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Abstract: Effective search engines based on deep neural networks (DNNs) can be used to search for
many images, as is the case with the Google Images search engine. However, the illegal use of search
engines can lead to serious compromises of privacy. Affected by various factors such as economic
interests and service providers, hackers and other malicious parties can steal and tamper with the
image data uploaded by users, causing privacy leakage issues in image hash retrieval. Previous work
has exploited the adversarial attack to protect the user’s privacy with an approximation strategy in
the white-box setting, although this method leads to slow convergence. In this study, we utilized the
penalty norm, which sets a strict constraint to quantify the feature of a query image into binary code
via the non-convex optimization process. Moreover, we exploited the forward–backward strategy to
solve the vanishing gradient caused by the quantization function. We evaluated our method on two
widely used datasets and show an attractive performance with high convergence speed. Moreover,
compared with other image privacy protection methods, our method shows the best performance in
terms of privacy protection and image quality.

Keywords: adversarial attack; image hash; privacy protection; retrieval; penalty norm

1. Introduction

Various types of user information, such as images, texts and videos, are shared on
the internet, and have rapidly increased in popularity in recent years. Snapchat users
upload 527,760 photos every minute, and more than 300 million photos are uploaded per
day [1]. However, such a large amount of user information is at the risk of leakage. A search
engine could store the users’ uploaded image data for 7 days to improve their product,
e.g., Google and Yahoo [2]. Moreover, Facebook have released up to 6.8 million private
photos, demonstrating a considerable privacy risk [3]. These behaviors seriously violate
the privacy of users, so there is an urgent need to strengthen research into image retrieval
privacy protection.

At present, most image search engines on the market are mainly composed of DNN-
based image hash retrieval systems [4–9] due to their high storage capacity and excellent
retrieval performance. The DNN-based image hash retrieval system comprises convolution
neural networks (CNNs) and multiple fully connected layers (Mul-FC), which convert
high-dimensional image data into hash codes for large-scale database retrieval. Specifically,
the CNN module extracts the spatial feature from the image and the Mul-FC module turns
the continuous feature value into a discrete binary hash code.

Tradition work of protecting the user’s privacy is to generate the masking [10] or
scrambling [11], while leading to lower image visualization quality, potentially affecting the
user’s experience. Recent work [12–16] has proposed protecting when using the image hash
retrieval system by the adversarial attack. Though adversarial attack, users can upload
carefully modified query images, which are called adversarial images, that are entirely
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different from private images to the image retrieval system to obtain the same query results
as private images. The user’s private images will not be returned when the malicious
party sends a request to the service provider. Figure 1 shows the process of the potential
threat of image privacy leakage and the work flow of protecting image privacy through
adversarial attacks. In addition, adversarial attacks also have practical applications in the
industry, and examples of privacy-preserving applications of images in the industry can be
found in Appendix A. The adversarial attack was first introduced in [17], proving that the
DNN is vulnerable to malicious and well-designed adversarial perturbations because of its
approximate linear property and depth. Much work on adversarial attack has been carried
out based on the image classification task [18–22] to improve the DNN robustness [22,23]
and provide visualization interpretability [24,25]. Note that the adversary’s goal of the
image classification system is to cause error output of category confidence. Unlike the
image hash retrieval system, the adversary aims to craft the target hash code by adversarial
image and finally obtain the specific retrieval result. In other words, this attack process is a
mismatch between the content of the query and the retrieval result. Taking advantage of
this mismatch, adversarial attacks can play a role in protecting user privacy. The existing
works concerning the attack of image hash retrieval systems under white-box settings
can be divided into two sections. One section is the non-target attack [12–15] which is
to tamper with the query image to any retrieval result differing from the original, while
target attack [16,26,27] aim to create a specific retrieval result.

