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Abstract: This paper investigates the numerical integration error calibration problem in Lie group
sigma point filters to obtain more accurate estimation results. On the basis of the theoretical frame-
work of the Bayes–Sard quadrature transformation, we first established a Bayesian estimator on
matrix Lie groups for system measurements in Euclidean spaces or Lie groups. The estimator was
then employed to develop a generalized Bayes–Sard cubature Kalman filter on matrix Lie groups
that considers additional uncertainties brought by integration errors and contains two variants. We
also built on the maximum likelihood principle, and an adaptive version of the proposed filter was
derived for better algorithm flexibility and more precise filtering results. The proposed filters were
applied to the quaternion attitude estimation problem. Monte Carlo numerical simulations supported
that the proposed filters achieved better estimation quality than that of other Lie group filters in the
mentioned studies.

Keywords: Bayes–Sard quadrature moment transformation; cubature Kalman filter; Lie groups;
attitude estimation

1. Introduction

Estimating the state of dynamical systems is a research hotspot and a frequently faced
essential issue in many real-life applications, e.g., navigation, target tracking, robotics, and
automatic control [1–3]. Due to the imperfect system model and the existence of noise,
filtering is the most used estimating approach. For linear systems with Gaussian uncer-
tainties, the Kalman filter (KF) [4], as the most desirable estimator established on minimal
mean-square-error (MMSE) criterion, can provide an optimal recursive solution. However,
while the system is nonlinear, obtaining the optimal closed-form solution is intractable. Re-
searchers proposed various methods via analytical or numerical approximation to address
nonlinear state estimation issues. A successful analytical approximation method is the
extended Kalman filter (EKF) [5], which employs first-order Taylor series approximation to
linearize nonlinear dynamics, but may perform poorly with highly nonlinear systems or
large initial errors. Moreover, the main drawback of the EKF is that it needs to calculate the
Jacobians, which is relatively tricky for complicated models.

Instead of dealing with nonlinearities by evaluating Jacobians, another class of nonlin-
ear filtering based on numerical approximation is preferred. These filters are collectively
called sigma point filters, including the unscented Kalman (UKF) [6], Gauss–Hermite–
Kalman (GHKF) [7], and cubature Kalman (CKF) [8] filters. Different deterministic sigma
points are used in these filtering algorithms to approximate moments of the probability
distribution functions (PDFs). Compared with the EKF, the sigma point Kalman filter can
provide better robustness and estimation accuracy, but increases the computational burden.
Another problem underlying the sigma point Kalman filter is that errors caused by the
traditional numerical quadrature rules may inject bias into the estimated moments without
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compensation. Concerning that ignoring the integral approximation error may lead to
overconfident estimates, several studies employed Bayesian quadrature (BQ) and other
quadrature approaches based on BQ theory (such as Gaussian process quadrature (GPQ)
and Bayes–Sard quadrature (BSQ)) to improve the sigma point Kalman filter [9–11]. These
approaches are successful because BQ, GPQ, and BSQ rules can quantify uncertainty in
numerical integration.

Most EKFs and sigma point Kalman filters are designed for system dynamical models
in Euclidean spaces in the existing literature. Nevertheless, when the system state exists
in a Riemannian manifold, considering the geometry of the manifold can have merits,
for example, enlarging the convergence domain and increasing the convergence rate [12].
Many works are devoted to introducing Euclidean space filters to manifolds to obtain
natural and good metrics. The authors in [13] generalized the unscented transform and
the UKF to Riemannian manifolds, and produced a general optimization framework. By
extending the main concepts of UKF for Riemannian state-space systems, the authors
in [14] proposed a series of more widespread and consistent Riemannian UKFs (RiUKFs)
that supplement the theory gap in UKF on manifolds. Another generalized method about
UKF on manifolds was presented in [15], which further developed the authors’ previous
work of UKF on Lie groups in [16,17].

Implementing KFs on Lie groups is another widely studied line of designing filtering
algorithms on manifolds, which was first proposed in [18,19]. Due to the systems’ invari-
ance properties, many studies proposed invariant KFs on Lie groups: the authors in [20–23]
designed intrinsic continuous-discrete invariant EKFs (IEKFs) for continuous-time systems
on Lie groups with discrete-time measurements in Euclidean spaces and applied them to
attitude estimation and inertial navigation; in [24–26], the researchers proposed the invari-
ant UKFs (IUKFs). To help practitioners fully understand IEKFs, Ref. [27] provided three
typical examples, and [28] presented the right IEKF algorithm for simultaneous localization
and mapping (SLAM). Moreover, the authors in [29–32] devised EKFs on Lie groups for
systems with measurements on matrix Lie groups. Other designs proposed EKF extensions
for Lie groups [12,33]. On the other hand, UKF on Lie groups (UKF-LG) was developed
in [16,17] for SLAM and sensor fusion. The authors in [34] suggested an impressive UKF
based on UKF theory on Lie groups for visual–inertial SLAM. Unlike UKF-LG, in [35], the
authors proposed another type of UKF filter for matrix Lie groups. This filter takes the
time propagation step on the Lie algebra, improving computation efficiency. In addition,
the authors in [36] introduced an invariant CKF on Lie groups for the attitude estimation
problem from vector measurements.

Even if the above works succeeded in extending the sigma point filters to the Lie
group, these filters still do not consider integration errors caused by quadrature rules.
Hence, this paper is concentrated on calibrating the numerical integration error in the
sigma point filtering algorithm on matrix Lie groups to improve filtering estimation quality.
Motived by the previous study on employing the Bayes–Sard quadrature (BSQ) method
in Euclidean sigma point filtering, we attempted to extend the BSQ method to filters on
matrix Lie groups. According to the theoretical framework of the Bayes–Sard quadrature
moment transformation (BSQMT) on BSQ in [11], we first give a version of BSQMT that
selects cubature points as its prepoints, and then leverage the BSQMT to design our method.
Lastly, the proposed method was verified by simulations in an attitude estimation system.
An attitude estimation system usually consists of gyroscopes that provide angular velocity
measurements and at least two vector sensors (such as accelerometers, magnetometers, star
trackers, and sun sensors) that provide at least two nonparallel vector measurements. Our
main contributions are as follows.

(1) Giving a generalized system measurement model covering measurements in both
Euclidean spaces and Lie groups, and developing a Bayesian estimator by utilizing
BSQMT with the generalized measurement model for the state estimation problem on
Lie groups.
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(2) Deriving improved cubature Kalman filtering on matrix Lie groups with BSQMT to
calibrate numerical integration errors, and introducing a method with the maximum
likelihood principle to calculate adaptive expected model variance.

