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Abstract: An advanced LKS (lane keeping system) for use on curving roads is presented to maintain
autonomous vehicle driving within the target lane, without unintentional lane departure. There
are the following two main objectives in designing this system: one is performing perfect lane
keeping and the other is ensuring the dynamic stability of the vehicle, especially when driving on a
curving and low-friction road with time-varying high speed. In this paper, a combined vehicle model,
consisting of a lane keeping model and a vehicle lateral dynamic model, is firstly introduced. Then, a
novel adaptive-weight predictive controller is used to calculate the desired steering angle and the
additional yaw moment which provide coordinated control forlane keeping and dynamic stability
control. Meanwhile, a square-root cubature Kalman filter-based vehicle sideslip angle observer, with
a strong tracking theory modification (ST-SRCKF), is established to estimate the sideslip angle during
the driving process. Finally, HIL (hardware-in-the-loop) tests and field tests are constructed, and the
results show the effectiveness of our proposed LKS controller and ST-SRCKF sideslip angle estimation.

Keywords: autonomous vehicle; lane keeping system; lateral dynamic stability; sideslip
angle estimation

1. Introduction

Intelligent transportation systems (ITS) represent a key research area in the automobile
industry and transportation industry, which use advanced communication technologies
and intelligent control methods to improve driving safety and transportation efficiency [1].
Meanwhile, V2X communication technology and intelligent driving technology are es-
sential in ITS. The authors of [2] propose an advanced mmWave routing method with
beam alignment for V2X communication, which shows better QoS performance during
communication. An LSTM-GAN-based deep reinforcement learning method is designed
in [3], to provide a security mechanism for 5G communication links, and simulation results
have validated that the autonomous vehicle can successfully overcome the attacks and
secure its dynamic system by using this method. Intelligent driving aims to improve fuel
economy, driving comfort, and driving safety, and has become a key research area in both
academic fields and industry fields [4,5]. For example, LKA (lane keeping assist), as one
of the critical technologies of the ADAS (advanced driving assistant system), shows great
performance in avoiding road departure and frontal crashes [6]. The authors of [7] tested
LKA in two-lane rural roads with different geometric alignments and sections, character-
ized by variable maintenance conditions for pavements and markings. In general, LKA is
constructed to control the car to track alongside the centerline of the desired lane accurately,
under driver–automation cooperation, which is the most effective way to avoid/reduce
unintentional lane departures due to the failure of the human driver’s performance (such
as inattention, drowsiness, and illness) [8–10]. The conflict of driving authority between
machine and human drivers is still a challenging issue. In [11], a fictive driver activity
parameter was introduced into the road–vehicle system to release such an interaction
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between the human driver and the automation. To avoid conflict situations, [12] proposed
a control strategy, allowing both the human driver and the automation system to take
actions with the steering wheel, simultaneously and appropriately. The shared control
system, consisting of a driver model and a decision-making algorithm, was designed to
complete appropriate driving authority transfer, without generating bad interference [13].
Interestingly, there is no need to consider this conflict when designing LKS for autonomous
vehicles, due to there being no driver operation [14].

Meanwhile, dynamic stability issues occur when an autonomous vehicle is driving
at high speed on a curving road, which must be considered when designing an LKS con-
troller. Thus, a novel high-speed LKS, with dynamic stability control, is proposed in this
paper, which not only ensures perfect lane keeping performance, but also maintains lateral
dynamic stability. For ensuring lateral dynamic stability, DYC (direct yaw-moment con-
trol), as a key function of ESC (electronic stability control), is a general method [15]. Some
researchers have applied DYC to ensure driving safety when a vehicle loses dynamic stabil-
ity. An integrated system, consisting of AFS (active front-wheel steering) and DYC, was
designed to control the vehicle yaw rate and the sideslip angle by using a model-matching
controller in [16]. A multiple-objective ACC (adaptive cruise control system), combined
with DYC, was presented to maintain the lateral dynamic stability and increase the ride
comfort under the premise of car-following performance [17]. Meanwhile, the lateral mo-
tion and stability of 4WID-EVs were ensured by combining electric power steering systems
with DYC [18]. However, DYC may damage lane keeping performance without cooperation
with the LKS. Thus, lane keeping systems must be designed through coordination with
dynamic stability control, to ensure both lane keeping performance and dynamic stability.

Moreover, understanding how to estimate the vehicle sideslip angle accurately is
essential for vehicle dynamic stability control. It is impossible to measure it directly for
an autonomous vehicle, due to the large size and high price of the sensor. Some sideslip
angle estimation strategies have been proposed in other literature. For example, a sideslip
angle estimation algorithm, based on the data fusion of GPS and INS, was designed
to improve the estimation accuracy in [19], but it relied on the longitudinal and lateral
velocities calculated by the KF method, which is not robust against parameter variations
(e.g., changes in tire, road and driving conditions). In addition, a new variable-structure
EKF observer, integrated with the sideslip angle rate feedback algorithm, was established
in [20], to estimate the vehicle sideslip angle on a low-friction road. However, the EKF
could only ensure first-order accuracy, due to the linearization method, and the error could
be large when a vehicle is running in a state of instability. In order to construct a more
robust and accurate sideslip angle observer, the square-root cubature Kalman filter, with a
strong tracking theory modified method (ST-SRCKF), is introduced to estimate the sideslip
angle based on a nonlinear vehicle dynamic model.

