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Abstract: The gear system is one of the most widely-used transmission systems due to its accurate
transmission ratio and high efficiency. However, torsional vibration may severely degrade transmis-
sion performance and shorten the gear lifespan. In view of this, a nonlinear interaction principle
suitable for vibration energy transfer is researched, and an internal resonance based method is put
forward to reduce the torsional vibration of the gear system. According to the coupling relationship
between the gear torsional vibration mode and the vibration absorber mode, the 1:1 internal resonance
condition is analyzed by the multiple scale method and the sufficient and necessary conditions for
establishing internal resonance are obtained. Through stability analysis, the vibration energy transfer
channel based on internal resonance is successfully established, by which vibration energy can be
transferred to and dissipated by the vibration absorber. Based on numerical and virtual prototyp-
ing simulations, vibration reduction performances are examined, including effectiveness, damping
characteristics and robustness. The research results show that the proposed internal resonance based
method can effectively reduce the torsional vibration of the gear system.

Keywords: gear system; vibration control; vibration absorber; internal resonance

1. Introduction

The gear system is one of the most widely used transmission systems due to its
accurate transmission ratio and high efficiency. However, it inevitably vibrates under
complicated working conditions. In particular, torsional vibrations may significantly
degrade transmission performance and shorten the gear lifespan. As a result, it is necessary
to explore effective methods for reducing the torsional vibrations of the gear system.

Recently, various passive methods have been studied for vibration control of the
gear system. Bonori and Barbieri et al. [1] developed an ad hoc genetic algorithm to
optimize important parameters of micro-geometric modifications of spur gear pairs toward
vibration and noise reduction. Bahk and Parker [2] obtained a closed-form approximation
of the vibration response with tooth profile modifications and investigated the effects of
tooth profile modification on spur planetary gear vibrations. Qiu et al. [3] proposed a
fitness-predicted genetic algorithm to obtain optimal modifications of the gear system for
vibration reduction. Xu et al. [4] investigated a lightweight and low-vibration-amplitude
web-design method to reduce the gear weight and vibrations. In addition to these structure
optimization methods, various damping enhancement techniques have been explored.
Ramadani et al. [5] replaced the solid gear body with a lattice structure and filled it with
polymer to increase system damping. Xiao et al. [6,7] adopted particle damping technology,
i.e., placing particles in the gear structure to reduce the vibration amplitude through particle
collision and friction energy dissipation. Yu et al. [8] designed and produced a new foamed
aluminum damping-plug and conducted experimental research on its vibration and noise
reduction performance. Geng [9] suggested a type of rigid–flexible gear with metal rubber
to reduce gear vibration and improve system stability. Obviously, these methods require
many modifications to existing structures.
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In addition to passive control methods, various active control methods have been
researched. Li et al. [10] proposed a web active control method for vibration reduction of
face gear transmission via active compensation of static transmission error. Wang et al. [11]
used the linear control method, the nonlinear control method, the periodic signal method,
the constant load method, as well as the phase method to control the gear system out of
the chaotic state. Wang et al. [12] designed an active vibration control structure with built-
in piezoelectric actuators (PZT) and proposed an adaptive fuzzy proportion integration
differentiation (AFPID) control algorithm to reduce the vibration of the gear system. Liu
et al. [13] developed an active compensation controller to reduce the parametrically excited
vibration of the gear pair and verified its effectiveness. Spiegelhauer et al. [14] utilized an
active vibration control strategy based on the full state feedback (LQG) to control unwanted
vibration of gear transmission. Although active control methods have made remarkable
progress, most of them face challenges when dealing with strong vibrations. Due to the
limited power output of active actuators such as PZT, there are potential risks of overload
damage [15]. More importantly, the system stability of active control methods is a crucial
issue. If designed unreasonably, active control forces probably excite vibration rather than
decrease vibration [16].

Internal resonance is a special modal interaction phenomenon of the nonlinear multi-
degree-of-freedom system. When internal resonance is established between the two vibra-
tion modes, a vibration energy transfer channel is built accordingly, and then the vibration
energy of one mode can be transferred to the other mode. Usually, it is viewed as harmful
and is expected to be avoided [17,18]. However, Golnaraghi [19] first utilized internal
resonance to reduce the vibration of a cantilever beam. Then, Oueini [20] designed an
analog controller to implement internal resonance and control a cantilever beam’s vibra-
tion. Harouni [21] proposed an internal resonance vibration absorber that works with
a negative stiffness mechanism and studied its effect on vibration reduction. In these
studies, the primary system was a rigid body supported by springs. On the other hand,
the distributed flexible body model was researched. Yaman [22] reduced the vibration of a
flexible cantilever beam using a pendulum attached to the tip mass. Hui [23] decreased the
translational vibration by transferring the internally resonant energy from the symmetrical
mode to the anti-symmetrical mode. Furthermore, Bian and Gao [24] designed an internal
resonance vibration absorber with adjustable parameters and proposed a semi-active vibra-
tion absorption method for the flexible manipulator undergoing rigid motion. Although
these research works are promising, few studies have focused on reducing the torsional
vibrations of the gear system via internal resonance. Since the dynamic model of the gear
system is completely different from that of a flexible mechanism, whether internal reso-
nance can be established and utilized to reduce the torsional vibration of the gear system
has not been researched.

In view of this, an internal resonance-based method is proposed in this paper to reduce
the torsional vibrations of the gear system as an exploration to combine internal resonance
with gear vibration control. Firstly, the dynamic model of the gear system and the internal
resonance vibration absorber are established. Secondly, according to the coupling relation-
ship between the gear torsional vibration mode and the vibration absorber mode, the 1:1
internal resonance condition is analyzed by the multiple scale method, and sufficient and
necessary conditions for establishing internal resonance are obtained. Through stability
analysis, the vibration energy transfer channel based on internal resonance is successfully
established. Finally, vibration reduction performances are examined based on numerical
and virtual prototyping simulations, thereby verifying the effectiveness of the proposed
method. The proposed method exhibits potential advantages in reducing vibration re-
sponses induced by unpredictable excitations in complex environments, e.g., wind power
gear systems.
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2. Dynamic Modeling of the Gear System and Internal Resonance Vibration Absorber
2.1. System Description

The gear system’s torsional vibrations, caused by periodic excitations such as time-
varying meshing stiffness and other unpredictable excitations, are difficult to eliminate.
Thus, more effective measures need to be proposed to reduce this torsional vibration. In
view of this, a gear system that uses an internal resonance vibration absorber to reduce
vibration is suggested in this paper, as shown in Figure 1. The gear system consists of three
parts: the driving gear, the driven gear, and the internal resonance vibration absorber. The
action relationship between two gears is modeled as meshing stiffness along the meshing
line; km is the comprehensive meshing stiffness of the gear and cm is the meshing damping.
Ri(i = p, g) is the base circle radius of the driving and driven gears; θi(i = p, g) is the
torsional displacement of the two gears; Ii(i = p, g) is the inertia torque of the driving
and driven gears; Ti(i = p, g) is the external load moment subjected to the driving and
driven gears.
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Figure 1. Gear model with an internal resonance vibration absorber.