(3) Applying the proposed Lie group filtering to quaternion attitude estimation problems,
and providing numerical simulations to validate the effectiveness of the proposed
filtering.

The rest of this paper is constructed as follows. Section 2 reviews the preliminary
knowledge of the Lie group. Section 3 outlines a designed Bayesian estimation method
on Lie groups through leveraging the BSQMT for two different types of measurements.
Section 4 gives detailed derivations of the proposed filtering algorithm on Lie groups. In
Section 5, numerical simulations about quaternion attitude estimation demonstrate the
effectiveness of the proposed filters. Lastly, in Section 6, we draw conclusions and present
further work.

2. Mathematical Preliminary

This section reviews the theory and some basic properties of Lie groups used in this
work. The following contents are chiefly based on [22,37] and partly on [15].

2.1. Introduction to Matrix Lie Groups

Matrix Lie group: Let G ⊂ RN×N be a matrix Lie group that is a subset of the
invertible square matrix and holds properties including group identity, multiplication map,
and inversion map: IN×N ∈ G; ∀χ1, χ2 ∈ G, χ1χ2 ∈ G; ∀χ ∈ G, χ−1 ∈ G; where IN×N
is the identity matrix of RN×N . The matrix Lie group is also characterized by a smooth
manifold structure, so that both multiplication and inversion maps are smooth operations.
Each point on G, i.e., χ ∈ G, can attach to a tangent space at that point, denoted by TχG.
Tangent space TχG, defined by the derivative of any curve γ(0), where γ(0) = χ (see the
left plot of Figure 1), is a subvector space of RN×N with equal dimensions to those of G.
Among all tangent spaces of G, the tangent space taken at group identity matrix IN×N and
denoted as TI G is called Lie algebra.

Lie algebra: Let g denote the Lie algebra associated with a d-dimension Lie group;
there is TI G := g ∈ Rd×d. As Lie groups and Lie algebras lack mathematical tools, one
needs to identify Lie algebra g to Euclidean space Rd for convenient calculation. There is
a linear bijection between g and Rd, i.e., [·]∨G : g → Rd. This linear bijection is invertible,
and its inverse map is defined by [·]∧G : Rd → g. For example, assume vector η ∈ Rd and
Lie algebra η∧ ∈ g; then, we have [η]∧G = η∧ ∈ g and [η∧]∨G = η ∈ Rd. The middle plot of
Figure 1 gives a more intuitive illustration.

Matrix Lie exponential and logarithm maps: Matrix Lie exponential map expG : Rd →
G and its inverse map logG : G → Rd (the matrix Lie logarithm map) give two bijections
between a neighborhood of 0 ∈ Rd and a neighborhood of group identity matrix Id×d ∈ G.
We define the matrix Lie exponential and logarithm maps as expG(·) := expm

(
[·]∧G
)

and
logG(·) := [logm(·)]

∨
G, respectively, where expm and logm are matrix exponential and

logarithm operations. Here, matrix exponential and logarithm operations present the
link between a Lie group and its unique corresponding Lie algebra: expm : g → G and
logm : G → g. For vector η ∈ Rd, we have expG(η) = expm(η

∧). All maps among matrix
Lie group G, Lie algebra g, and vector space Rd are illustrated in detail on the right plot of
Figure 1.
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Figure 1. Schematic of mappings among Lie group, Lie algebra, and Euclidean space. Lie group
model is oversimplified. Two distinct identifications of tangent space TχG at χ with tangent space
TI G at IN×N afforded by left or right Lie multiplication. Multiplication map includes left and right
multiplication.

2.2. Uncertainty on Matrix Lie Groups

Most system noise is assumed to be additive white Gaussian noise in Euclidean spaces.
However, the approach of additive Gaussian noise is not applicable to Lie groups, as
Lie groups lack the addition operation. To describe Gaussian uncertainties for general
Lie groups, we adopted the method in [15,16,34], which first assumes the distribution of
uncertainty in the Lie algebra to be Gaussian and then maps Gaussian distribution to the
corresponding Lie group by exponential mapping.

Consider a d-dimension random variable χ evolving on G, and let the variable satisfy
prior probability distribution χ ∼ Nφ(χ̂, P). Referring to the definition of the probability
distribution for a random variable on a manifold in [15], we give the definition of probability
distribution for χ ∈ G as follows:

χ = φ(χ̂, η), η ∼ N (0, P), (1)

where φ : G × Rd → G is a smooth function selected according to the composition of
variable χ that must satisfy φ(χ̂, 0) = χ̂, also named “retraction”; χ̂ ∈ G is noise-free and
represents the mean of random variable χ; operator N (·, ·) denotes Gaussian distribution
in a Euclidean space; P ∈ Rd×d is the error covariance matrix associated with uncertainty
perturbation η; and η ∈ Rd is a random Gaussian vector in a Euclidean space. Moreover,
distribution Nφ(·, ·) is not Gaussian.

The specific operation of function φ(·, ·) is generally determined by the system’s
geometric structure. Left and right Lie group multiplications, and the matrix Lie group
exponential are essential parts of φ(·, ·) no matter the system geometry. Here, with right
and left multiplication, we give two simplified definitions of φ(χ̂, η), denoted by φR(χ̂, η) =
expG(η)χ̂ and φL(χ̂, η) = χ̂ expG(η). The components of the variable evolving on G are
different, so the expression of function φ(·, ·) is different in various system dynamics and
applications.

3. Bayesian Estimation Based on Bayes–Sard Quadrature Moment Transform

This section aims to find a method to calibrate numerical quadrature errors in the
classical sigma point filtering on Lie groups. By taking the cubature Kalman filter into
consideration and adopting the BSQMT instead of the cubature transform, we propose a
Bayesian estimation method with a generalized measurement model.

3.1. Bayes–Sard Quadrature Moment Transform with Cubature Points

The BSQMT [11] is a universal moment transform proposed to accommodate improper
estimation and prediction calibration caused by quadrature error in sigma point filters.
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The main technique of the BSQMT is the Bayesian quadrature, which treats the numerical
process as probabilistic inference, and models the integration error by utilizing stochastic
process models. Consider nonlinear vector function

z = g(x), (2)

where input x ∈ Rd is a Gaussian random variable that satisfies Gaussian distribution
N (x̄, P); z ∈ Rl is the output; g(·) : Rd → Rl denotes a known nonlinear transformation
function. A brief generalization of the BSQMT algorithm with cubature points is given as
follows:
Step 1. Assume that the mean x̄ and covariance P of random input variable x are known.
Calculate third-degree cubature points that match the transform moment of random variable

X i = x̄ + Sξi, i = 1, . . . , 2d, (3)

where S represents the lower triangular factor in the Cholesky decomposition of P; ξi
denotes unit cubature points expressed as

ξi =

{ √
dei, i = 1, . . . , d
−
√

dei−d, i = d + 1, . . . , 2d
, (4)

where ei ∈ Rd is the i-th column of identity matrix Id×d.
Step 2. Compute the quadrature weight: BSQMT uses a nonzero mean hierarchical Gaussian
process (GP) prior model, and Bayes–Sard weights merely depend on the choice of sigma
points and basic function space π := span{ψ1, . . . , ψN}. Let ψ(x) = xα, x ∈ Rd, where α is
multi-index; then, xα = xα1

1 · · · x
αd
d and |α| = |α1 + · · ·+ αd|. Here, we consider a special

base function space in which N = 2d holds.