The overall architecture of the proposed LKS is presented in Figure 1, which mainly
includes the following three modules: the sensor and estimator, and the upper controller
and the lower controller. Meanwhile, we focused on how to construct the control strategy
of LKS and sideslip angle estimation; how to identify lane line and estimate road friction
coefficients in the sensor and estimator module will not be key points in this paper. Algo-
rithm 1 shows the brief processing steps of the proposed LKS controller. According to the
overall process, the remainder of this paper is organized as follows: Section 2 presents the
vehicle lateral dynamic model and the vehicle lane keeping model. Section 3 introduces the
design of the high-speed curving LKS, based on an adaptive-weight predictive controller,
in detail. How to establish an ST-SRCKF sideslip angle estimator is shown in Section 4. The
performance of the proposed LKS and sideslip angle estimator is verified by HIL tests and
a field test in Section 5. The conclusion is drawn in Section 6.
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Algorithm 1: The brief processing of proposed LKS controller

Proposed LKS controller
Input: µ, ω, vx, vy, ey, eϕ, ρL, ωij Output: δ f , Pij
Step 1: Construct vehicle dynamic model and lane keeping model
Step 2: Design upper controller

1. Construct a predictive controller to realize both lane keeping control and vehicle dynamic
control

2. Choose fuzzy-based adaptive-weight method for improving predictive control performance

Step 3: Realize lower controller

1. Convert desired steering angle to steering motor torque
2. Realize additional yaw moment by allocating different wheel cylinder pressure to four

wheels

Step 4: Build sideslip angle estimator by combining strong tracking theory with square-root
cubature Kalman filter method
Step 5: Results estimation
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Figure 1. Overall structure of proposed LKS.

2. Related Models
2.1. Vehicle Dynamic Model

In order to ensure the accuracy of estimating the vehicle sideslip angle, a four-wheeled
vehicle model is introduced, as shown in Figure 2. The longitudinal, lateral, and yaw
motion functions are shown as follows:

m(
.
vx − vyω) = (Fx,rl + Fx,rr) + (Fx, f l + Fx, f r) cos δ− (Fy, f l + Fy, f r) sin δ (1)

mvx(
.
β + ω) = (Fy,ri + Fy.rr) + (Fx, f l + Fx, f r) sin δ + (Fy, f l + Fy, f r) cos δ (2)

Iz
.

ω = (Fy, f l + Fy, f r)a cos δ + (Fy, f l − Fy, f r)
T
2 sin δ− (Fy,rl + Fy,rr)b

+(Fx, f l + Fx, f r)a sin δ− (Fx, f l − Fx, f r)
T
2 cos δ− (Fx,rl − Fx,rr)

T
2

(3)

where m is the vehicle mass; Fy, f l , Fy, f r, Fy,rl , Fy,rr are the lateral forces of the front left wheel,
front right wheel, rear left wheel and rear right wheel, respectively; Fx, f l , Fx, f r, Fx,rl , Fx,rr
are the longitudinal forces. a, b represent the distance from the center of mass to the front
and rear axles, respectively, T is the wheel base, δ is the steering angle, and Iz is the inertia
moment about the vehicle vertical axle.
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Meanwhile, in order to calculate the tire forces of each wheel in nonlinear regions, the
MF (magic formula) tire model [21] is used in this paper, as follows:

y(x) = D sin{Carctan[B(x + sh)− E(B(x + sh)− arctan(B(x + sh)))]}+ sv (4)

If y(x) represents the lateral tire force, x should be set as the wheel sideslip angle αij.
Moreover, if y(x) represents the longitudinal force, x is set as the longitudinal slip ratio λij,
which can be calculated as follows:

α f j =
vy + aω

vx, f j − δ
, αrj =

vy − bω

vx, f j
(5)

vx,ij = vx ∓ωT/2, vω,ij = ωij·R (6)

λij =
max(vωij, vxij)−min(vωij, vxij)

max(vωij, vxij)
sgn(vωij − vxij) (7)

vx,ij is the longitudinal velocity of each wheel and vω,ij is the wheel velocity. The
longitudinal force is calculated as follows:{

C = b0, D = b1F2
z + b2Fz

B = (b3F2
z +b4Fz)

CDeb5Fz , E = b6F2
z + b7Fz + b8

(8)

The lateral force is calculated as follows:{
C = a0, D = µ(a1F2

z + a2Fz)

B = a3 sin[2arctan(Fz/a4)]/CD, E = a6Fz + a7
(9)

The factors a0 − a7 and b0 − b8 can be determined by tire force tests.
The four-wheeled vehicle dynamic model is mainly used to estimate the vehicle sideslip

angle. Its nonlinearity and high calculation burden lead to great difficulty in online optimiza-
tion for dynamic stability control. Thus, a 2DOF dynamic model (as shown in Figure 3) is
established, which has been extensively used for vehicle dynamic control [18,21–23].