The internal resonance vibration absorber is a vibration subsystem composed of
three parts: a mass unit m, a stiffness unit k, and a damping unit c that dissipates energy.
The vibration absorber moves linearly along the radial direction of the driven gear. Its
generalized coordinate is x, which represents the distance of the vibration absorber’s mass
unit relative to the equilibrium position; r represents the distance between the equilibrium
position and the center of the driven gear.

2.2. Derivation of the Dynamic Model

The gear system with the internal resonance vibration absorber has three degrees of
freedom. Thus, the generalized coordinate of the system is defined as X =

[
θp, θg, x

]T .
As shown in Figure 2, the internal resonance vibration absorber’s moving speed is

decomposed into circumferential and radial directions, i.e.,

Machines 2022, 10, x FOR PEER REVIEW 4 of 20 
 

 

 
Figure 2. Motion description of the internal resonance vibration absorber. 

As shown in Figure 2, the internal resonance vibration absorber’s moving speed is 
decomposed into circumferential and radial directions, i.e., 

2 ( )
            

t
m g
n
m

r r x
r x

θ = +
 =



 
 (1) 

According to the Lagrange equation and Equation (1), the dynamic equations of the 
gear system and the vibration absorber are obtained, which are: 

m

2
m

2

2

+ ( )+ ( )

( ) ( ) ( )

( 2 ) 2 ( )

( )

p p p m p p g g p p p g g p

g g g m p p g g g p p g g

g g g

g

I R c R R R k R R T

I mr R c R R R k R R

T mx mrx m r x x

mx cx kx m r x

θ θ θ θ θ

θ θ θ θ θ

θ θ

θ

 − − =


+ − − − −


= − − + − +
 + + = +

  

  

 



 (2) 

where mk  is the time-varying meshing stiffness, which can be approximated as a square 
waveform periodic function. Thus, the meshing stiffness is described by Fourier series 
expansion, and generally only the first harmonic is expanded when calculating [25], i.e., 

m 0 0 1 m 1cos( )k k k k k tω ϕ= +Δ = + +  (3) 

where 0k  is the average meshing stiffness, 1k  is the stiffness fluctuation amplitude, 

mω  is the gear meshing frequency. 
The gear parameters used in this paper are listed in Tables 1 and 2. According to ISO 

(International Standard Organization) 6336-1, the meshing stiffness mk  is calculated 
through a series of formulas, and the final result is 

4 4
m=6.67 10 +3.121 10 cos(2 ) (N/mm)mk tπω× ×  (4) 

Table 1. Parameters of the gear system. 

Parameter Driving Gear Driven Gear 
Teeth number z 20 30 

Mass (g) 119.2 265.5 
Inertia torque ( 2kg mm ) 43.52 212.96 

Modulus (mm) 2.5 
Pressure angle ( °) 25 
Tooth width (mm) 10 

Average meshing stiffness k0 (N/mm) 6.89×104 
Meshing damping (N/(m/s))mc  0.2 

 

j

θg

m
k c r

Rg

Ig

Figure 2. Motion description of the internal resonance vibration absorber.



Machines 2022, 10, 269 4 of 19

{
rm

t =
.
θg

2(r + x)
.
rm

n =
.
x

(1)

According to the Lagrange equation and Equation (1), the dynamic equations of the
gear system and the vibration absorber are obtained, which are:

Ip
..
θp + Rpcm(Rp

.
θp − Rg

.
θg)+Rpkm(Rpθp − Rgθg) = Tp

(Ig + mr2)
..
θg − Rgcm(Rp

.
θp − Rg

.
θg)− Rgkm(Rpθp − Rgθg)

= −Tg − (mx2 + 2mrx)
..
θg − 2m(r + x)

.
x

.
θg

mx + cx + kx = m(r + x)
.
θg

2

(2)

where km is the time-varying meshing stiffness, which can be approximated as a square
waveform periodic function. Thus, the meshing stiffness is described by Fourier series
expansion, and generally only the first harmonic is expanded when calculating [25], i.e.,

km = k0 + ∆k = k0 + k1 cos(ωmt + ϕ1) (3)

where k0 is the average meshing stiffness, k1 is the stiffness fluctuation amplitude, ωm is
the gear meshing frequency.

The gear parameters used in this paper are listed in Tables 1 and 2. According to
ISO (International Standard Organization) 6336-1, the meshing stiffness km is calculated
through a series of formulas, and the final result is

km= 6.67× 104+3.121× 104 cos(2πωmt) (N/mm) (4)

Table 1. Parameters of the gear system.

Parameter Driving Gear Driven Gear

Teeth number z 20 30
Mass (g) 119.2 265.5

Meshing damping (kg·mm2) 43.52 212.96
Modulus (mm) 2.5

Pressure angle (◦) 25
Tooth width (mm) 10

Average meshing stiffness k0 (N/mm) 6.89 × 104

Meshing damping cm (N/(m/s)) 0.2

Table 2. Parameters of the internal resonance vibration absorber.

Parameter Value

Mass (g) 20
Eccentricity (mm) 30

For convenience, the dynamic equation is converted into matrix form for the subse-
quent solution. Let the mass matrix be M, the damping matrix be C, the stiffness matrix be
K, and the generalized force be F. Then, the dynamic equation is rewritten as

M
..
X + C

.
X + KX = F (5)
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where M =

 Ip 0 0
0 Ig + mr2 0
0 0 m

, C =

 cmRp
2 −cmRpRg 0

−cmRpRg cmRg
2 0

0 0 c

,

K =

 kmRp
2 −kmRpRg 0

−kmRpRg kmRg
2 0

0 0 k

, F =

 Tp

−Tg − (mx2 + 2mrx)
..
θg − 2m(r + x)

.
x

.
θg

m(r + x)
.
θg

2

.