Lemma 1. Let p(x) = N (x | 0, I) be standard normal distribution, choose 2d cubature points by
(4), and construct 2d dimensional function space

π =
{

x1, . . . , xd, x2
1, . . . , x2

d

}
. (5)

Then, a set of quadrature weights w = {wm, n = 1, . . . , 2d} can decide the weighted mean of the
state variable, and quadrature weights cohere with cubature transform weights wm = 1/2d.

Proof of Lemma 1. See Appendix A.

With third-degree unit cubature points, quadrature weights are calculated with the
following equations: 

wm = Ψ−Tψ̄

w = Ψ−TWAΨ−1

wc = WBΨ−1
, (6)

in which 
ψ̄ = Eξ [ψ(ξ)]

Ψ = [ψ(ξ1), . . . , ψ(ξ2d)]
T

WA = Eξ

[
ψ(ξ)ψ(ξ)T]

WB = Eξ

[
ξψ(ξ)T] . (7)

From Lemma 1, we know that wm = 1/2d. Thus, we can skip the calculation of wm in (6).
Step 3. Obtain transformed moments with the following equations:

mz = Zwm, (8)

Pzz = ZwZT −mzmT
z + σ̄2 I, (9)

Cxz = SwcZT, (10)
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where Z = [g(X1), . . . , g(X2d)]. σ̄2 is expected model variance (EMV) of which the value
partly depends on the selection of radial basis function (RBF) kernel (covariance of GP
model based on unit cubature points) and its parameter. However, in practice, EMV
sometimes needs to be reparameterized, but we omitted calculating it here. See [11,38] for
the detailed computation of EMV and the selection rules of the basic function.

3.2. Bayesian Estimation on Lie Groups Using BSQMT

In this subsection, we first give a generalized measurement model covering system
measurements in two kinds of spaces: Euclidean space and Lie group. Consider random
variable χ ∈ G and its prior probability density function p(χ), χ follows (1) with known χ̂
and P. Assume that one can establish additional information about the random variable
via an observation y:

y = ha(χ, v) =
{

ha1(χ) + v, for y ∈ Rl

φ(χ, v), for y ∈ G
, (11)

where v is white Gaussian noise with distribution v ∼ N (0, R) in the vector space, and its
dimension depends on the type of y; ha(·) and ha1(·) represent the observation function,
and ha(·) satisfies the following mapping:

ha(·) :
{

G → Rl , for y ∈ Rl

G×Rd → G, for y ∈ G
(12)

The key to addressing the Bayesian estimation problem is to find parameters χ̂+ and
P+ in posterior distribution approximated by p(χ | y) ≈ Nφ

(
χ̂+, η+

)
, η+ ∼ N

(
0, P+

)
.

Before estimating χ̂+, posterior distribution p(η | y) should be found and approximated
using BSQMT. Whether the measurement is in a vector space or a Lie group, there is an
achievable way to calculate posterior estimate η+ in the vector space and then map it to
the Lie group. Hence, while an available measurement y exists in a Lie group, we need to
transform the matrix Lie group measurement into the vector space by utilizing the inverse
mapping of φ(·, ·). Inverse map φ−1(·, ·) : G → Rd is defined as

φ−1(χ̂, y) =
{

φ−1
L (χ̂, y) = logG

(
χ̂−1y

)
, left multiplication

φ−1
R (χ̂, y) = logG

(
yχ̂−1), right multiplication

. (13)

In terms of left and right multiplications in both φ(·, ·) and φ−1(·, ·), if y exists in a
Lie group, there are actually four possible expansions to map it to the vector space. For
instance, similar to [16], suppose measurement function y = χ expG(v), if χ = χ̂ expG(η),

yL = φ−1
L (χ̂, y) = logG

(
χ̂−1χ expG(v)

)
= logG

(
χ̂−1χ̂ expG(η) expG(v)

)
= logG

(
expG(η) expG(v)

) , (14)

else if χ = expG(η)χ̂, there is

yL = φ−1
L (χ̂, y) = logG

(
χ̂−1χ expG(v)

)
= logG

(
χ̂−1 expG(η)χ̂ expG(v)

)
= logG

(
expG

(
Adχ̂−1(η)

)
expG(v)

) , (15)

where Ad(·) is the joint operator of a Lie group, there is Adχ̂−1(η) = χ̂−1ηχ̂.
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In addition, when an available measurement y is in a vector space, it fulfils the
following equation:

y = ha1(χ) + v = ha1(φ(χ̂, η)) + v. (16)

From (14)–(16), we can detect that the optimized measurement function is related to
χ̂, η and v. So, giving a novel measurement equation for the derivation of the generalized
nonlinear filtering:

y′ = h(χ̂, η, v), (17)

where y′ is the new observation, and h(·) is the new generalized measurement function.
By using BSQMT, propagated measurement cubature points and the measurement

mean are computed: {
ŷ′i = h(χ̂, ηi, 0), i = 1, . . . , 2d
ȳ′ = Ywm

, (18)

where ηi is cubature points; Y =
[
ŷ′1, . . . , ŷ′2d

]
, i = 1, . . . , 2d and wm is the mean weight

defined in the above subsection. Afterwards, by calculating measurement error covariance
Pyy and cross-covariance Pηy, we obtain gain matrix K and parameters in the approximation
of posterior distribution p(η | y) ∼ N

(
η̂, P+

)
:

K = PηyP−1
yy

P+ = P− KPyyKT

η̂ = K(y′ − ȳ′)
. (19)

For converting posterior distribution p(η | y) into a distribution on the Lie group, we
reviewed analyses and results in [15,16] and obtained

χ̂+ = φ(χ̂, η̂) = φ
(
χ̂, K

(
y′ − ȳ′

))
. (20)

Lastly, the entire Bayesian estimation procedure is summarized in Algorithm 1.