Iz
.

ω =
2(bCr − aC f )

vx
β−

2(a2C f + b2Cr)

vx
ω + 2aC f δ + Mz (10)

mvx
.
β = −2(C f + Cr)β + (

−2(bCr − aC f )

vx
−mvx)ω + 2C f δ (11)

where C f and Cr are the cornering stiffness of the front and rear wheels, respectively, and
Mz represents the additional yaw moment.
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2.2. Lane Keeping Model

Figure 4 shows the lane keeping model, which reveals the geometric relationship
between the centerline of the target lane and the autonomous vehicle. eϕ is the heading
offset, which is shaped by the tangential direction of the required lane centerline and the
vehicle’s heading at a previewed distance LP. ey presents the lateral deviation, which is the
distance from the current vehicle position to the required lane at the previewed point. ρL is
the curvature of the required lane centerline. The lane keeping model can be calculated as
follows [24–26]:

.
eϕ = vxρL −ω (12)

.
ey = vxeϕ − vxβ−ωLP (13)
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3. The Design of the Proposed LKS

When an autonomous vehicle runs on a curving road at time-varying high speed, the
vehicle may lose lateral dynamic stability because of inadequate tire lateral force. Thus, the
lane keeping performance and the lateral dynamic stability must be considered at the same
time in the process of designing the LKS. Based on the above description and discussion, an
advanced LKS integrated with dynamic control is proposed, which has a hierarchical control
architecture, consisting of an upper controller and a lower controller. An adaptive predictive
control-based upper controller calculates the desired steering angle and additional yaw
moment by minimizing the cost function, subject to certain I/O constraints. The lower
controller converts the desired steering angle and yaw moment into the corresponding
driving torque of the steering motor and different brake pressures of the four wheels.
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3.1. Upper Controller

In order to solve multi-objective optimization tasks using a predictive framework,
a combined model should be established first. Combined with Equations (10)–(13), a
four-state space model can be obtained, as shown in Equations (14) and (15). χ is the state
vector, χ =

[
ey, eϕ, β, ω

]T , ud denotes the external disturbance, which is defined as
ud = ρL, uc represents the control input, uc = [δ, Mz]

T , and Y is the control output,
Y =

[
ey, eϕ, β, ω

]T .
.
χ = Aχ + Bud + Cuc (14)

Y = Dχ (15)

where

A =


0 vx −vx −Ld
0 0 0 −1

0 0
−2(C f +Cr)

m·vx

−2(bCr−aC f )
m·v2

x
− 1

0 0
2(bCr−aC f )

vx Iz

−2(a2C f +b2Cr)
vx Iz

 (16)

B =


0 0
0 0

2C f
mvx

0
2aC f

Iz
1
Iz

C =


0
vx
0
0

D =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (17)

In order to reduce, or even eliminate, the static error, an incremental model is obtained
from Equation (14). Meanwhile, a discrete model can be calculated by adopting a Euler
algorithm in Equation (14), with the sampling frequency 1/Ts. Then, a discrete, incremental
form of control model can be established as follows [27]:

∆χ(k + 1) = Ak∆χ(k) + Bk∆ud(k) + Ck∆uc(k) (18)

where 

Ak = eATs

Bk =
∫ Ts

0 eAσdσ·B
Ck =

∫ Ts
0 eAσdσ·C

∆χ(k) = χ(k)− χ(k− 1)
∆ud(k) = ud(k)− ud(k− 1)
∆uc(k) = uc(k)− uc(k− 1)

(19)

Based on Equation (15), the control output Y can be transformed into an incremental
form as follows:

Y(k) = Dk∆χ(k) + Y(k− 1) (20)

In order to derive the predictive equation of the control system, we make the fol-
lowing assumptions: (1) beyond the control horizon Nc, the control variables will remain
unchanged, i.e., ∆uc(k + i) = 0, i = Nc, Nc + 1, · · ·Np − 1. The external disturbance
remains constant after time k, i.e., ∆ud(k + i) = 0, i = 1, 2, · · ·Np − 1. Based on the
assumptions mentioned above, we can deduce the following predictive equations of the
stated increments:
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

∆χ(k + 1 | k) = Ak∆χ(k) + Bk∆ud(k) + Ck∆uc(k)
∆χ(k + 2 | k) = A2

k∆χ(k) + AkCk∆uc(k) + Ck∆uc(k + 1)
+AkBk∆ud(k)

∆χ(k + 3 | k) = A3
k∆χ(k) + A2

kCk∆uc(k) + AkCk∆uc(k + 1)
+Ck∆uc(k + 2) + A2

k Bk∆ud(k)
...

∆χ(k + Nc | k) = ANc
k ∆χ(k) + ANc−1

k Ck∆uc(k) + · · ·+
Ck∆uc(k + Nc − 1) + ANc−1

k Bk∆ud(k)
...