In this paper, we focus on the targeted adversarial attack of DNN-based hash retrieval
systems, which was firstly proposed in [16]. Given a query image, the malicious adver-
sary’s goal is to synthesize a visually indistinguishable adversarial example to generate an
adversarial hash code different from the original. This process is formulated to maximize
the Hamming distance between the adversarial hash code and the original hash code. The
Hamming distance function can be replaced by the inner product. The transformation of
continuous values generated by DNN-based hash retrieval systems into binary discrete
values is finished by the sign(·) function. Gradient-based optimization methods are often
plagued by vanishing gradients, making the optimization difficult. The approximation
strategy is widely used to solve the problem of the gradient vanishing in the optimization
process of adversarial attacks. Specifically, the image hash retrieval system converts the
continuous feature value into binary discrete hash code via tanh(·) function [5]. Moreover,
a well-designed hyperparameter is used to control the distribution of tanh(·) and adjust it
with an iterative optimization process. For example, the hyperparameter is set to 0.1 for
the first 1000 iterations and gradually increase to 1 for the finally 1000 iterations. However,
we note that non-adaptive hyperparameter tuning may have an impact on slow conver-
gence. Further more, the approximate strategy based on tanh(·) cannot fundamentally
solve the problem of gradient disappearance. In this paper, we are inspired by a recent
work [28] that abandons the approximation strategy and hopes to train deep hash networks
by constructing a new loss function with gradient derivation strategy.

Specifically, we follow the work of [16] to define the optimization objective of image
privacy preservation as minimizing the Hamming distance between the hash code of the
adversarial example and the target hash code. We identify the problem in the optimization
process which is that the sign(·) function will hinder the calculation of the gradient and
make the gradient-based optimization method fall into the difficulty of gradient vanishing.
The chain rule is used to separate the gradient-hard formulation and transform it into a
convex optimization problem with binary constraints. We obtain an analytical solution
to the above convex optimization problem through the proximal operator and transform
the problem to construct a new loss function in order to solve the gradient computation
difficulty from sign(·). Finally, we design a penalty term-based loss function and exploit a
gradient transfer path for obtaining adversarial gradients.

Our main contributions can be summarized as follows:

1. We reformulate the image hash retrieval system’s targeted attack with the relaxation
penalty norm to obtain better performance and convergence speed.
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2. We introduce a forward–backward strategy to solve the gradient vanishing problem
with the relaxation penalty norm for the adversarial attack.

3. We propose protecting the privacy of image semantic information and content with
an adversarial attack method in an image hash retrieval system.

4. We exploit the PSNR metric, and gradient-based heatmap [29] to compare the pros
and cons of traditional privacy protection methods.

5. We conducted experiments on the FLICKER-25K and NUS-WIDE datasets and verified
that our method outperforms other adversarial attack methods.

database

Database

Original Image
Retrieval result

Return the 
relevant images

Retrieval result
Adversarial Image

Return the 
irrelevant images

Carrier image
(targeted label: fish)

Adversarial 
Perturbation

+

Retrieval resultRetrieval result

Return the 
relevant images

privacy leakage

protect image 
semantic  privacy

protect image 
content  privacy

Figure 1. Three kinds of queries. The first row is the original query, which may encounter the threat
of privacy leakage during the retrieval process. In the second row, we conduct adversarial attacks
on the images uploaded by users to social platforms. This can ensure that the semantic information
of images will not be retrieved by the retrieval system, resulting in the leakage of image semantic
privacy. In the third row, we conduct a targeted adversarial attack on a carrier image. The target label
is the same as the original image. This retrieval can be carried out by uploading the carrier image
without uploading the original image, which can protect the image content privacy.

2. Related
2.1. Traditional Method to Image Privacy Protection

The traditional method of image privacy protection is to add noise [10,11] such as
blur, distortion, or mosaic to sensitive areas of the image. They are the simplest and most
commonly used privacy protection methods but lead to many problems. These methods
are irreversible, causing permanent damage to the image. For images uploaded to social
networks, images with noise lose the capability of being shared on social platforms, leading
to the decreased usability of images. For DNN-based image hash retrieval systems, these
methods are invalid. Some works in the literature show that 96% of image data can be
correctly recognized under the recognition of the blurred image by the convolutional neural
network.

2.2. Dnn-Based Image Hash Retrieval System

Various image hash retrieval systems have obtained strong performance based on deep
neural networks (DNN). It can be divided into supervised and unsupervised approaches
by whether the data label information is given or not. We explore the supervised-based
image hash retrieval system in this paper. The challenge of the DNN-based image hash
retrieval system is to design an effective strategy that projects continuous values to discrete
binary values. Ref. [4] exploits the regularization norm to encode discrete values of images,
which can maximize the distinguishability of binary output space. Ref. [5] designed a novel
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architecture to solve the ill-posed gradient problem in the training process via the adaptive
activation function. Ref. [30] designed the paired cross-entropy loss based on the Cauchy
distribution to significantly penalize different image pairs. One work [28] similar to this
paper utilizes the greedy strategy with a novel encode layer to avoid gradient vanishing
and quantization loss.