Algorithm 1 Bayesian estimation on Lie groups using BSQMT.

Input: prior state χ̂ and prior covariance P, unit cubature points ξi, i = 1, 2, . . . , 2d, se-
quence of observations y, modified measurement noise covariance R̂, Bayes–Sard
weights wm, w, wc, expected model variance σ̄2

h (calculated by the method in [11])
Output: posterior state χ̂+and associated posterior covariance P+

1: Calculate predicted measurement, and its associated cross-covariance and innovation
covariance:

ηi = chol(P)ξi, i = 1, . . . , 2d

ŷ′i = h(φ(χ̂, ηi, 0)), i = 1, . . . , 2d

ȳ′ = Ywm, in which Y =
[
ŷ′1, . . . , ŷ′2d

]
, i = 1, . . . , 2d

Pyy = YwYT − ȳ′ȳ′T + σ̄2
h I + R̂

Pηy = chol(P)wcYT

2: Calculate the gain matrix: K = PηyP−1
yy ;

3: Compute the estimated state and covariance:

χ̂+ = φ(χ̂, K(y′ − ȳ′)), where y′ =
{

y, for y ∈ Rl

φ−1(χ̂, y), for y ∈ G
P+ = P− KPyyKT

4. Proposed Filtering Algorithm

This section presents a Bayes–Sard cubature Kalman filter on matrix Lie groups built
on numerical integration error calibration with BSQMT to correct the filtering accuracy
and named BSCKF-LG. The proposed BSCKF-LG has two versions: one version uses left
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multiplication to define “retraction” as left BSCKF-LG; the other uses right multiplication
defined as right BSCKF-LG. A systemic method that leverages the maximum likelihood
criterion is also proposed to estimate the EMVs. By reconstructing the covariances of the
prior state error and the innovation with the innovation sequence in a sliding window, the
proposed method estimates EMVs and feeds them back into improved filtering to adjust
the Lie Kalman gain matrix.

4.1. Improved Cubature Kalman Filtering on Lie Groups with BSQMT

Consider discrete system dynamics{
χk = f

(
χk−1, ωk, nk

)
yk = ha(χk, vk)

, (21)

where k represents the timestamp; χk is the system state living in a matrix Lie group;
nk ∼ N (0, Qk) and vk ∼ N (0, Rk) are white Gaussian noise with known covariances in
the vector space; and ωk is a known input. According to the above section, we first needed
to remodel measurement yk into y′k, and y′k is in the Euclidean vector space.

The purpose of designing filtering in the Bayesian framework of this model is to
approximate posterior distribution p

(
χk, Pk | y′l:k

)
. The recursive solution comprises two

steps to the proposed filtering problem on Lie groups: propagation and update.
Propagation: start with giving prior probability destiny in the Bayesian framework.

p
(
χk−1

)
≈ Nφ

(
χ̂+

k−1, η+k−1

)
, η+k−1 ∼ N

(
0, P+

k−1

)
, (22)

where χ̂+
k−1 and P+

k−1 are posterior estimation results of the previous moment. Then, try to
approximate the state distribution of propagation:

p
(
χk | y′1:k−1

)
≈ Nφ(χ̂k, ηk), ηk ∼ N (0, Pk). (23)

Our work needs to find χ̂k and Pk. In the above Bayesian estimation, posterior state
mean χ̂+

k and its associated covariance P+
k are estimated using the uncertainty represented

by (1). Here, for Model (21), we still used this uncertainty representation and the associated
inverse map that has

φ−1(χ̂k, χk) = φ−1(χ̂k, φ(χ̂k, ηk)) = log(exp(ηk)) = ηk + O
(
‖ηk‖

2
)

, (24)

where O
(
‖ηk‖

2
)

stands for error term. The proposed filter first propagates state mean χ̂k

via employing the system’s deterministic part (noiseless state model), that is,

χ̂k = f
(

χ̂+
k−1, ωk, 0

)
. (25)

Subsequently, to compute associated covariance Pk, we selected a set of unit cubature
points for the BSQMT method and generated sigma points η+k−1,i in vector space Rd through
P+

k−1. Then, mapping these points to the matrix Lie group and passing the mapped cubature
points through noise-free Model (25), we could obtain propagated sigma points χi

k. On the
basis of this work and with defined inverse map φ−1(χ̂k, χi

k
)
, i = 1, . . . , 2d, we obtained

prior covariance Pk (see Algorithm 2 for details).
Update: in this procedure, we need to approximate posterior probability distribution.

p
(
χk | y′1:k

)
≈ Nφ

(
χ̂+

k , η+k
)
, η+

k̂
∼ N

(
0, P+

k
)
, (26)

when each available measurement yk arrives. Due to the same measurement model, the
Bayesian estimation method in Section 3 was applied to compute the posterior state and its
associated covariance. The proposed filtering algorithm executes the propagation step and
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does not perform the update step until the measurement arrives. Algorithm 2 summarizes
the proposed filter in detail.

Algorithm 2 Bayes–Sard cubature Kalman filter (BSCKF-LG).

Input: initial conditions χ0 and P0|0, sequence of inputs ωk, k = 1, 2, . . ., modified process
and measurement noise covariances Q̂k and R̂k, sequence of observations yk, k =
1, 2, . . ., RBF kernel parameters θ f and θh (for computing EMV), unit cubature points
ξi, i = 1, 2, . . . , 2d

Output: posterior state χ̂+
k , posterior covariance P+

k
1: Initialization: χ̂+

0 = χ0 and P+
0 = P0|0;

2: Compute Baye–Sard quadrature weights wm, w, and wc from (6) and (7), and calculate
the EMV σ̄2

f with the method in [11];
3: for k = 1, 2, 3, . . . do

Propagation:
4: Calculate state mean through noiseless system model

χ̂k = f
(

χ̂+
k−1, ωk, 0

)
5: Generate propagated sigma points χi

k on the basis of selected unit cubature points
according to (4),

η+k−1,i = chol
(

P+
k̇−1

)
ξi, i = 1, . . . , 2d

χi
k = f

(
φ
(

χ̂+
k−1, η+k−1,i

)
, ωk, 0

)
, i = 1, . . . , 2d

6: Calculate associated covariance according to inverse map φ−1(χ̂k, χi
k
)
, i = 1, . . . , 2d,

Pk = ΦkwΦT
k + σ̄2

f I + Q̂k

where Φk =
[
φ−1(χ̂k, χ1

k
)
, . . . , φ−1

(
χ̂k, χ2d

k

)]
, Q̂k derived from the dynamical

equation of ηk;
Update: (If the measurement yk arrives, start the update step of the filtering. BSQ
weights and EMV value are known. )

7: Compute χ̂+
k , P+

k from Algorithm 1 with χ̂k, Pk
8: end for

Remark 1. The propagation of state means does not need to utilize the BSQMT(or other moment
transformation) because (25) was validated by [16] up to the second order. Instead of generating
the sigma points directly by the distribution on the Lie group, all work about generating the
corresponding sigma points is first done in the Euclidean space and then mapped to the Lie group.