∆χ(k + Nc | k) = A
Np
k ∆χ(k) + A

Np−1
k Ck∆uc(k) + · · ·+

A
Np−Nc+1
k Ck∆uc(k + Nc − 1) + A

Np−1
k Bk∆ud(k)

(21)

The Np-step prediction output vector YNp(k + 1|k) and Nc-step input vector ∆Uc(k)
can be defined as follows:

YNp(k + 1|k) def
=


Y(k + 1|k)
Y(k + 2|k)

...
Y(k + Np

∣∣k)


Np × 1

(22)

∆Uc(k)
def
=


∆uc(k)

∆uc(k + 1)
...

∆uc(k + Nc − 1)


Nc × 1

(23)

The prediction output vector YNp(k + 1|k) can be obtained as shown in Equation (24),
as follows:

YNp(k + 1|k) = Sχ∆χ(k) + SYY(k) + Sd∆ud(k) + Sc∆Uc(k) (24)

where

Sχ =


Dk Ak

∑2
i = 1 Dk Ai

k
...

∑
Np
i = 1 Dk Ai

k


Np × 1

(25)

SY =


INc×Nc

INc×Nc
...

INc×Nc


Np×1

(26)

Sd =


DkBk

∑2
i = 1 Dk Ai−1

k Bk
...

∑
Np
i = 1 Dk Ai−1

k Bk


Np×1

(27)
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Sc =



DkCk 0 0 i 0
∑2

i = 1 Dk Ai−1
k Ck DkCk 0 · · · 0

...
...

...
...

...

∑Nc
i = 1 Dk Ai−1

k Ck ∑Nc−1
i = 1 Dk Ai−1

k Ck · · · . . . DkCk
...

...
...

...
...

∑
Np
i = 1 Dk Ai−1

k Ck ∑
Np−1
i = 1 Dk Ai−1

k Ck · · · · · · ∑
Np−Nc+1
i = 1 Dk Ai−1

k Ck


(28)

The proposed LKS not only ensures perfect lane keeping performance, but also guar-
antees effective lateral dynamic stability, especially when an autonomous vehicle is driving
at high speed on a curving road. Thus, a cost function is defined as follows, to achieve
multi-objective optimization:

J(χ(k), ∆Uc(k)) = ‖ΦY

(
YNp(k + 1|k)− R(k + 1)

)
‖2 + ‖Φc∆Uc(k)‖2

with
umin ≤ u(k + i|k) ≤ umax
Ymin ≤ Y(k + i|k) ≤ Ymax

∆umin ≤ ∆u(k + i|k) ≤ ∆umax

(29)

There are two items on the right side of the cost function. The first is to punish the
tracking performance error and dynamic stability error. The second is to punish the change
in control input, to ensure ride comfort. R(k + 1) represents the control output reference
matrix, which is shown in Equation (30), as follows:

R(k + 1) =


r(k + 1)
r(k + 2)

...
r
(
k + Np

)
 (30)

In this paper, we set the reference values r(k + i) =
[

0 0 0 0
]T , i = 1, 2, · · · , Np.

ΦY and Φc are weighted matrices of the control outputs and increments in the control
inputs, respectively, which can be presented in a standard form, as follows:

ΦY = diag
(

ΦY,1, ΦY,2, · · · , ΦY,Np

)
(31)

Φc = diag(Φc,1, Φc,2, · · · , Φc,Nc) (32)

where

ΦY,i =


εey 0 0 0
0 εeϕ 0 0
0 0 εβ 0
0 0 0 εω

, i = 1, 2, · · · , Np (33)

ΦY,i =

[
εδ 0
0 εMz

]
, i = 1, 2, · · · , Nc (34)

The adaptive-weight method is beneficial for improving the predictive control per-
formance. For example, when a vehicle is running in a state of dynamic instability, larger
values of εβ and εω are meaningful. When running with stability, more accurate lane keep-
ing performance is needed. Thus, an FLC-based (Fuzzy logic control) adaptive-weight
method is introduced in this paper. First, we calculate the lane keeping index θyϕ and the
dynamic stability index θβω as follows:

θyϕ = e2
y + µyϕe2

ϕ (35)
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θβω = ω2 + µβω β2 (36)

where µyϕ = 2 and µβω = 100 are weight coefficients. Two fuzzy control inputs, including
the lane keeping index ratio kθyϕ and the dynamic stability index ratio kθβω, are defined
in Equation (37). All the inputs of the fuzzy controller can be fuzzified into the following
three fuzzy sets: ZO (zero), PS (positive small), and PB (positive big). We define the lane
keeping weight ratio kεyϕ and dynamic stability weight ratio kεβω as fuzzy control outputs
(shown in Equation (38)), and the output is fuzzified into the following four fuzzy sets: ZO
(zero), PB (positive big), PM (positive medium), PS (positive small).{

kθyϕ = θyϕ/ θyϕ,max
kθβω = θβω/ θβω,max

(37)

{
kεyϕ = εyϕ/ εyϕ,max
kεβω = εβω/ εβω,max

(38)

Further, θyϕ,max = 5 and θβω,max = 400 are the maximum measurements of the lane
keeping index and the dynamic stability index. Additionally, εyϕ,max= 10 and εβω,max = 1
are the maximum measurements of lane keeping weight and dynamic stability weight. The
membership functions associated with the inputs and outputs of the fuzzy controller are
shown in Figure 5.