2.3. Decoupling of Dynamic Equations

In order to analyze the internal resonance relationship between the gear system mode
and the vibration absorber mode, the dynamic equations need to be decoupled.

With the help of coordinate transformation, M and K can be transformed into diagonal
matrices, i.e.,

VT MV
..
Y + VTCV

.
Y + VTKVY = VT F (6)

where Y = V−1X, and V is the eigenvector matrix of M−1K, i.e.,

V =


Rg
Rp
− Rp(Ig+mr2)

Rg Ip
0

1 1 0

0 0 1

 (7)

Therefore, the modal mass matrix M0, the modal stiffness matrix K0, the modal
coordinates Y, and the modal excitation Q are obtained as follows:

M0 = VT MV =


Ig + mr2 +

IpRg
2

Rp2 0 0

0 (Ig+mr2)[IpRg
2+(Ig+mr2)Rp

2]

IpRg2 0

0 0 m

 (8)

K0 = VTKV =


0 0 0

0 km [IpRg
2+(Ig+mr2)Rp

2]
2

Ip2Rg2 0

0 0 k

 (9)

Y = V−1X =

 y1
y2
y3

 =


(Ig+mr2)Rp

2θg+IpRpRgθp
IpRg2+(Ig+mr2)Rp2

− IpRg(Rpθp−Rgθg)

IpRg2+(Ig+mr2)Rp2

x

 (10)

Q = VT F =


−2mr(

..
y1 +

..
y2)x−m(

..
y1 +

..
y2)x2 − 2m(

.
y1 +

.
y2)

.
x(x + r)

− [IpRg
2+(Ig+mr2)Rp

2]Tg
IpRg2 − (

..
y1 +

..
y2)(2mrx + mx2)− 2m(

.
y1 +

.
y2)

.
x(x + r)

m(
.
y1 +

.
y2)

2
(x + r)

 (11)

It can be obtained from the modal stiffness matrix K0 that the modal frequency, corre-
sponding to modal coordinate y1, is 0, which represents the rigid body mode of the gear
rotation. Modal coordinate y2 is the gear torsional vibration modal coordinate, obtained by
multiplying a constant containing only gear parameters by (Rpθp − Rgθg), which reflects
the vibration displacement of gears along the mesh line, and y3 is the modal coordinate of
the vibration absorber.
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The nominal motion of the gear transmission is known, i.e., θp = ωnt. Therefore, the
rigid body mode of the system can be ignored. Then, the decoupled modal motion equation
can be finally expressed as

..
y2 + 2ξ1ω1

.
y2 + ω2

1y2 = − 1
Ig + mr2

[
Tg + 2mr

..
y2x + m

..
y2x2 + 2m

.
x(x + r)(

M′Rpω

Rg
+

.
y2)

]
(12)

..
x + 2ξ2ω2

.
x + ω2

2x = (
Rpω

Rg
+

.
y2
M′

)
2

(x + r) (13)

where ω2
1 =

IpRg
2+(Ig+mr2)Rg

2

Ip(Ig+mr2)
km, ω2

2 = k
m , ξ1 = cm

2ω1
· IpRg

2+(Ig+mr2)Rg
2

Ip(Ig+mr2)
, ξ2 = c

2mω2
,

M′ = IpRg
2

IpRg2+(Ig+mr2)Rp2 .

3. Establishment of the Internal Resonance Energy Transfer Channel

In this section, a vibration energy transfer channel based on 1:1 internal resonance
is successfully established to reduce the gear torsion vibrations with the help of the
vibration absorber.

3.1. Perturbation Analysis

It is essential to make the dynamic equations dimensionless, and the following trans-
formations are used, i.e.,

τ = ω1t (14)

x′ =
x
r

. (15)

Thus, the gear torsion vibration mode, Equation (12), and the vibration absorber mode,
Equation (13), are nondimensionalized as

..
y2 + 2ξ1

.
y2 + y2 = − Tg

(Ig+mr2)ω2
1
− mr2

Ig+mr2 (2
..
y2x′

+
..
y2x′2 + 2M′µ

.
x′ + 2

.
y2

.
x′ + 2M′µ

.
x′x′ + 2

.
y2

.
x′x′)

(16)

..
x′ + 2ξ2ω′2

.
x′ + ω′2

2x′ = µ2x′ +
2µ

.
y2x′

M′
+

.
y2

2x′

M′2
+ µ2 +

2µ
.
y2

M′
+

.
y2

2

M′2
(17)

where (·) and (··) represent the first and second derivatives with respect to τ; ω′2 = ω2/ω1
represents the ratio of the natural frequency of the vibration absorber mode to the natural
frequency of the gear torsional vibration mode; µ = Rpω/Rgω1.

Equations (16) and (17) are solved by the multiple scales method. A small perturbation
parameter 0 < ε << 1 is introduced through the following transformations:

y2 → εy2 , x′ → εx′ , µ→ εµ , ξ1 → εξ1 , ξ2 → εξ2 (18)

Substituting Equation (18) into Equations (16) and (17), one obtains:

..
y2 + 2εξ1

.
y2 + y2 = −

Tg

(Ig + mr2)ω2
1
− 2εmr2

Ig + mr2 (
..
y2x′ + M′µ

.
x′ +

.
y2

.
x′) + o(ε2) (19)

..
x′ + 2εξ2ω′2

.
x′ + ω′2

2x′ = εµ2 + ε
2µ

.
y2

M′
+ ε

.
y2

2

M′2
+ o
(

ε2
)

(20)

The first-order approximate solutions to Equations (19) and (20) take the form

y2(τ, ε) = ρ0(T0, T1) + ερ1(T0, T1) + (ε2) (21)

x′(τ, ε) = x0(T0, T1) + εx1(T0, T1) + (ε2) (22)
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where T0 = τ denotes a fast time scale characterized by the inherent movement of the
system, and T1 = ετ denotes a slow time scale characterized by the modal vibration. The
time derivatives with respect to τ can be rewritten in terms of the new time scales as

d
dτ

= D0 + εD1 + O(ε2) (23)

d2

dτ2 = D2
0 + 2εD0D1 + O

(
ε2
)

(24)

where Di = ∂/∂Ti(i = 1, 2).
Substituting Equations (21)–(24) into Equations (19) and (20), then equating coefficients

of the same order of ε, one obtains the following differential equations:
Order (ε0):

D2
0ρ0 + ρ0 = −

Tg

(Ig + mr2)ω2
1

(25)

D2
0x0 + ω′2

2x0 = 0 (26)

Order (ε1):

D2
0ρ1 + ρ1 = −2D0D1ρ0 − 2ξ1D0ρ0 −

2mr2

Ig + mr2

[
D2

0ρ0 · x0 + (M′µ + D0ρ0)D0x0

]
(27)

D2
0x1 + ω′2

2x1 = −2D0D1x0 − 2ξ2ω′2D0x0 + µ2 +
2µD0ρ0

M′
+ (

D0ρ0

M′
)

2
(28)

The general solutions of Equations (25) and (26) can be expressed in the form:

ρ0 = A1(T1)ejT0 + cc (29)

x0 = A2(T1)ejω′2T0 + cc (30)

where A1(T1) and A2(T1) are the functions of the slow time T1, determined by the solvabil-
ity conditions in the next section; cc denotes the complex conjugate of the preceding terms.