2.3. Privacy Protection of DNN-Based Image Hash Retrieval System

Unlike the adversarial attack in the image classification, which outputs the false result
by the faulty unit, the adversarial attack in the image hash retrieval system causes the wrong
result by outputting the adversarial hash code. The image hash retrieval system under the
white box attack is as follows. Refs. [13,31] disrupts the matching relationship between the
high-dimensional query image descriptor for universal attack [21] and the hash code space.
Ref. [14] confused the retrieval rank list of query images by the reformulated normalized
discounted cumulative gain (NDCG) to achieve a non-target attack. Refs. [27,32] embed
label and hash code information into the objective semantic space to achieve flexible target
attack and defense based on a generative adversarial network (GAN). The most relevant
previous work [12,16] explored the adversarial attack by optimizing the hamming distance
between the adversarial and the target hash code while the applying the tanh function and
its hyperparameter leading to inefficiency.

3. Background
3.1. Image Hash Retrieval System

Suppose a query image Iq ∈ RW×H×C where W, H, and C are the image width,
height, and channel, respectively. A pre-trained convolution neural network (CNN),
such as Alexnet [33], can extract the spatial features from the query image Iq. The hash
layers consist of multiple fully connected layers (Mul-FC), which can quantify the feature
values into binary hash code hq, i.e., hq ∈ {−1,+1}K, where K is the length of hash code.
We denote C(·) as the sequential combination of pre-trained CNN and Mul-FC function.
Therefore, the image hash retrieval model H(·) can be formulated as H(Iq)=sign(C(Iq)),
where sign(·) indicates that if the output bit of C(Iq) is larger than 0, then output 1, otherwise
−1. The major challenge of obtaining an efficient binary hash code is to design an effective
process method for preserving the discriminate feature information from images. Recently,
the approximation method proposed by [5,34] presented high performance in converting
the continuous feature values into discrete hash code, where tanh(·) is exploited to replace
sign(·) for solving the gradient vanishing problem, because the discrete binary output
cannot be directly optimized in the model training process. Hence, the image hash retrieval
model can be reformulated as H(Iq) = tanh(αC(Iq)). The hyperparameter α gradually
increases to positive infinity until it approaches the sign function.

Here, we give a detailed description of the image hash retrieval process. The image
hash retrieval model H(·) turns query images Iq into hash code hq, and then the output
hash code is compared with all the hash code hq∗ of the corresponding image Iq∗ in the
database. All the images Iq∗ of hash codes hq∗ that satisfy the condition D(hq, hq∗) ≤ Tt
will be returned, where Tt is the threshold. D(hq, hq∗) is the hamming distance function
to measure the similarity between two hash codes. For example, if the calculation result
of D(hq, hq∗) is lower than the threshold, it shows that the corresponding images Iq and
Iq∗ are relevant in content; otherwise, they are not. The Hamming distance is generally
represented by the inner product operator [34], which can be reformulated as D(hq, hq∗) =
1
2 (K − ∑K

z Hz(Iq) · Hz(Iq∗)) in practice, where Hz(·) denotes the z-th hash code bit. It is
worth mentioning that there still exists a concept of a weak class, which means an efficient
image hash retrieval system will generate similar hash codes for images with the same
label. More details can be found in [35].
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3.2. Adversarial Attack

In our scenario, we assume that an adversary crafts malicious adversarial examples
based on the query image Iq. We carried out our work under the white-box settings with
all parameters and the structure of the retrieval system known. The adversary aims to craft
malicious adversarial perturbations θ to synthesise adversarial images I

′
q, i.e., I

′
q = Iq + θ.