Machines 2022, 10, x FOR PEER REVIEW 9 of 19 
 

 

where 𝜇௬ఝ = 2 and 𝜇ఉఠ = 100 are weight coefficients. Two fuzzy control inputs, includ-
ing the lane keeping index ratio 𝑘஬௬ఝ and the dynamic stability index ratio 𝑘஬ఉఠ, are de-
fined in Equation (37). All the inputs of the fuzzy controller can be fuzzified into the fol-
lowing three fuzzy sets: ZO (zero), PS (positive small), and PB (positive big). We define 
the lane keeping weight ratio 𝑘க௬ఝ and dynamic stability weight ratio 𝑘கఉఠ as fuzzy con-
trol outputs (shown in Equation (38)), and the output is fuzzified into the following four 
fuzzy sets: ZO (zero), PB (positive big), PM (positive medium), PS (positive small). ቊ𝑘஬௬ఝ =  ϑ௬ఝ/ ϑ௬ఝ,௠௔௫𝑘஬ఉఠ =  ϑఉఠ/ ϑఉఠ,௠௔௫ (37)

ቊ𝑘க௬ఝ =  ε௬ఝ/ ε௬ఝ,௠௔௫𝑘கఉఠ =  εఉఠ/ εఉఠ,௠௔௫ (38)

Further,  ϑ௬ఝ,௠௔௫ = 5 and  ϑఉఠ,௠௔௫ = 400 are the maximum measurements of the 
lane keeping index and the dynamic stability index. Additionally,  ε௬ఝ,௠௔௫ = 10 and  εఉఠ,௠௔௫ = 1 are the maximum measurements of lane keeping weight and dynamic stabil-
ity weight. The membership functions associated with the inputs and outputs of the fuzzy 
controller are shown in Figure 5. 

ZO PS PB

 

ZO PS PB

 

ZO PS PM PB

 
(a) (b) (c) 

Figure 5. Membership functions of inputs and outputs: (a) the membership function of 𝑘௬ఝ, (b) the 
membership function of 𝑘ఉఠ, and (c) the membership function of the outputs. 

The Fuzzy rules that consider correlations between the inputs and the outputs are 
listed in Tables 1 and 2. 

Table 1. Fuzzy rules of the lane keeping weight ratio. 𝒌𝛆𝒚𝝋  𝒌𝛝𝒚𝝋 
ZO PS PB 𝑘஬ఉఠ 

ZO ZO PM PB 
PS PS PS PB 
PB ZO PS PM 

Table 2. Fuzzy rules of the dynamic stability weight ratio. 𝒌𝛆𝜷𝝎 
𝒌𝛝𝒚𝝋 

ZO PS PB 𝑘஬ఉఠ 
ZO ZO PS ZO 
PS PM PS PS 
PB PB PB PM 

The FLC-based adaptive-weight method calculates 𝑘க௬ఝ and 𝑘கఉఠ online. Then, the 
weight values in Equations (34) and (35) can be obtained by calculating the following 
equations: 

Figure 5. Membership functions of inputs and outputs: (a) the membership function of kyϕ, (b) the
membership function of kβω , and (c) the membership function of the outputs.

The Fuzzy rules that consider correlations between the inputs and the outputs are
listed in Tables 1 and 2.

Table 1. Fuzzy rules of the lane keeping weight ratio.

kεyϕ
kθyϕ

ZO PS PB

kθβω

ZO ZO PM PB
PS PS PS PB
PB ZO PS PM

Table 2. Fuzzy rules of the dynamic stability weight ratio.

kεβω

kθyϕ

ZO PS PB

kθβω

ZO ZO PS ZO
PS PM PS PS
PB PB PB PM
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The FLC-based adaptive-weight method calculates kεyϕ and kεβω online. Then, the
weight values in Equations (34) and (35) can be obtained by calculating the following equations:

εey = εeϕ = kεyϕ ∗ εyϕ,max
εβ = εω = kεβω ∗ εβω,max

εδ = 2
εMz = 2

(39)

We define an auxiliary variableH to solve the optimization problem, as follows:

H

 ΦY

(
YNp(k + 1|k)− R(k + 1)

)
Φc∆Uc(k)

 (40)

The new form of cost function can be constructed as follows:

J(χ(k), ∆Uc(k)) = HTH (41)

where
H = AH∆Uc(k)− b,

AH =

[
ΦYSc

Φc

]
, b =

[
ΦY0(k + 1|k)

0

]
,

0(k + 1|k) = R(k + 1)− Sχ∆χ(k)− SYY(k)− Sd∆ud(k)

(42)

The multi-objective optimization problem can be transformed as follows:

min
∆Uc(k)

HTH (43)

Considering the extremum condition of Equation (41), we can obtain the following equation:

dHTH
d∆Uc(k)

= 2
(

dH
d∆Uc(k)

)T
H = 2AHT(AH∆Uc(k)− b) = 0 (44)

By solving Equation (44), the extremum can be calculated as in Equation (45). Because
the second derivative ofHTH is always greater than zero, the solution to Equation (45) is
the optimization of the values.