Substituting Equations (29) and (30) into Equations (27) and (28), one obtains:

D2
0ρ1 + ρ1 = −2j(D1 A1 + ξ1 A1)ejT0 − 2mr2

Ig+mr2 [−A1 A2(1 + ω′2)e
j(1+ω′2)T0

−A1 A2(1−ω′2)e
j(1−ω′2)T0 + jM′µω′2 A2ejω′2T0 ] + cc

(31)

D2
0x1 + ω′2

2x1 = −2jω′2(D1 A2 + ξ1ω′2 A2)ejω′2T0 + µ2 +
2jµA1ejT0

M′
−

A2
1e2jT0

M′2
+

A1 A1

M′2
+ cc (32)

where cc denotes the complex conjugate terms.

3.2. Internal Resonance Analysis

The coupling terms of the gear torsional vibration mode and the vibration absorber
mode on the right-hand side of the Equations (16) and (17) are underlined. When the
frequency of these coupling terms is the same as the frequency of the modal coordinate
y2 and x′, the resonance phenomenon will be excited, potentially establishing an internal
resonance energy channel.

The first-order approximate solutions Equations (21) and (22) are substituted into
the underlined coupling terms, and only the order ε0 is considered. It is found that the
underlined items

..
y2x′2 and

.
y2x′

.
x′ in Equation (16) have a common excitation frequency

2ω′2 − 1. Let 2ω′2 − 1 be equal to the dimensionless angular frequency of the gear torsional
vibration, then one obtains

ω1 = ω2 (33)
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Similarly, for the underlined item
.
y2

2x′ in Equation (17), when its frequency is equal
to the frequency of the vibration absorber, Equation (33) can also be obtained. It can be
inferred that the gear torsional vibration mode and the vibration absorber mode are strongly
coupled, and internal resonance may occur. Therefore, the 1:1 internal resonance condition
is analyzed in this paper.

The detuning parameter σ is introduced, which reflects the amount of deviation
between modal frequencies ω1 and ω2, i.e.,

ω′2= 1+εσ (34)

Then, T0 and ω′2T0 can be expressed as:

T0 = ω′2T0 − σT1 (35)

ω′2T0 = T0 + σT1 (36)

Equations (35) and (36) are substituted into Equations (31) and (32), and the secular
and small divisor terms are eliminated. Then one obtains:

2j(D1 A1 + ξ1 A1)−
2mr2

Ig + mr2 · jM
′µω′2 A2ejσT1 = 0 (37)

− 2jω′2(D1 A2 + ξ1ω′2 A2) +
2jµA1e−jσT1

M′
= 0 (38)

In order to solve Equations (37) and (38), A0(T1) and A1(T1) are expressed in polar
form for convenience, i.e.,

A1 =
1
2

a1ejθ1 (39)

A2 =
1
2

a2ejθ2 (40)

where a1, a2, θ1, θ2 are unknown real functions of the slow time T1; a1 and a2 represents the
modal amplitudes.

Inserting Equations (39) and (40) into Equations (37) and (38), then setting the real and
imaginary parts to 0, one obtains:

D1a1 + ξ1a1 = − mr2

Ig + mr2 M′µω′2a2 cos ψ (41)

D1a2 + ξ1ω′2a2 =
µ

M′ω′2
a1 cos ψ (42)

a1D1θ1 = − mr2

Ig + mr2 M′µω′2a2 sin ψ (43)

a2D1θ2 = − µ

M′ω′2
a1 sin ψ (44)

where
ψ = θ2 − θ1 + σT1 (45)

θ1 and θ2 can be eliminated from Equations (43)–(45), i.e.,

D1ψ = − µa1

M′ω′2a2
sin ψ +

mr2

Ig + mr2 M′µω′2 sin ψ · a2

a1
+ σ (46)
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In order to investigate the energy transfer between the driven gear and the vibration
absorber, the undamped condition is analyzed. Divide Equation (41) by Equation (42)
to obtain

D1a1

D1a2
= −mr2(M′ω′2)

2

Ig + mr2
a2

a1
(47)

Let

v =
mr2(M′ω′2)

2

Ig + mr2 (48)

then one can obtain
a2

1 + va2
2 = E (49)

where E is a constant of integration, which reflects the initial energy of the system.
Since v > 0 in Equation (49), a1 and a2 are bounded and negatively correlated, indicat-

ing that the vibration energy of the gear torsional vibration mode and the absorber vibration
mode is continuously exchanged. This phenomenon proves that the energy transmission
channel based on internal resonance has been successfully established.

3.3. Verification of Internal Resonance

In this section, the modal amplitude change, which reflects the evolution of vibration
energy, is obtained through numerical simulation in order to verify the successful establish-
ment of the internal resonance, thereby proving the correctness of the theoretical analysis.

Let ε = 0.02, a1 = 0.0001, a2 = 0, ψ = π/2, and thus the amplitude diagram of the gear
torsional vibration mode and the vibration absorber mode is obtained, as shown in Figure 3.
In the absence of damping, the system’s energy is continuously exchanged between the
two modes without attenuation. Furthermore, the two modes have anti-phase amplitude
modulation motion, proving that the internal resonance has been established successfully.
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Figure 3. Amplitude of the gear torsional mode and vibration absorber mode.

4. Vibration Reduction Characteristics of the Internal Resonance Vibration Absorber

In order to build an efficient energy transfer channel and improve vibration reduction
performance, it is necessary to study the vibration reduction characteristics of the internal
resonance vibration absorber. For this reason, this section investigates the validity of the
vibration absorber, analyzes the influence of damping on vibration absorption performance,
and studies the robustness of the vibration absorber.