Remark 2. The unscented Kalman filters on Lie groups in [15–17] generate sigma points for the
process noise and calculate the covariance matrix of the deviation due to noise. Unlike these filters,
process and measurement noise covariances Q̂k and R̂k in Algorithm 2 are determined by the
specified dynamic equation of ηk and the remodeled measurement function of y′k to save computing
resources.

Remark 3. BSQMT rules define all Bayes–Sard weights. Weights only depend on the selection of
the sigma points and the basic function. The proposed filter requires two different kernel parameter
values to obtain EMV values (see [11] for details) because there are two integrated functions. The
kernel parameter’s misspecification affects the BSQMT little, so manual parameter tuning of the
EMV is available in practice. In the following section, we give a method to obtain the time-varying
value of EMV.
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4.2. EMV Estimation

In this subsection, we attempt to develop an adaptive BSCKF-LG with time-varying
EMVs. To derive the EMV at each instant k, we first assumed that the prior covariance and
the innovation covariance are unknown constants. The innovation vector is denoted as
ỹ′k = y′k − ȳ′k, and we consider the following maximum likelihood function of the rebuild
measurements

{
y′k−n+1, y′k−n+2, . . . , y′k

}
:

L
(

Pyy,k(or Pk) | y′k−n+1:k

)
= ln

k

∏
j=k−n+1

p
(

y′j | Pyy,j
(
or Pj

))
= ln

k

∏
j=k−n+1

1√
(2π)l

∣∣Pyy,j
∣∣ exp

(
−1

2
ỹ′Tj P−1

yy,jỹ
′
j

)

= −1
2

k

∑
j=k−n+1

{
ln
(∣∣Pyy,j

∣∣)+ ỹ′Tj P−1
yy,jỹ

′
j

}
+ C

, (27)

where | · | denotes the determinant operator, n represents the sliding window size, and C
is the constant term. On the basis of (27), the maximum likelihood estimation of the error
covariances of the prior state and the prior measurement is derived by

P̂yy,k|ML

(
P̂k|ML

)
= arg max L

(
Pyy,k(or Pk) | y′k−n+1:k

)
. (28)

To solve (28), we need to take the partial derivatives of L
(

Pyy,k(or Pk) | y′k−n+1:k

)
with respect to estimated prior covariance P̂k and estimated innovation covariance P̂yy,k,
and let them be equal to zero:

∂L
∂P̂yy,k

= 0 and
∂L
∂P̂k

= 0. (29)

Subsequently, the maximum likelihood equations are obtained via Equation (29):

∂L
∂P̂yy,k

= −1
2

tr

 k

∑
j=k−n+1

(P−1
yy,j − P−1

yy,jỹ
′
jỹ
′T
j P−1

yy,j

) ∂Pyy,j

∂P̂a1,b1
yy,k

, (30)

and
∂L
∂P̂k

= −1
2

tr

{
k

∑
j=k−n+1

[(
P−1

yy,j − P−1
yy,jỹ

′
jỹ
′T
j P−1

yy,j

) ∂Pyy,j

∂P̂a2,b2
k

]}
, (31)

where tr(·) denotes the trace operator; P̂a1,b1
y,k corresponds to the a1th row, b1th column of

P̂yy,k with a1, b1 ∈ [1, . . . , l]; similarly, P̂a2,b2
k corresponds to the a2th row, b2th column of P̂k

with a2, b2 ∈ [1, . . . , d].
Equations (29) and (30) show that

tr

 k

∑
j=k−n+1

(P−1
yy,j − P−1

yy,jỹ
′
jỹ
′T
j P−1

yy,j

) ∂Pyy,j

∂P̂a1,b1
yy,k

 = 0. (32)

Therefore, the problem of estimating Pyy,k is actually computing the derivation of the
innovation covariance with respect to Pyy,j, j = k− n+ 1, . . . , k. As stated above, state errors
are mapped from the Lie group into the Euclidean space, and prior state error covariance
in the Euclidean space can be expressed as Pk = E

[
ηkηT

k
]
. In this article, ηk = φ−1(χ̂k, χk)

and η+k = φ−1(χ̂+
k , χk

)
. Using (21) and the formula of Pk in Algorithm 2, we first have
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ηk = φ−1
(

f
(

χ̂+
k−1, ωk

)
, f
(
χk−1, ωk, nk

))
= φ−1

(
f
(

χ̂+
k−1, ωk

)
, f
(

φ
(

χ+
k−1, η+k−1

)
, ωk, nk

)). (33)

Then, f (·) and (33) are expressed by the Taylor series expansion about η+k−1, the
estimation error ηk becomes

ηk = Fkη+k−1 + O
(∥∥∥η+k−1

∥∥∥)+ n̂k, (34)

in which F = dφ−1
(

f
(

χ̂+
k−1, ωk

)
, f
(

φ
(

χ+
k−1, η+k−1

)
, ωk

))
/dη+k−1and O

(∥∥∥η+k−1

∥∥∥) repre-

sent the second- and high-order moments about η+k−1; n̂k is derived from the specified
dynamic equation of ηk, and its covariance is Q̂k. To obtain exact equality, we consider the
entire high order of η+k−1 by introducing a diagonal matrix αk = diag(α1,k,...,αd,k), which
can scale the approximation error [39,40]:

ηk = αkFkη+k−1 + n̂k. (35)

Similarly, by substituting (18) in ỹ′k = y′k − ȳ′k and expanding h(·) using the Taylor
series about ηk, we have

ỹ′k = Hkηk + O(‖ηk‖) + v̂k, (36)

where Hk = dh(χ̂k, ηk)/dηk, O(‖ηk‖) is the second- and higher-order moment of ηk; v̂k is
defined by the remodeled measurement formula, and its covariance is R̂k. To consider the
entire higher order, we also introduce a diagonal matrix βk = diag(β1,k,...,, βl,k) [39]:

ỹk
′ = βk Hkηk + v̂k, (37)

Hence, prior state error covariance and innovation covariance can be expressed by

Pk = αkFkP+
k−1FT

k αk + Q̂k, (38)

Pyy,k = βk HkPk HT
k βk + R̂k. (39)