∆U∗c (k) =
(

ST
c ΦT

YΦYSc + ΦT
c Φc

)−1
ST

c ΦT
YΦY0( k + 1|k ) (45)

3.2. Lower Controller

The desired steering angle and the additional yaw moment generated from the upper
controller are used to ensure the lane keeping performance and to stabilize the vehicle,
respectively. The desired steering angle can be realized by controlling the torque of the EPS
motor. The additional yaw moment can be applied to the vehicle by exerting differential
brake forces on each of the four wheels. According to the Newtonian mechanics formula,
we can obtain the following equations:

max = fx, f l + fx, f r + fx,rl + fx,rr (46)

Mz =
(

fx, f r + fx,rr

)
T −

(
fx,rl + fx, f l

)
T (47)

where ax represents the acceleration, and fx, f l , fx, f r, fx,rl , and fx,rr are the longitudinal
tire forces of the left front wheel, right front wheel, left rear wheel and right rear wheel,
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respectively. The differential braking strategy is used to calculate the braking pressure of
each wheel.

4. ST-SRCKF-Based Sideslip Angle Estimator

The sideslip angle and yaw rate are crucial for vehicle dynamic stability control. The
yaw rate can be obtained through a yaw rate sensor fixed on the vehicle. However, it is
impossible to measure the sideslip angle directly, due to the expense of the sensor. Thus,
an economical and accurate sideslip angle observer is established, based on ST-SRCKF,
in this section. First, a suboptimal fading factor is introduced to the covariance matrix of
state prediction to adjust the gain matrix, which is calculated using a strong tracking theory.
Next, an ST-SRCKF sideslip angle observer is established to estimate the sideslip angle.

4.1. Strong Tracking Theory

Based on the four-wheeled vehicle dynamic model (Equations (2) and (3)), a discrete
form system model, with a modified Euler method, is established as follows:{

Xk+1 = f (Xk) + wk
Zk = hk(Xk) + vk

(48)

where Xk+1 = [βk+1, ωk+1]
T is the estimated system state and Zk = [ay,k, ωk] denotes the

measured state. wk ∼ N(0, Qk) and vk ∼ N(0, Rk) are the model noise and measurement
noise, which are assumed as gaussian white noise with zero mean and as independent of
each other. Moreover, f (Xk) can be calculated as shown in Equation (49), as follows:

f (Xk) =


βk + ((Fy,ri + Fy.rr) + (Fx, f l + Fx, f r) sin δ + (Fy, f l + Fy, f r) cos δ

−mvx,kγx,k)dt/mvx,k
ωk + ((Fy, f l + Fy, f r)a cos δ + (Fy, f l − Fy, f r)

T
2 sin δ− (Fy,rl + Fy,rr)b

+(Fx, f l + Fx, f r)a sin δ− (Fx, f l − Fx, f r)
T
2 cos δ− (Fx,rl − Fx,rr)

T
2 )dt/Iz

 (49)

The strong tracking theory is described as follows [28]:

X̂k+1,k = f (X̂k)
Pk+1|k = λk+1φk+1|kPkφT

k+1|k + Qk

Ẑk+1|k = hk+1X̂k+1,k
X̂k+1 = X̂k+1,k + Kk+1(Zk+1 − Ẑk+1|k)
Kk+1 = Pk+1|k HT

k+1(Hk+1Pk+1|k HT
k+1 + Rk+1)−1

Pk+1 = (In∗n − Kk+1Hk+1)Pk+1|k

(50)

In addition, λk+1 is the fading factor. In order to improve the instantaneity of the algo-
rithms, the suboptimal algorithm is applied to calculate the fading factor [29], as follows:

λk+1 =

{
Ck+1, i f _Ck+1 > 1
1, i f _Ck+1 ≤ 1

(51)

Ck+1 = tr[Nk+1]/tr[Mk+1]
= tr[Vk+1 − Hk+1Qk HT

k+1 − Rk+1]/tr[Hk+1φk+1|kPkφT
k+1|k HT

k+1]

=
tr[Vk+1−[PZ,k+1|k ]

T [(Pk+1|k)
−1]

T
Qk [Pk+1|k ]

−1PXZ,k+1|k−Rk+1]

tr[PZ,k+1|k−Vk+1+Nk+1]

(52)

where tr[∗] denotes the matrix trace, and Vk+1 is the covariance matrix of the real output
residual sequence, which can be calculated as follows:

Vk+1 =

{
e1e1

T , i f _k = 0
ηVk+ek+1ek+1

T

1+η , i f _k ≥ 1
(53)
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where η = 0.95 is the forgetting factor and ek+1 = Zk+1 − Ẑk+1|k presents the theoretical
output residual sequence.