Hence, we can formulate the objective function below:

min
θ
L
(
C(I

′
q), ht

)
= − 1

K
sign(C(I

′
q)) · hT

t s.t.‖θ‖∞ ≤ τ , (1)

L is the inner product function to measure the similarity between hash codes, C is the deep
hash model, and ht is the target hash code generated from the goal image. The image hash
retrieval system exploited the sign(·) function to quantify the feature value C(Iq) into binary
hash codes. The constraint of ‖ · ‖∞ denotes that the maximum perturbation value of the
image should be smaller than τ.

Recent work [12,16] on attacking the image hash retrieval system exploited the relax-
ation function tanh(·) to solve the gradient vanishing problem in the optimization process,
and can be described as:

min
θ
L(C(I

′
q), ht) = −

1
K

tanh (αC(I
′
q)) · hT

t s.t.‖θ‖∞ ≤ τ , (2)

α is the Hyperparameter. The optimization process goal is to minimize the Hamming
distance by enlarging the inner product value. Various optimizers, such as ADAM [36],
can effectively solve the optimization function (2) above. The optimization problem of
minimizing the Hamming distance between the target and query hash code can be easily
exploited with the tanh(·) function. We show the gradient-based solution process under
the tanh(·) function. Specifically, let Iq be the query image; the gradient term ∂L

∂I′q
of L in

Equation (2) can be decomposed via the chain rule by:

∂L
∂Iq

=
∂L

∂tanh(αC(Iq))

∂tanh(αC(Iq))

∂C(Iq)

∂C(Iq)

Iq

=
∂tanh(αC(Iq))

∂C(Iq)

∂C(Iq)

Iq
· α(1− tanh(αC(Iq))

2)

(3)

When α = 0.1, the tanh(αC(Iq)) function has a good gradient for neural network
updates at C(Iq) ∈ [−40, 40], while being out of range for gradient vanishing. The larger
the value of α, the smaller the range of gradient saturation. Hence, the hyperparameter α is
initialized as 0.1 in the first 1000 iteration steps in the optimization, gradually increasing
within the remaining 1000 steps in the order of [0.2, 0.5, 0.7, 0.9, 1], which significantly
relieves the vanishing gradient problem in the attacking process [12]. We present the
convergence situation in Figure 2, and the Hamming distance value decreases step-by-step
in 2000 iterations under the approximation strategy.
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Figure 2. The value of the Hamming distance in the 2000-iteration optimization process under two datasets with 16, 24, 32, 48 bits. The green straight line is the
Tanh-P2S method with anchor code, and the red dotted line is our method.
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4. Approach

We describe the adversarial attack on the image hash retrieval system with the targeted
attack under the white-box setting.

4.1. Explore Adversarial Gradient

Through the above process, we noticed that the attack method based on the approx-
imate strategy is inefficient because it requires a high amount of computation to obtain
the gradient of back propagation. To quickly solve the disadvantages of approximate
functions, we aim to treat the process of converting continuous features into a binary
hash as a non-convex optimization problem without the tanh(·) function. In general, we
introduce a penalty term to make C(I

′
q) approach the binary output gradually. Next, we

will introduce the solution step by step. In general, if the gradient descent is performed
directly on Equation (1), the following update formula is used to update the variable θ at
the t-th step:

θt+1 = θt − lr ∗
∂L(sign(C(I

′
q)), ht)

∂θ
(4)

where L(·) is the inner product loss function and lr is the learning rate. However, in the
case that the sign(·) function in above Equation (4) still hinders the derivation, we hope
to further decompose the derivative term of the Equation (4) into the following formula
according to the chain rule:

θt+1 = θt − lr ∗
∂L(sign(C(I

′
q)), ht)

∂C(I ′q)
∗

∂C(I
′
q)

∂θ
(5)

Note that
∂C(I

′
q)

∂θ can be easily obtained by back-propagation of deep neural networks.

However, updating the
∂L(sign(C(I

′
q)),ht)

∂C(I′q)
term will still be hindered by the existence of sign(·).

Therefore, we focus on the solution of this term.