4.1. Validity Investigation

The validity of the internal resonance vibration absorber for vibration reduction can
be verified by comparing the numerical simulation of the gear system with and without
the vibration absorber.
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Let the external load Tg = 100 N ·m, and the time-varying meshing stiffness has the aver-
age value to observe the internal resonance phenomenon, i.e., km = k0 = 6.67× 104 N/mm.
According to Equation (12), the modal frequency of gear torsional vibration can be obtained, i.e.,

ω1 =

√
K2

M2
=

√
k0(IpRg2 + IgRp2 + mr2Rp2)

Ip(Ig + mr2)
= 3.4026× 104 rad/s (50)

From Equation (13), one obtains the stiffness of the internal resonance vibration
absorber in this study, which is

k = mω2
2 ≈ mω1

2 = 2.32× 104 N/mm (51)

When the vibration absorber damping c = 0, the displacements of the gear torsional
vibration mode and the vibration absorber mode are shown in Figure 4. The gear torsional
modal displacement represents the gears’ displacement along the meshing line, and the
vibration absorber modal displacement represents the absorber’s displacement along the
radial direction of the driven gear. It can be found that the peaks and valleys of the two
modes’ vibration displacement appear alternately, indicating that the vibration energy is
transferred alternately between the gear system and the vibration absorber, thereby proving
the successful establishment of the internal resonance energy channel.
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Figure 4. Two modes’ vibration displacement (initial excitation).

Next, the time-varying mesh stiffness expression in Equation (4) is used to observe
the damping effect of the internal resonance vibration absorber under actual conditions.
Let the meshing damping cm = 0.2 N/(m/s) and the damping of the internal resonance
absorber c = 10 N/(m/s). In order to obtain an intuitive vibration reduction effect of
the vibration absorber, the torsional vibration displacement of the gear system with and
without the vibration absorber is compared, as shown in Figure 5.

The internal resonance vibration absorber reduces the torsional vibration displacement
amplitude, i.e., the gears’ relative displacement amplitude along the meshing line, to
26.48 µm within 8 s, as shown in Figure 5. Compared to the system without the vibration
absorber (39.01 µm), the vibration absorber reduces the amplitude of the gear torsional
vibration by 32.1%. During this process, the energy of the gear torsional vibration mode
is transferred to the vibration absorber mode via the internal resonance energy transfer
channel and is continuously dissipated by the damping of the vibration absorber.
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Figure 5. Two modes’ vibration displacement (periodical excitation).

As a result, the amplitude of gears’ torsional vibrations can be significantly reduced by
the internal resonance vibration absorber, and thus the proposed gear vibration reduction
method based on internal resonance is effective. The above simulation results exhibit the
potential application value of this method in the field of gear transmission.

4.2. Influence of Vibration Absorber Damping
4.2.1. System Stability under Damping Conditions

Since instability is harmful to system motion, it is necessary to assess the stability of
the internal resonance steady-state solution under damping conditions. The steady-state
solution of the nonlinear dynamic equation is D1a1 = D1a2 = D1ψ = 0. Substituting the
steady-state solution into Equations (41), (42) and (46), one obtains:

−ξ1a1 − mr2

Ig+mr2 M′µω′2a2 cos ψ = 0

−ξ1ω′2a2 +
µ

M′ω′2
a1 cos ψ = 0

− µa1
M′ω′2a2

sin ψ + mr2

Ig+mr2 M′µω′2 sin ψ · a2
a1
+ σ = 0

(52)

The solution of Equation (52) can be defined as:

a1 = 0, a2 = 0, ψ ∈ R (53)

Therefore, one can ascertain the system’s stability by evaluating the Jacobian matrix.
Let ψ = π/2; then, the Jacobian matrix is:

−ξ1 0 0

0 −ξ2ω′2 0

0 0 0

 (54)

Since ξ1, ξ2, and ω′2 are all positive, the eigenvalues of the Jacobian matrix are all
negative. Therefore, the steady-state solution has asymptotic stability, and the motion of
the gear system and the internal resonance vibration absorber are stable. This means that
in the presence of damping, the gear torsional vibration energy can be stably transferred
to the vibration absorber through the energy transfer channel and dissipated through the
latter’s damping.
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4.2.2. Influence of Damping on System Vibration Reduction

In Section 3.3, the equations of gear torsional vibration mode and internal resonance
vibration absorber mode in the slow time scale have been solved. The modal amplitude
and phase angle satisfy the following equations:

D1a1 = −ξ1a1 − mr2

Ig+mr2 M′µω′2a2 cos ψ

D1a2 = −ξ1ω′2a2 +
µ

M′ω′2
a1 cos ψa

D1ψ = − µa1
M′ω′2a2

sin ψ + mr2

Ig+mr2 M′µω′2 sin ψ · a2
a1
+ σ

(55)

The gear meshing damping is simplified as linear viscous damping, and thus the
damping coefficient ξ1 = 5× 10−4. When σ = 0, the influence of differences in damping of
the vibration absorber on the modal amplitude of the gear torsional vibration is shown in
Figure 6.
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Figure 6. Influence of vibration absorber damping.

It can be seen from Figure 6 that, as the damping ratio ξ2 increases from 0.001 to 0.007,
the ability of the vibration absorber to reduce the modal amplitude of the gear torsional
vibration is significantly enhanced. When the damping of the vibration absorber is small,
the ability to absorb vibration energy is strong, but the ability to dissipate vibration energy
is weak. At this time, an appropriate increase of ξ2 can enhance the vibration absorption
capacity of the vibration absorber. However, when ξ2 is further increased, the effect of
reducing vibration slows down because the large damping of the vibration absorber hinders
the transmission of the gear’s vibration energy. Therefore, improperly selected damping is
not conducive to vibration reduction. When ξ2 = 0.007, i.e., c = 2mω2ξ2 = 9.5 N/(m/s),
the ability of the vibration absorber to vibration absorption and energy consumption
reaches the best and thus the vibration absorber achieves the best vibration reduction effect.