Lastly, for linear system models (35) and (37), if the Kalman filtering is steady, Pk
converges to a constant matrix; P+

k , Kk and Pyy,k also become constant matrices [41].
On the basis of the above analysis, we assumed that our filtering process inside the

sliding window was in a steady state. Consequently, the approximation of Pyy,k in the
sliding window was around constant, and there exists Pyy,j = Pyy,k, j = k− n + 1, . . . , k

such that ∂Pyy,j/∂P̂a1,b1
yy,k = ∂Pyy,k/∂P̂a1,b1

yy,k are 1 for the a1 row and b1 column, while other
elements are zeros. In light of the trace definition, we simplified (32) to

k

∑
j=k−n+1

(
P−1

yy,j − P−1
yy,jỹ

′
jỹ

T
j P−1

yy,j

)
= 0. (40)

Since Pyy,j was approximately constant in the window, we pre- and postmultiplied
both sides of (40) with Pyy,j:

P̂yy,k =
1
n

k

∑
j=k−n+1

P̂yy,j =
1
n

k

∑
j=k−n+1

(
ỹ′jỹ
′T
j

)
. (41)

Substituting Pyy = YwYT − ȳ′ȳ′T + σ̄2
h I + R̂ in (41) and letting ∆h = σ̄2

h I, the EMV of
the measurement function is described as

∆̂h = ˆ̄σ2
h I =

1
n

k

∑
j=k−n+1

[
ỹ′jỹ
′T
j − Y jwYT

j + y′jy
′T
j − R̂j

]
. (42)
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Next, similar steps were employed to estimate the EMV of the system function. Equa-
tions (29) and (31) show that

tr

{
k

∑
j=k−n+1

[(
P−1

yy,j − P−1
yy,jỹ

′
jỹ
′T
j P−1

yy,j

) ∂Pyy,j

∂P̂a2,b2
k

]}

= tr

{
k

∑
j=k−n+1

[(
P−1

yy,j − P−1
yy,jỹ

′
jỹ
′T
j P−1

yy,j

)
Hk

∂Pj

∂P̂a2,b2
k

HT
k

]}
= 0

, (43)

where Hk = PT
ηy,kP−1

k or Hk = dy′k/dηk.
Again, since the filtering process was assumed to be stable in the sliding window,

approximations of Pk in the window were almost constant, Pj = Pk, j = k− n + 1, . . . , k,

such that ∂Pj/∂P̂a2,b2
k = ∂Pk/∂P̂a2,b2

k are 1 for the a2 row and b2 column, while other
elements are zeros. Equation (43) was pre- and postmultiplied by HT and H−T; then, in
terms of the trace definition, we simplified (43) to

k

∑
j=k−n+1

[
HT

j

(
P−1

yy,j − P−1
yy,jỹ

′
jỹ
′
j
TP−1

yy,j

)
H j

]
= 0. (44)

In sigma point filters, there exists Kk = Pηy,kP−1
yy,k = Pk HT

k P−1
yy,k; thus, (44) can be

transformed into
k

∑
j=k−n+1

[
P−1

j

(
K j H jPj − K jỹ′jỹ

′T
j KT

j

)
P−1

j

]
= P−1

j

k

∑
j−k−n+1

[(
K j H jPj − K jỹ′jỹ

′T
j KT

j

)]
P−1

j

= 0

. (45)

(45) is satisfied if
k

∑
j=k−n+1

[(
K j H jPj − K jỹ′jỹ

′T
j KT

j

)]
= 0. (46)

From Algorithm 2, we know that{
Kkỹ′k = φ−1(χ̂k, χ̂+

k
)

Pk − P+
k = KkPyyKT

k = Kk HkPk
. (47)

Substituting (47) into (46), there readily is

k

∑
j=k−n+1

(
Pj − P+

j − φ−1(χ̂k, χ̂+
k
)(

φ−1(χ̂k, χ̂+
k
))T

)
= 0, (48)

then
k

∑
j=k−n+1

Pj =
k

∑
j=k−n+1

(
P+

j + φ−1(χ̂k, χ̂+
k
)(

φ−1(χ̂k, χ̂+
k
))T

)
, (49)

with Pj = Pk, j < k in the window, the maximum likelihood of prior error covariance Pk
could be acquired from

P̂k =
1
n

k

∑
j=k−n+1

Pj =
1
n

k

∑
j=k−n+1

(
P+

j + φ−1(χ̂k, χ̂+
k
)(

φ−1(χ̂k, χ̂+
k
))T

)
. (50)
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Combining Pk = ΦwΦT + σ̄2
f I + Q̂k and (50), and letting ∆ f = σ̄2

f I, the estimated
EMV could be described as

∆̂ f = ˆ̄σ2
f I =

1
n

k

∑
j=k−n+1

[
P+

j + φ−1(χ̂k, χ̂+
k
)(

φ−1(χ̂k, χ̂+
k
))T

−ΦjwΦT
j − Q̂j

]
. (51)

Remark 4. As EMVs must be non-negative
(

σ̄2
f ≥ 0, σ̄2

h ≥ 0
)

and ∆ f , ∆h are diagonal matrices,
so only estimating the diagonal elements of the EMV matrix is enough. Diagonal elements need to
be non-negative; if some diagonal elements are negative, one should set them to zero.

Remark 5. Equations (42) and (51) show that the validity of EMV estimation depends on process
accuracy and noise covariance measurement. Filtering accuracy also relies on noise statistics. In
addition, even though (42) and (51) theoretically give adaptive EMVs, they bring computational
burdens.

5. Application to Attitude Estimation

In this section, we apply the proposed method to a simulated attitude estimation
system and compare it with various filters presented in the cited literature. Consider a
rotation rigid body without translation that contains a triaxial gyroscope offering angular
velocity ωm ∈ R3 at a 100 Hz sampling frequency, a triaxial accelerometer providing ac-
celeration f b ∈ R3 at 10 Hz sampling frequency, and a triaxial magnetometer measuring
magnetic field mb ∈ R3 at 10 Hz sampling frequency. For the spacecraft attitude estima-
tion problem, one can replace accelerometers and magnetometers with sun sensors and
magnetometers [23]. The attitude kinematics in terms of the unit quaternion is described by{

q̇ = 1
2 q⊗ (ωm − bω − nω)

ḃω = nbω
. (52)