4.2. Discrete Proximal Linearized Minimization

We notice that this gradient term is the update solution of the inner product function
L(·) with the variable C(I

′
q) which is constrained by a binary value {−1, 1}K. In order to

simplify this formulation, we initialize C(I
′
q) to binary variable, i.e., B(I

′
q) = sign(C(I

′
q))

and formulate the function below:

min
B(I′q)

L
(
B(I

′
q), ht

)
= − 1

K
B(I

′
q) · hT

t s.t. B(I
′
q) ∈ {−1, 1}K , (6)

Note that if we can obtain the gradient of this formula, we also obtain the gradient term
of interest in Equation (5). However, hindered by the binary constraint, we introduce an

indicator function I(B) =
{

0 i f B ∈ {−1, 1}
+∞ otherwise

in order to simplify the above objective

function which is used to convert constrained optimization into unconstrained optimization.
Therefore, Equation (6) can be reformulated as:

min
B(I′q)

L
(
B(I

′
q), ht

)
= − 1

K
B(I

′
q) · hT

t + I(B(I
′
q)) (7)

For non-smooth indicator functions, we can solve the above equation by the proximal
operator ProxI

λ(z) = argminh g(h) + λ
2 ||hz||2 which was proven successful in [37]. Hence,

we can update B(I
′
q) at t-th step as follow:



Machines 2022, 10, 278 8 of 17

Bj+1(I
′
q) = ProxI

λ(z)(B
j(I
′
q)−

1
λ

∂L
(
B(I

′
q), ht

)
∂B(I ′q)

) (8)

where the optimization process of Equation (8) is the forward–backward splitting algorithm.
Furthermore, the Equation (8) has the analytical solution as follow:

Bj+1(I
′
q) = sign(Bj(I

′
q)−

1
λ

∂L
(
B(I

′
q), ht

)
∂B(I ′q)

) (9)

From this analytical solution, we can find the update solution of B(I
′
q) in Equation (6)

which can be obtained by the sign function after each step of gradient descent. We re-
gard this process as a greedy strategy which makes B(I

′
q) generated by each iteration to

approach the binary value. However, we can easily obtain an optimal binary solution
using Equation (9) while it is difficult to perform back propagation hindered by the sign(·)
function. This encourage us to find a new loss function that makes the output value of

Bj(I
′
q)− 1

λ

∂L
(
Bj(I

′
q),ht

)
∂Bj(I′q)

in Equation (9) infinitely closing to the binary value, then we can use

the gradient descent to directly solve Equation (6).

4.3. Back Propagating with Adversarial Penalty Norm

Inspired by [28], which proposed to add a penalty term to the loss function L, we made
the output approach the binary value in each iteration. We reformulate the loss function in
Equation (1) by constructing a new loss function P(·). We aim to make the output C(I

′
q)

approach the binary value, i.e., P(C(I
′
q), ht) = α||C(I

′
q)− sign(C(I

′
q))||

p
p+L(sign(C(I

′
q)), ht)

where α is the balance constant. Hence, we reformulate the Equation (6) to simply replace
L(·) by the loss function P(·) and we also present the solution as follows:

Cj+1(I
′
q) = min

C(I′q)
P
(
C(I

′
q), ht

)
= min

C(I′q)
α||C(I

′
q)− sign(C(I

′
q))||

p
p + L

(
sign(Cj(I

′
q)), ht

)

= Cj(I
′
q)− pα||Cj(I

′
q)− sign(Cj(I

′
q))||

p−1
p − lr ∗

∂L
(

sign(Cj(I
′
q)), ht

)
∂Cj(I ′q)

≈ sign(Cj(I
′
q))− lr ∗

∂L
(

sign(Cj(I
′
q)), ht

)
∂Cj(I ′q)

(10)

Note that the addition of the penalty remainder will make C(I
′
q) approach the binary

value. Furthermore, we set the equivalence for
∂L

(
sign(Cj(I

′
q)),ht

)
∂Cj(I′q)

=
∂L

(
sign(Cj(I

′
q)),ht

)
∂sign(Cj(I′q))

. The new

iterative solution can be formulated as follows:

Cj+1(I
′
q) = sign(Cj(I

′
q))− lr ∗

∂L
(

sign(Cj(I
′
q)), ht

)
∂sign(Cj(I ′q))

(11)

Hence, we can obtain a optimal solution on t-th step by performing sign(Cj+1(I
′
q))

which is equal to Equation (9). This means that we can obtain the value of
∂L(C(sign(C(I

′
q)),ht)

∂C(I′q)

in Equation (5) by calculating
∂P(sign(C(I

′
q)),ht)

∂C(I′q)
. Therefore, we can regard P(·) as our new

objective function as follows:
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min
θ
P(C(I

′
q), ht) = α||C(I

′
q)− sign(C(I

′
q))||

p
p + L(sign(C(I

′
q)), ht) (12)

Formally, given the query image and then obtain the backward gradient, the adversar-
ial image can be easily generated by the PGD attack [38]. We summarize our process in the
Algorithm 1.