4.3. Robustness Study of the Vibration Absorber

Under complex working conditions, the designed vibration absorber must have a
strong ability to resist external interference. In view of this, the robustness of the internal
resonance vibration absorber is verified by studying the gear torsional vibration’s modal
energy transfer rate in this section.
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Let the effective working time interval be 0 to 2000 of the slow time and the value
range of σ be (−0.4, 0.35). As shown in Figure 7, as the absolute value of σ increases, the
fluctuation of modal amplitude a1 keeps shrinking, which means that the energy transfer
rate decreases. This phenomenon indicates that as the frequency ratio of the two modes
deviates from the necessary and sufficient conditions for establishing internal resonance,
the energy transfer between the modes decreases.
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The maximum change in modal amplitude a1 is measured, as shown in Table 3. From
this, the change curve of the energy transfer capacity with respect to different values of σ
is obtained, as shown in Figure 8. The change curve reaches its peak when σ = 0 and is
approximately symmetrical on both sides of the peak. Taking the curve’s half power point
on both sides of the peak, the ordinate is ∆a1max/

√
2, and the corresponding detuning

parameters are obtained as σ1 and σ2, respectively. Thus, the adequate working bandwidth
of the vibration absorber is ∆σ = σ2− σ1, within which the vibration absorber can efficiently
absorb the torsional vibration energy. In this paper, the bandwidth of the vibration absorber
(i.e., (−1.4, 1.4)) is large, which verifies that the system’s robustness is strong enough.

Table 3. Influence of σ on modal amplitude variation.

σ ∆a1(×10−5) σ ∆a1(×10−5)

−0.4 3.254 0 10
−0.35 3.754 0.05 8.860
−0.3 4.345 0.1 7.772
−0.25 5.036 0.15 6.756
−0.2 5.842 0.2 5.841
−0.15 6.749 0.25 5.037
−0.1 7.773 0.3 4.343
−0.05 8.865 0.35 3.754
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5. Verification of Vibration Reduction Effect via Virtual Prototype Simulation

The above studies are based on theoretical analysis and numerical simulation. Based
on this, it is also necessary to use a recognized method to verify the effect of the internal
resonance vibration absorber. Therefore, COMSOL Multiphysics® software was used to
further verify the vibration reduction effect of the internal resonance vibration absorber
under the action of initial excitation and periodic excitation in this section. Since it calculates
dynamic responses of the gear system in different ways than in this paper, more trustable
results can be obtained to verify the above work.

5.1. Establishment of Virtual Prototype Model

A virtual prototype model of the gear system and the internal resonance vibration
absorber was established according to the parameters in Tables 1 and 2, as shown in Figure 9.
The two gears are connected with the ground by hinges. The two gears are connected by
a gear-pair, of which the time-varying meshing stiffness is set according to the previous
calculation results. Moreover, the vibration absorber is represented by a mass connected to
the driven gear through a prismatic joint, and the axis of the prismatic joint is along the
gear’s radial direction.
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5.2. Vibration Reduction Effect under Transient Excitation

In order to verify the vibration energy transfer and dissipation mechanism based on
internal resonance, a gear system subjected to a transient excitation was investigated via
virtual prototyping simulation. The angular velocity of the driving gear increases from
0 to 800 rad/s within 0.001 s and then remains constant. The torsional vibration of the
gear system is excited by the sudden change of the rotational speed. Let the meshing
stiffness km= 6.67× 104 N/mm, the load torque on the driven gear Tg = 100 N ·m, and
the stiffness of the vibration absorber k = 2.32× 104 N/mm. Then, the vibration reduction
characteristics of the vibration absorber under the transient excitation can be studied by
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changing the vibration absorber damping c. Let c be 0, 1, 9.5, and 100 N/(m/s); the
vibration displacement of the gear and the vibration absorber are obtained, as shown in
Figure 10.
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Figure 10. Influence of vibration absorber damping: (a) c = 0; (b) c = 1; (c) c = 9.5; (d) c = 100.

As shown in Figure 10a, the internal resonance has been successfully established.
The torsional vibration energy is transferred to the internal resonance vibration absorber,
causing the vibration absorber’s mass unit to vibrate near the equilibrium position. When
the amplitude of the torsional vibration reaches a minimum value, the amplitude of the
vibration absorber reaches a maximum value, indicating that the vibration energy flows
into the vibration absorber at this time, and vice versa. This phenomenon shows that the
vibration energy is transferred between the two modes, proving that the internal resonance
energy transfer channel works effectively in the gear system.

Furthermore, as shown in Figure 10b–d, with the increase in the vibration absorber
damping c, the vibration reduction capability shows a trend of first becoming stronger
and then weaker. As shown in Figure 10b, when c = 1 N/(m/s), the vibration absorber’s
amplitude fluctuates greatly, indicating a strong ability to absorb torsional vibration energy.
However, the vibration absorber has a weak ability to dissipate the vibration energy, and
the torsional vibration amplitude is only reduced from 20.5 µm to 13.5 µm within 0.3 s.
As shown in Figure 10c, when the selected damping of the vibration absorber is suitable,
i.e., c = 9.5 N/(m/s), the torsional vibration amplitude can be effectively reduced to
4 µm. Moreover, as shown in Figure 10d, when c = 100 N/(m/s), the vibration absorber
modal amplitude has almost no fluctuation. Since excessive damping prevents the torsional
vibration energy from flowing into the vibration absorber mode, the vibration reduction
effect is not satisfactory. These virtual prototyping simulation results further verify the
accuracy of the presented theoretical analysis.
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5.3. Vibration Reduction Effect under Periodic Excitation

For the torsional vibration caused by various periodic excitations, such as time-
varying meshing stiffness, the internal resonance vibration absorber can effectively suppress
the vibrations.

Let the angular velocity of the driving gear be 800 rad/s, the load torque on the driven
gear Tg = 100 N ·m, the stiffness of the vibration absorber k = 2.32× 104 N/mm, and the
vibration absorber damping c = 9.5 N/(m/s). The meshing stiffness is set according to
Equation (5) and the meshing damping cm = 0.2 N/(m/s). The diagram of gear torsional
vibration displacement with and without the vibration absorber is obtained via virtual
prototyping simulation, as shown in Figure 11.
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Figure 11. Torsional vibration displacement under periodic excitation.

The initial torsional vibration amplitude of the gear system is 37 µm. Without the
vibration absorber, the torsional vibration amplitude of the gear is reduced to 32 µm
within 2 s. Meanwhile, the torsional vibration amplitude for the gear system with an
internal resonance vibration absorber is reduced to 27.5 µm within 2 s, 14.1% less than
that without the vibration absorber. Within 6 s, the torsional vibration amplitude without
the vibration absorber is reduced to 30.5 µm, while the torsional vibration amplitude with
the vibration absorber is reduced to 22 µm, i.e., 27.9% less than that without the vibration
absorber. Therefore, the internal resonance-based method can effectively decrease the
torsional vibration of the gear system.