Let accelerometer and magnetometer outputs be observations; observation equations
are expressed by [23,42] {

f b = q−1 ⊗ f n ⊗ q + v f
mb = q−1 ⊗mn ⊗ q + vm

, (53)

in which q ∈ SO(3) is the unit quaternion representing the attitude in the body frame with
respect to the navigation frame; bω ∈ R3 denotes gyroscope bias; nω ∈ R3 and nbω ∈ R3

are uncorrelated white Gaussian noise; f n ∈ R3 is the gravity vector in the navigation
frame; and mn ∈ R3 represents Earth’s magnetic field; and v f ∈ R3 and vm ∈ R3 are sensor
noises assumed to be white Gaussian noise. Let χ = (q, bω), which belongs to matrix Lie
group G = SO(3)×R3, and with the definition of φ(χ̂, η) in Section 2, we define the left
and right estimation errors as follows:(

q̃R
b̃R

)
= expG(−ηR) =

(
q̂⊗ q−1

q⊗
(

b̂ω − bω

)
⊗ q−1

)
(right estimation errors) (54)

(
q̃L
b̃L

)
= expG(ηL) =

(
q̂−1 ⊗ q
bω − b̂ω

)
(left estimation errors) (55)

Then, retractions corresponding with the above estimation errors are

φR(χ̂,−ηR) = expG(−ηR)χ̂ =

(
expq

(
−ηR1:3

)
⊗ q̂

q−1 ⊗
(

b̂ω − ηR4:6

)
⊗ q

)
(56)
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φL(χ̂, ηL) = χ̂ expG(ηL) =

(
q̂⊗ expq

(
ηL1:3

)
b̂ω + ηL4:6

)
(57)

Numerical Simulations

To evaluate estimation quality, numerical simulations were carried out. In the simula-
tions, we selected the north–east–down frame as the navigation frame. The attitude trajec-
tory that lasted 200 s was generated by ω = [−0.1 cos(0.15t), 0.1 sin(0.1t),−0.1 cos(0.05t)]T

rad/s. The true trajectory without noise and bias is shown in Figure 2. Gyroscope bias
was bω = [0.012,−0.021, 0.014]Trad/s, and gyroscope noise was white Gaussian noise
subjected to N

(
0,
(
10−3rad/s

)2
)

. Two known corresponding measurement vectors in the

navigation frame are f n = [0, 0, g]T and mn = [0.3197, 0, 0.4226]TG, where g = 9.78 m/s2 is
the gravitational acceleration. The noises of the accelerometer and the magnetometer are
white Gaussian noise and follow v f ∼ N

(
0,
(
2× 10−3g

)2
)

and vm ∼ N
(

0,
(
4× 10−3G

)2
)

,
respectively. Some sensor parameters are provided by [42]. For filtering, we set the initial
covariance matrix as P0 = blkdiag

(
10−3 I3×3, 10−7 I3×3

)
and the initial gyroscope bias

as b̂ω0 = [0, 0, 0]Trad/s. The kernel scale and kernel length that constituted the kernel
parameters were selected to be 0.001 and 0.3.

Three cases were considered in our simulations, and in the first two cases, we utilized
the trajectory defined above but with different sets of initial attitudes. Case 1 randomly
selected the initial attitude from uniform distribution between −10◦ and 10◦, and Case
2 randomly chose the initial attitude from uniform distribution [−90◦, 90◦]. In Case 3,
we used the angular velocity set above, but while 50 s < t ≤ 60 s , angular velocity was
set to be ω = [−5, 0.5,−0.5]Trad/s; while 100 s < t ≤ 108 s, angular velocity was set
to be ω = [−0.1, 0.1,−3]Trad/s; while 150 s < t ≤ 152 s, angular velocity was set to be
ω = [0.1,−5, 0.1]Trad/s. Initial attitudes of Case 3 were the same as those in Case 1.

For each case, we conducted 100 independent Monto Carlo simulations and utilized
the following root-mean-square error (RMSE) and averaged RMSE of the Euler angles (roll,
pitch, yaw) to evaluate estimation quality:

RMSEatt(k) =

√√√√ 1
M

M

∑
m=1

∥∥xm
k − x̂m

k

∥∥2, (58)

ARMSEatt(k) =

√√√√ 1
MK

K

∑
k=1

M

∑
m=1

∥∥xm
k − x̂m

k

∥∥2, (59)

where M is the total number of simulations; K is the simulation time step; xm
k and x̂m

k
represent the truth Euler angles(simulated) and the estimated Euler angles, respectively.

With the simulated system and the initial conditions above, we compared nine different
filters on Monte Carlo simulations:

* SO(3)-based CKF (SO(3) CKF) that considers the attitude embedded in a special
orthogonal group (SO(3)) and the gyroscope bias in a vector space;

* right invariant extended Kalman filter (Right-IEKF) and left invariant extended
Kalman filter (Left-IEKF) in [21,23], where the gyroscope bias was treated as part
of the Lie group structure;

* right and left cubature Kalman filters on Lie groups (Right-CKF-LG and Left-CKF-LG)
[36], which can be treated as extensions of UKF-LG in [16];

* Bayes–Sard quadrature cubature Kalman filter (SO(3) BSCKF) derived from [11] by
utilizing the same Lie group action as the SO(3) CKF;

* our proposed right and left BSCKFs on Lie groups (Right-BSCKF-LG and Left-BSCKF-
LG) in Section 4;
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* the proposed adaptive right BSCKF-LG with time-varying EMVs (Right-BSCKF-LG-
adaptive).

We set the sliding window size in both the propagation and update steps of the
Right-BSCKF-LG-adaptive to be n = 35 in Cases 1 and 2, and n = 15 in Case 3.

0 20 40 60 80 100 120 140 160 180 200

0

20

40

0 20 40 60 80 100 120 140 160 180 200

-200

0

200

0 20 40 60 80 100 120 140 160 180 200

-50

0

50

Figure 2. True trajectory of Euler angles in Cases 1 and 2.

Simulation results of Case 1 are illustrated in Figure 3 and Table 1. Figure 3 compares
the RMSEs of the Euler angles, while Table 1 summarizes the corresponding ARMSEs.
With small initial attitude errors, the proposed BSCKF-type filters with cubature points
performed better than other filters did and needed less time to reach a steady state. Right-
BSCKF-LG and its adaptive version obviously outperformed the other filters. Simulation
results also verified that the performance of Right-IEKF and Right-CKF-LG was similar and
slightly better than that of Left-IEKF and Left-CKF-LG under small initial estimation errors.
The selection of sliding window size could affect the estimation accuracy of Right-BSCKF-
LG-adaptive, and the filtering accuracy of Right-BSCKF-LG-adaptive was not significantly
better than that of Right-BSCKF-LG.

Table 1. ARMSEs of Euler angles in Case 1.