4.2. ST-SRCKF Estimator

The strong tracking theory is sensitive to measurement noise, which leads to a re-
duction in tracking accuracy, but it has the ability to obtain the orthogonality of the resid-
ual sequence. Meanwhile, SRCKF is robust to measurement noise. Thus, a square-root
cubature Kalman filter-based estimator, with a modified strong tracking theory, is estab-
lished to improve the prediction accuracy and filter stability, which is described in the
following section.

4.2.1. Time Update

1. The cubature points and propagated cubature points are calculated as follows:

Xj,k|k = Sk|kθj + X̂k|k, j = 1, 2, · · · , i (54)

X∗
j,k+1|k

= f (Xj,k|k), j = 1, 2, · · · , i (55)

where Xj,k|k is the cubature point, X∗
j,k+1|k

is the propagated cubature point, i = 2n

and n denote the system state dimension, θj =
√

n/2·[1]j is the basic cubature point,
and [1]j denotes the jth point from set [1].

2. The predicted state can be calculated as follows:

X̂k+1|k =
2n

∑
j = 1

ωjX*
j,k+1|k (56)

3. The square-root coefficient of the prediction error covariance matrix can be calculated
as follows:

Sk+1|k = Tria([X∗k+1|k, SQ,k]) (57)

where SQ,k is the square-root coefficient of Qk, and Qk = SQ,kST
Q,k, ωj = 1/2n

means the weight coefficient, Tria() presents a general triangularization algorithm [29],
and X∗k+1|k can be described as follows:

X∗k+1|k =
1√
2n

[X∗1,k+1|k− X̂k+1|k, X∗2,k+1|k− X̂k+1|k, · · · , X∗2n,k+1|k− X̂k+1|k] (58)

4. The prediction error covariance matrix can be calculated as follows:

Pk+1|k = Sk+1|kST
k+1|k (59)

4.2.2. Measurement Update

1. The cubature points and propagated cubature points can be calculated as follows:

Xj,k+1|k = Sk+1|kθj + X̂k+1|k, j = 1, 2, · · · , i (60)

Zj,k+1|k = hk+1(Xj,k+1|k), j = 1, 2, · · · , i (61)

2. The predicted measurement can be calculated as follows:

Ẑk+1|k =
2n

∑
j = 1

ωjZj,k+1|k (62)
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3. The innovation covariance matrix and its square-root coefficient are calculated
as follows:

SZ,k+1|k = Tria([Z∗k+1|k, SR,k+1]) (63)

where SR,k is the square-root coefficient of Rk, with Rk+1 = SR,k+1ST
R,k+1, and the

innovation covariance matrix PZ,k+1|k can be described as follows:

PZ,k+1|k = SZ,k+1|kST
Z,k+1|k (64)

4. The cross-covariance matrix can be calculated as follows:{
PXZ,k+1|k = Xk+1|kZ∗T

k+1|k
Xk+1|k = 1√

2n
[X1,k+1|k − X̂k+1|k, X2,k+1|k − X̂k+1|k, · · · , X2n,k+1|k − X̂k+1|k]

(65)

5. The fading factor λk+1, based on Equations (51)–(53), is calculated.

6. The prediction error covariance matrix, with the modified fading factor and its square-
root coefficient, is calculated as follows:

P�k+1|k = λk+1(Pk+1|k −Qk) + Qk (66)

P�k+1|k = S�k+1|kS�T
k+1|k (67)

7. The modified square-root coefficient of innovation covariance matrix S�Z,k+1|k and
the cross-covariance matrix P�XZ,k+1|k are calculated by introducing the modified
prediction error covariance matrix to Equations (60)–(65).

8. The gain matrix and evaluate cross-covariance matrix are calculated as follows:

Kk+1 = (P�XZ,k+1|k/S�T
Z,k+1|k)/S�Z,k+1|k (68)

X̂k+1k+1 = X̂k+1k + Kk+1

(
Zk+1 − Ẑ0

k+1|k

)(
P0

XZ,k+1|k/S0T
Z,k+1k

)
/S0

Z,k+1|k (69)

9. The square-root coefficient of error covariance matrix is estimated as follows:

Sk+1|k+1 = Tria([X�k+1|k − Kk+1Z�k+1|k, Kk+1SR,k+1]) (70)

5. Results and Discussion

We compared the estimation performance of the ST-SRCKF-based sideslip angle
estimator with that of an EKF in a field test, and the results verified the effectiveness of our
proposed observer. Meanwhile, HIL tests were carried out to verify the superiority of our
proposed LKS controller in lane keeping and vehicle dynamic stability.