In practice, there are various uncertainties in the gear system, such as assembly errors,
machining errors, wear, and other factors that influence gear transmission performance.
Usually, these factors can be converted to the gear transmission error, which is generally
represented by a harmonic function [26], i.e.,

e(t) = e0 + e1 sin(ωmt + ϕ) (56)

where e0 and e1 are the fixed value and amplitude of the transmission error, respectively;
ωm is the meshing frequency of the gear pair; and ϕ is the initial phase angle, generally
taking the value of 0.

In order to consider various uncertainties in the gear system and provide more real-
istic results, the gear transmission error is taken into account in the virtual prototyping
simulations. Let the amplitude of the transmission error e1 = 10 µm [26], with other
parameters remain unchanged. The vibration reduction effect of the internal resonance
vibration absorber is shown in Figure 12.
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Figure 12. Vibration reduction effect of the internal resonance vibration absorber.

It can be found that the amplitude of the gear’s torsional vibration increases signifi-
cantly after considering the transmission error. The initial torsional vibration amplitude
of the gear system is 68.5 µm. The torsional vibration amplitude of the gear system with
an internal resonance vibration absorber is reduced to 48 µm within 2 s, 19.4% less than
that without the vibration absorber (59.5 µm). Within 4 s, the torsional vibration amplitude
without the vibration absorber is reduced to 52 µm, while the torsional vibration amplitude
with the vibration absorber is reduced to 39 µm, i.e., 25% less than that without the vibra-
tion absorber. Therefore, the torsional vibration energy can be transferred to and dissipated
by the vibration absorber even after considering more complex factors.

In conclusion, even though several uncertainties in the gear system are taken into
account, the internal resonance-based method can still effectively decrease the torsional
vibration of the gear system.

6. Conclusions

Torsional vibration can severely degrade transmission performance and shorten the
gear lifespan. Until now, most passive vibration reduction methods rely on structure
optimization and new damping materials to reduce the torsional vibration of the gear
system. Obviously, these methods require many modifications to existing structures. On
the other hand, several active vibration reduction methods have been suggested in recent
years. When dealing with strong vibration, however, most of them face challenges. Due
to the limited power output of active actuators such as PZT, there are potential risks of
overload damage. More importantly, the system stability of active control methods is a
crucial issue. If designed unreasonably, active control forces probably excite vibration
rather than suppress vibration.

In view of this, an internal resonance-based method is proposed to reduce the torsional
vibrations of the gear system. A vibration absorber is attached to the gear system for
establishing a nonlinear interaction channel to dissipate the vibration energy of the gear
torsional vibration mode. Based on the dynamic model of the gear system and the internal
resonance vibration absorber, the 1:1 internal resonance condition is analyzed, and sufficient
and necessary conditions for establishing internal resonance are obtained. Through stability
analysis, the vibration energy transfer channel, based on internal resonance, is successfully
established, by which the vibration energy can be transferred to and dissipated by the
vibration absorber. Based on numerical and virtual prototyping simulations, vibration
reduction performances are examined, including effectiveness, damping characteristics,
and robustness. The research results show that the proposed internal resonance-based
method can effectively reduce the torsional vibrations of the gear system.

Essentially, the proposed internal resonance-based method is a passive vibration ab-
sorption method. Different from conventional vibration absorption methods characterized
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by linear neutralization, this method absorbs vibration energy via nonlinear modal inter-
action provided by internal resonance. As a result, a translational mode can absorb the
vibration energy of a torsional mode. On the other hand, compared with those passive
methods, which rely on structure optimization and new damping materials, this method
does not require many modifications to existing structures. As long as the vibration ab-
sorber is installed on the gear system, it can effectively absorb the torsional vibration of
the gear system. Furthermore, this method aims to dissipate vibration energy rather than
actively suppress vibration with the help of external energy input. Therefore, it is more
suitable for mitigating strong vibration than those active control methods, which rely on
numerous actuators with limited energy output.

Author Contributions: Writing—original draft preparation, B.J.; writing—review and editing, Y.B.;
investigation, D.T.; simulation—review and editing, Z.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by [National Key R&D Program of China] grant number
[2019YFB2004602] And The APC was funded by [National Key R&D Program of China].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Barbieri, M.; Bonori, G.; Pellicano, F. Optimum profile modifications of spur gears by means of genetic algorithms. J. Sound Vibr.

2012, 331, 4825–4829. [CrossRef]
2. Bahk, C.J.; Parker, R.G. Analytical investigation of tooth profile modification effects on planetary gear dynamics. Mech. Mach.

Theory 2013, 70, 298–319. [CrossRef]
3. Qiu, P.; Zhao, N.; Wang, F. Optimum microgeometry modifications of herringbone gear by means of fitness predicted genetic

algorithm. J. Vibroeng. 2016, 18, 4964–4979. [CrossRef]
4. Xu, G.; Dai, N.; Tian, S. Principal stress lines based design method of lightweight and low vibration amplitude gear web. Math.

Biosci. Eng. 2021, 18, 7060–7075. [CrossRef]
5. Ramadani, R.; Belsak, A.; Kegl, M.; Predan, J.; Pehan, S. Topology optimization based design of lightweight and low vibration

gear bodies. Int. J. Simul. Model 2018, 17, 92–104. [CrossRef]
6. Xiao, W.; Li, J.; Wang, S.; Fang, X. Study on vibration suppression based on particle damping in centrifugal field of gear

transmission. J. Sound Vibr. 2016, 366, 62–80. [CrossRef]
7. Xiao, W.; Xu, Z.; Wang, S.; Yu, S.; Qin, K.; Hu, D. Research on Vibration Reduction Characteristics of Continuum and Noncontinuum

System on Coupling for High-Power Gear Transmission Based on Particle Damping Materials. Shock Vib. 2021, 2021, 8845526.
[CrossRef]

8. Yu, Y.; Zhao, P.; Chen, Z.; Coal Industry Publishing House. Experimental research on properties of reduction in vibration and
noise of foamed aluminum damping-plug in gear. In Proceedings of the 3rd International Symposium on Modern Mining and
Safety Technology, Liaoning Technical University, Fuxin, China, 4–6 August 2008.