Filters ARMEs of Roll (deg) ARMEs of Pitch (deg) ARMEs of Yaw (deg)

SO(3) CKF 1.5172 1.5174 3.5564
Left-CKF-LG 0.5011 0.8032 2.2217
Right-CKF-LG 0.4571 0.7298 1.9835
Left-IEKF 0.5103 0.8185 2.1791
Right-IEKF 0.4463 0.7226 1.9114
SO(3) BSCKF 0.2505 0.2351 0.7080
Left-BSCKF-LG 0.2156 0.1701 0.5407
Right-BSCKF-LG 0.2062 0.1708 0.5277
Right-BSCKF-LG-adaptive 0.2113 0.1745 0.4586

Case 2 estimation results under large initial attitude errors are demonstrated in
Figure 4 and Table 2. These graphs show that the estimation quality of SO(3) CKF, Left-
CKF-LG, and Left-IEKF was poor, especially that of SO(3) CKF. In contrast, Right-CKF-
LG and Right-IEKF achieved better accuracy and robustness than those of Left-CKF-LG
and Left-IEKF. Again, BSCKF-type filters performed better. The estimation accuracy of
Right-BSCKF-LG and Right-BSCKF-LG-adaptive was better than that of the other filters.
Moreover, the accuracy of Right-BSCKF-LG-adaptive improved compared with that of
Right-BSCKF-LG. Right-BSCKF-LG-adaptive performed best in the yaw angle and achieved
the fastest convergence rate. As seen from the above analyses, the right estimation errors
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on Lie group G = SO(3)×R3 are more suitable for attitude estimation with vector mea-
surements.
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Figure 3. RMSEs of Euler angles in Case 1. (a) RMSEs of roll angle; (b) RMSEs of pitch angle;
(c) RMSEs of yaw angle.
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Figure 4. RMSEs of Euler angles in Case 2. (a) RMSEs of roll angle; (b) RMSEs of pitch angle;
(c) RMSEs of yaw angle.
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Table 2. ARMSEs of Euler angles in Case 2.

Filters ARMEs of Roll (deg) ARMEs of Pitch (deg) ARMEs of Yaw (deg)

SO(3) CKF 4.3881 3.2943 10.104
Left-CKF-LG 3.7219 2.6936 8.8371
Right-CKF-LG 1.5143 1.1443 4.1851
Left-IEKF 4.2617 2.9011 9.2021
Right-IEKF 0.7231 0.8164 2.4947
SO(3) BSCKF 1.9847 1.3373 5.6511
Left-BSCKF-LG 1.8803 1.2971 5.4425
Right-BSCKF-LG 0.6037 0.5515 1.8587
Right-BSCKF-LG-adaptive 0.5401 0.4604 1.4699

In Case 3, we assumed that some fast motion occurred in the system trajectory. The
true trajectory of Case 3 is shown in Figure 5. Estimation results under small initial attitude
errors are indicated in Figure 6 and Table 3. Figure 6 shows that the performance of all
filters was worse compared to that in Case 1, partly because of the definition domains of
Euler angles. However, the right and left BSCKF-LGs proposed in this paper were still
outperformed among all filters, especially adaptive right BSCKF-LG. Table 3 summarizes
the ARMSEs of Euler angles. Left BSCKF-LG was slightly more accurate than right BSCKF-
LG in this case. The accuracy of Right-BSCKF-LG-adaptive was also greatly improved
compared with that of Right-BSCKF-LG.
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-200
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200
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0 20 40 60 80 100 120 140 160 180 200

-200
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Figure 5. True trajectory of Euler angles in Case 3.

Table 3. ARMSEs of Euler angles in Case 3.

Filters ARMEs of Roll (deg) ARMEs of Pitch (deg) ARMEs of Yaw (deg)

SO(3) CKF 18.5315 2.8001 15.7173
Left-CKF-LG 9.2549 1.4878 12.3105
Right-CKF-LG 15.2969 2.1041 13.0327
Left-IEKF 21.5772 2.6352 13.7434
Right-IEKF 21.6621 2.3658 15.1156
SO(3) BSCKF 14.3881 2.4143 17.4939
Left-BSCKF-LG 3.7793 1.2411 12.2423
Right-BSCKF-LG 8.4749 1.4365 10.6021
Right-BSCKF-LG-adaptive 3.7641 0.5966 2.4787
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Figure 6. RMSEs of Euler angles in Case 3. (a) RMSEs of roll angle; (b) RMSEs of pitch angle;
(c) RMSEs of yaw angle.

Figure 7 exhibits the computation times of the compared filters. CKF-LGs and BSCKF-
LGs spent more computation time, while IEKFs spent minimal time. When the Bayes–Sard
weights were calculated in advance according to the known system-state and measurement
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dimensions, the computation costs of BSCKF-LGs are almost equal to those of CKF-LGs.
Right-BSCKF-LG-adaptive did not significantly increase the computational burden com-
pared with Right-BSCKF-LG. Overall, BSCKF-LGs showed more accurate and robust
estimation results in this attitude estimation example.
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Figure 7. Execution times of different filters.

6. Conclusions

This article proposed a generalized Bayesian estimation algorithm on matrix Lie
groups to calibrate numerical integration errors in classical sigma point filters on Lie
groups using BSQMT theory. This Bayesian estimation is applicable to both measurements
in Euclidean space and those evolving on the Lie group. Afterwards, with the proposed
Lie group Bayesian estimator, we presented a Bayes–Sard cubature Kalman filter on Lie
groups that comes in two variants. To obtain more accurate estimation, we then developed
an approach to calculate adaptive EMVs. Numerical simulation results on quaternion
attitude estimation indicated the superiority of our proposed filters over CKFs on Lie
groups and unvariant EKFs. Future work includes exploring novel suitable methods to
compute adaptive EMVs and applying the proposed filtering algorithm to visual–inertial
navigation and fast drone navigation.
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Appendix A. Proof of Lemma 1

Because the dimension of the base function space was 2d, weights were the unique
solver of linear function Ψw = ψ̄. Hence, under the cubature rule:

2d

∑
n=0

wnq(ξn) =
∫

q(x)N (x | 0, I)dx

where q(ξn) ∈ π. For standard normal distribution, let D = 1, . . . , d; then,∫
N (x | 0, I)dx = ∑2d

n=1 wn = 1∫
xDN (x | 0, I)dx = ∑2d

n=1 wnxn,D = 0∫
x2

DN (x | 0, I)dx = ∑2d
n=1 wnx2

n,D = 1
.

According to the definition of cubature points, it can be inferred from the above
formulas that wD = wd+D = 1/2d. Thus, we obtain Bayes–Sard weights equal to third-
degree cubature transform weights.
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