5.1. Sideslip Angle Estimation

Figure 6 shows the experimental vehicle. Field tests were performed on the ice-cream
road with a friction coefficient of 0.35. During the testing process, the driver controlled
the steering wheel angle and velocity by himself (Figure 7 shows the steering wheel
angle and Figure 8 presents the vehicle speed). The testing data were used to validate
the performance of our proposed ST-SRCKF-based sideslip angle observer, as shown in
Figure 9. In a word, our proposed ST-SRCKF observer performs better than an EKF, and it
shows strong robustness to estimation divergence under severe conditions. For example,
violent steering action and acceleration/deceleration operation were conducted after 10 s,
and the real maximum sideslip angle reached −8.816 degree. Our ST-SRCKF estimator
obtained –9.238 degree for the maximum sideslip angle, and the estimation error was
less than 4.78%, which highlights that the ST-SRCKF observer has great accuracy when
estimating the sideslip angle. However, the EKF-based observer only obtained −15.212
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degree in estimating the maximum sideslip angle, and the error was more than 38.52%,
which verifies that our ST-SRCKF observer performs better than an EKF.
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5.2. Lane Keeping Performance

For confirming the effectiveness of accurate lane keeping and strong dynamic stability
of our proposed LKS, two compared controllers were designed; the first controller was a tra-
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ditional LKS, without dynamic control. We set the weights to εey = 10, εeϕ = 10, εβ = 0,
εω = 0, and εδ = 2, εMz = 2 in Equations (33) and (34). The other is a traditional LKS
with DYC. A severe testing condition was established, where the speed changed between
80 km/h and 100 km/h. Figure 10 shows a kind of HIL platform, and Table 3 shows the
brief road geometry characteristics for high-speed lane keeping testing in Carsim.
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Table 3. Road geometry characteristics.

Road Type Highway

Lane number Two

Maximum curvature 0.0281

Minimum curvature −0.029

Road length 500 m

The testing results are presented in Figures 11–17. Figure 11 shows the reference lane
centerline and the trajectories controlled by our proposed LKS, a conventional LKS and
an LKS + DYC. In Figure 11, the trajectory without DYC deviates from the reference lane
at X = 169 m, which means that the vehicle slips seriously. The yaw rate and steering
angle are shown in Figures 13 and 15, respectively. However, the trajectory controlled
by our proposed controller and the LKS + DYC can track the reference lane accurately.
Furthermore, the maximum lateral error from the reference centerline controlled by our
proposed controller is less than 0.1 m, and that of the LKS + DYC is 0.318 m. Based on
the above analysis, we can observe that the proposed LKS controller has a better lane
keeping performance.
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The comparison of dynamic stability performance with three controllers is shown in
Figures 13 and 14, which present the yaw rate and sideslip angle, respectively. We can
conclude, from these figures, that the vehicle with the traditional LKS loses its dynamic
stability after 6 s, and the curves of its sideslip angle and yaw rate vibrate sharply. On the
contrary, the vehicle dynamic stability is ensured effectively by our proposed controller
and the LKS + DYC during the whole lane keeping process. In Figure 13, the maximum
yaw rate with our proposed LKS is less than 20 degree/s, but the maximum controlled by
the conventional LKS is over 35 degree/s. As shown in Figure 14, the maximum sideslip
angle controlled by our proposed controller is less than 2 degree, which means that the
vehicle maintains lateral dynamic stability during the steering process with time-varying
high speed. However, the sideslip angle by the traditional LKS diverges after 6 s. Moreover,
our proposed controller has a better dynamic stability performance than that of the LKS +
DYC. For example, at t = 6.9 s, the vehicle controlled by our LKS maintains strong dynamic
stability, but a big slip appears to be controlled by the LKS+DYC, due to a contradiction
between the lane keeping and dynamic stability controls. More precisely, at t = 6.9 s, the
conventional LKS calculates a front steering angle of δ = −1.638 degree to realize accurate
lane keeping. Meanwhile, the DYC also applies significant brake pressure to maintain
the vehicle stability, as shown in Figure 17. The steering operation and braking operation
are contradictory to dynamic stability control without coordination, which leads to slip.
However, our proposed LKS can coordinate the steering operation and braking operation
accurately, to maintain lane keeping and vehicle dynamic stability.
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6. Conclusions

An advanced LKS with sideslip angle estimation is introduced in this paper, designed
to keep a vehicle tracking within the desired lane, and maintain dynamic stability. First,
the vehicle–road model and the vehicle dynamic model are established. Based on the
models mentioned above, the adaptive-weight predictive controller is used to calculate the
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desired steering angle and the additional yaw moment. Then, an ST-SRCKF sideslip angle
estimator is established to observe the sideslip angle accurately during the lane keeping
process. Moreover, the upper controller sends the steering signal to the EPS motor through
the CAN bus, and the additional yaw moment can be obtained by differential braking,
which applies different brake pressures to the four brake wheel cylinders. Finally, field
tests and HIL tests were conducted to prove that the proposed LKS controller can not only
keep the vehicle driving in the desired lane, without departure, but also perform well
at maintaining vehicle dynamic stability with accurate sideslip angle estimation, while
driving in a low-friction lane at time-varying speed.
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