. Other combinations of optimization objectives and requirements might yield a
different results.

HyFE, CrC and MZhED are special case topologies already covered in CrVD, HyVE
and MzVD pseudo-code. Considering that stated topologies can be achieved by appropriate
combination of barrier depth parameters, they are not considered in this paper. The
summary of three best optimized cross-sections are provided on Figure 14.

Table 5. Optimization result comparison table [21].

Name Unit HyFE CrC HyVE CrVD Zh MZhED MZhVD

TPV Nm/dm3 32.5 33.1 34.3 35.4 36.2 36.4 37.3
Vactive dm3 6.47 6.47 6.47 6.47 6.47 6.47 6.47
Ploss kW 5188 5199 5209 5182 5188 5197 5184

Pmech kW 37.4 38.1 39.5 40.8 41.7 41.9 43.0
Tavg Nm 210.1 214.2 221.9 229.0 234.1 235.6 241.3
Tripp. % 12.1 14.1 11.7 12.7 9.7 9.3 13.7

n rpm 1700 1700 1700 1700 1700 1700 1700
ls mm 180 180 180 180 180 180 180
γ ◦ 57.9 60.3 61.4 62.5 61.8 61.8 62.9

Imax Arms 95.6 95.6 94.3 94.1 95.9 95.7 95.7
cos ϕ - 0.61 0.62 0.66 0.67 0.67 0.67 0.69
Gain % 0.0 1.9 5.6 9.0 11.4 12.1 14.9
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Figure 13. Validated Pareto fronts for each design variant [21].

Figure 14. Optimized cross section of three best topologies: (a) Zh; (b) MZhED; (c) MZhVD [21].

8. Conclusions

SyRM barrier generation procedure was studied in detail. A pseudo-code solution
that secures absolute feasibility, barrier topology complexity minimization , and simple
implementation is provided. Four smooth barrier types have been presented: circular
variable depth (CrVD), hyperbolic with variable eccentricity (HyVE), original Zhukovsky
(Zh) and modified Zhukovsky with variable depth (MZhVD). Absolute feasibility is a very
important feature because it enables the use of dimensionless parameters which secure code
robustness and design scalability to any physical dimension. Barrier topology complexity
has been minimized via a systematic approach to design automation (Section 3) and careful
analysis of construction features of each topology.

HyVE and CrVD topologies are more complex 4k while Zh has smaller complexity 2k.
On the other hand, in its original form, Zh type does not support barrier depth variability
which can be a design drawback. Therefore, we introduce a novel MZhVD topology based
on geometrical conformal mapping of the original Zh design. This modification provides
greater design freedom and sets MZhVD complexity to 4k (same as HyVE and CrVD).

Compared with other referenced topologies, the presented solutions offer higher
design freedom with smaller or equal parametric complexity.

It should be noted that construction of barrier fillets (Figure 4f) has not been covered
in this paper. Adding a precise fillet between two discrete intersecting lines is a rather



Machines 2022, 10, 206 20 of 22

complex problem, which deserves a stand-alone publication. A minimum example code
with detailed instructions is planned to be published in the near future.

Overall, the presented pseudo-code provides a valuable starting point for the designer
who wants to investigate different SyRM smooth barrier topologies.

The description and list of used variables has been added in the Appendix A.
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Abbreviations
The following abbreviations are used in this manuscript:

Abbreviation Description
EV Electric vehicle
FEA Finite element analysis
IPM Interior permanent magnet
IM Induction machine
CrC Circular concentric barrier
CrVD Circular variable depth barrier
HyFE Hyperbolic fixed eccentricity barrier
HyVE Hyperbolic variable eccentricity barrier
Zh Original Zhukovsky barrier
MZhED Modified Zhukovsky equal depth barrier
MZhVD Modified Zhukovsky variable depth barrier
PM Permanent magnet
PTO Power take off
e-PTO Electric power take off
SyRM Synchronous reluctance machine
TPV Torque per volume

Appendix A. Variable List

All variables have been listed by the order of appearance within text. Vector variables
are bolded. e.g., R is a variable vector, while R represents a scalar variable.

Table A1. List of variables.

No. Variable Description No. Variable Description

1 wc min Minimum flux carrier width 33 α1 Zh First rotation angle in Zh generation
2 Din Inner barrier depth parameters 34 α2 Zh Second rotation angle in Zh generation
3 Dout Outer barrier depth parameters 35 α1 CrVD First rotation angle in Zh generation
4 Dn Notch depth parameter 36 α1 HyVE First rotation angle in Zh generation
5 p Number of pole pairs 37 α1 MZhVD First rotation angle in MZhVD generation
6 k Number of flux barriers 38 α2 MZhVD Second rotation angle in MZhVD generation
7 ϑmin Minimum angular barrier span 39 r Radial Zhukovsky line coordinate vector
8 ϑmax Maximum angular barrier span 40 ϑ Angular Zhukovsky line coordinate vector
9 τpole Angle of one pole 41 C Zhukovsky line coefficient
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Table A1. Cont.

No. Variable Description No. Variable Description

10 α1 First rotation angle in example figure 42 ϑE Line starting point angular coordinates
11 E1..k temp Initial construction points 43 xEin Inner line starting point horizontal coordinates
12 ∆ϑr Available angular space 44 yEin Inner line starting point vertical coordinates
13 wbb 1..k Barrier bridge vector 45 x0 Circular barrier center coordinate vector
14 En Notch line starting point 46 Rr Circular barrier radius vector
15 ϑnotch Notch line starting point angular coordinate 47 emin Minimal eccentricity vector
16 Ein Inner barrier line starting point vector 48 rE Line starting point radial coordinate vector
17 Eout Outer barrier line starting point vector 49 xE Line starting point angular coordinate vector
18 ϑ1..k temp Initial barrier construction angular coord. 50 e Eccentricity vector
19 rin Inner barrier line starting point radial coord. 51 xd Left directrix of hyperbola
20 rout Outer barrier line starting point radial coord. 52 u Horizontal w-plane coordinate vector
21 ϑin Inner barrier line starting point angular coord. 53 v Vertical w-plane coordinate vector
22 ϑout Outer barrier line starting point angular coord. 54 XZhk z-plane Zh horizontal vertex vector
23 xin Inner barrier line intersection point vector 55 YZhk z-plane Zh vertical vertex vector
24 xout Outer barrier line intersection point vector 56 UZhk w-plane Zh horizontal vertex vector
25 Xin Inner barrier line horizontal vertex vector 57 VZhk w-plane Zh vertical vertex vector
26 Yin Inner barrier line vertical vertex vector 58 uZhk w-plane Zh intersections vector
27 Xout Outer barrier line horizontal vertex vector 59 uM w-plane shaft limit
28 Yout Outer barrier line vertical vertex vector 60 uin w-plane MZhVD inner barrier intersections
29 Xn Notch horizontal vertex vector 61 uout w-plane MZhVD outer barrier intersections
30 Yn Notch vertical vertex vector 62 T Period vector of MZhVD cosine offset
31 r1..kin Inner barrier fillet vector 63 f Frequency vector of MZhVD cosine offset
32 r1..kout Outer barrier fillet vector 64 ∆Dpth Barrier depth offset maximum vector
33 αF Final rotation angle 65 ∆ MZhVD Barrier depth offset vector
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