9. Geng, Z.; Li, J.; Xiao, K.; Wang, J. Analysis on the vibration reduction for a new rigid-flexible gear transmission system. J. Vib.
Control 2021, 15, 10775463211013245. [CrossRef]

10. Li, Z.; Wang, H.; Zhu, R. Effect predictions of web active control on dynamic behaviors of face gear drives. J. Low Freq. Noise Vib.
Act. Control 2019, 38, 753–764. [CrossRef]

11. Wang, J.; Wang, H.; Guo, L. Analysis of nonlinear dynamics and chaos control in gear transmission system with stochastic
perturbation. Mechanika 2017, 23, 236–246. [CrossRef]

12. Wang, H.; Zhang, F.; Li, H.; Sun, W.; Luo, S. Experimental Analysis of an Active Vibration Frequency Control in Gearbox. Shock
Vib. 2018, 2018, 1402697. [CrossRef]

13. Liu, S.; Wang, J.-J.; Liu, J.-J.; Li, Y.-Q. Nonlinear parametrically excited vibration and active control of gear pair system with
time-varying characteristic. Chin. Phys. B 2015, 24, 104501. [CrossRef]

14. Spiegelhauer, M.; Schlecht, B. Active vibration control of slewing drives with gear backlash. In Proceedings of the 19th Drive
Train Technology Conference (ATK), Electr Network, Aachen, Germany, 9–11 March 2021.

15. Chen, L.; Hansen, C.H.; Ieee, I. Nonlinear control of a parametrically excited system subject to actuator saturation. In Proceedings
of the 42nd IEEE Conference on Decision and Control, Maui, HI, USA, 9–12 December 2003.

16. Alhazza, K.A.; Daqaq, M.F.; Nayfeh, A.H.; Inman, D.J. Non-linear vibrations of parametrically excited cantilever beams subjected
to non-linear delayed-feedback control. Int. J. Non-Linear Mech. 2008, 43, 801–812. [CrossRef]

17. Wang, Y.-R.; Hung, K.-E. Damping Effect of Pendulum Tuned Mass Damper on Vibration of Two-Dimensional Rigid Body. Int. J.
Struct. Stab. Dyn. 2015, 15, 15. [CrossRef]

18. Wang, Y.-R.; Kuo, T.-H. Effects of a Dynamic Vibration Absorber on Nonlinear Hinged-Free Beam. J. Eng. Mech. 2016, 142,
04016003. [CrossRef]

http://doi.org/10.1016/j.jsv.2012.05.028
http://doi.org/10.1016/j.mechmachtheory.2013.07.018
http://doi.org/10.21595/jve.2016.17179
http://doi.org/10.3934/mbe.2021351
http://doi.org/10.2507/IJSIMM17(1)419
http://doi.org/10.1016/j.jsv.2015.12.014
http://doi.org/10.1155/2021/8845526
http://doi.org/10.1177/10775463211013245
http://doi.org/10.1177/1461348418821587
http://doi.org/10.5755/j01.mech.23.2.13576
http://doi.org/10.1155/2018/1402697
http://doi.org/10.1088/1674-1056/24/10/104501
http://doi.org/10.1016/j.ijnonlinmec.2008.04.010
http://doi.org/10.1142/S0219455414500412
http://doi.org/10.1061/(ASCE)EM.1943-7889.0001039


Machines 2022, 10, 269 19 of 19

19. Golnaraghi, M.F. Regulation of flexible structures via nonlinear coupling. Dynam. Control 1991, 1, 405–428. [CrossRef]
20. Oueini, S.S.; Golnaraghi, M.F. Experimental implementation of the internal resonance control strategy. J. Sound Vibr. 1996, 191,

377–396. [CrossRef]
21. Harouni, P.; Khajeh Ahmad Attari, N.; Rahimzadeh Rofooei, F. Vibration control through the robust nonlinear absorber with

negative stiffness and internal resonance creation. J. Vib. Control 2022, 10775463211062329. [CrossRef]
22. Yaman, M.; Sen, S. Determining the effect of detuning parameters on the absorption region for a coupled nonlinear system of

varying orientation. J. Sound Vibr. 2007, 300, 330–344. [CrossRef]
23. Hui, C.K.; Lee, Y.Y.; Ng, C.F. Use of internally resonant energy transfer from the symmetrical to anti-symmetrical modes of a

curved beam isolator for enhancing the isolation performance and reducing the source mass translation vibration: Theory and
experiment. Mech. Syst. Signal Proc. 2011, 25, 1248–1259. [CrossRef]

24. Bian, Y.; Gao, Z. Nonlinear vibration absorption for a flexible arm via a virtual vibration absorber. J. Sound Vibr. 2017, 399, 197–215.
[CrossRef]

25. Li, Z.; Peng, Z. Nonlinear dynamic response of a multi-degree of freedom gear system dynamic model coupled with tooth surface
characters: A case study on coal cutters. Nonlinear Dyn. 2016, 84, 271–286. [CrossRef]

26. Huang, K.; Yi, Y.; Xiong, Y.; Cheng, Z.; Chen, H. Nonlinear dynamics analysis of high contact ratio gears system with multiple
clearances. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 98. [CrossRef]

http://doi.org/10.1007/BF02169768
http://doi.org/10.1006/jsvi.1996.0129
http://doi.org/10.1177/10775463211062329
http://doi.org/10.1016/j.jsv.2006.08.016
http://doi.org/10.1016/j.ymssp.2010.10.011
http://doi.org/10.1016/j.jsv.2017.03.028
http://doi.org/10.1007/s11071-015-2475-5
http://doi.org/10.1007/s40430-020-2190-0

	Introduction 
	Dynamic Modeling of the Gear System and Internal Resonance Vibration Absorber 
	System Description 
	Derivation of the Dynamic Model 
	Decoupling of Dynamic Equations 

	Establishment of the Internal Resonance Energy Transfer Channel 
	Perturbation Analysis 
	Internal Resonance Analysis 
	Verification of Internal Resonance 

	Vibration Reduction Characteristics of the Internal Resonance Vibration Absorber 
	Validity Investigation 
	Influence of Vibration Absorber Damping 
	System Stability under Damping Conditions 
	Influence of Damping on System Vibration Reduction 

	Robustness Study of the Vibration Absorber 

	Verification of Vibration Reduction Effect via Virtual Prototype Simulation 
	Establishment of Virtual Prototype Model 
	Vibration Reduction Effect under Transient Excitation 
	Vibration Reduction Effect under Periodic Excitation 

	Conclusions 
	References