Algorithm 1: Optimization Process
Input: Query image Iq, target hash code ht, adversarial perturbation variable θ

Output: Adversarial Image I
′
q;

1 Initialize θ as 0 and iteration variable i as 0;
2 Initialize the adversarial image I

′
q as I

′
q;

3 for i ≤Max Iterations do
4 Calculate the loss function

P(C(I
′
q), ht) = α||C(I

′
q)− sign(C(I

′
q))||22 + L

(
sign(C(I

′
q)), ht

)
;

5 Calculate the backward gradient
∂P(C(I

′
q),ht)

∂C(I′q)
= 2α||C(I

′
q)− sign(C(I

′
q))||2 +

∂L(sign(C(I
′
q)),ht)

∂C(I′q)
;

6 Set the gradient equivalent
∂L

(
sign(C(I

′
q)),ht

)
∂C(I′q)

=
∂L

(
sign(C(I

′
q)),ht

)
∂sign(C(I′q))

;

7 Calculate the gradient
∂P(C(I

′
q),ht)

∂C(I′q)
= 2α||C(I

′
q)− sign(C(I

′
q))||2 +

∂L(sign(C(I
′
q)),ht)

∂sign(C(I′q))
;

8 Calculate the adversarial gradient
∂P(C(I

′
q),ht)

∂θ =
∂P(C(I

′
q),ht)

∂C(I′q)
∗ ∂C(I

′
q)

∂θ ;

9 Given the adversarial gradient
∂P(C(I

′
q),ht)

∂θ , update adversarial image I
′
q with

PGD attack;
10 i = i + 1

11 return the adversarial image I
′
q;

5. Experiment
5.1. Datasets Description

We evaluated our method on two popular datasets. One dataset is NUS-WIDE [39],
which consists of 269,648 images in 81 categories. Significantly, the training samples were
exploited as our retrieval database, and the evaluating samples as queries. The other
dataset is FLICKER-25K [40], which contains 25,000 images with 38 classes. We randomly
sampled 500 as query images in each dataset and kept the remaining images as retrieval
and training databases. We randomly selected target images different from the original
label of each carrier image.

5.2. Baseline and Metrics

In this paper, we focus on evaluating the effectiveness of the different attacking
methods. Our method can be easily deployed in the Point-To-Point (P2P) and Point-To-
Set(P2S) approaches [16]. We set two baseline methods, including the Point-To-Point
(P2P) [16] method, which exploits the tanh(·) function with the hyperparameter α, referred
to as Tanh-P2P; see Equation (2). The maximum optimization iteration number was set
as 2000. The hyperparameter α was initialized as 0.1 during the first 1000 iterations and
updated every 200 iterations according to [0.2, 0.3, 0.5, 0.7, 1.0] during the last 1000 iterations.
Moreover, we randomly selected nine images with the same label to generate the anchor
code [16] for the Tanh-P2S baseline.
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Here, we introduce three metrics to evaluate attacking performance. We follow the
established method to set MAP (mean average precision), a widely used criterion in image
retrieval. The higher the MAP value, the stronger the performance of the retrieval system.
Moreover, we exploited the t-MAP (target mean average precision), similar to MAP, which
set the target label setting in advance instead of the original label used in MAP. Finally,
the Hamming distance is extensively used in the adversarial attack of image retrieval, and
was used to reflect the convergence speed in our experiment. Significantly, the smaller the
Hamming distance, the better the attack effect.

5.3. Experiment Settings

All experiments were processed on the Pytorch platform with RTX2070 Super, Intel(R)
Core(TM) i7-9700 CPU @ 3.00 GHz. For image hashing, we chose the DPSH [41] method
to build the target hashing model, which is one of the most representative deep hashing
methods. We set the VGG-11 [33] as the backbone and set the length of the hash code as 16,
24, 32, 48 bits for evaluation. Specifically, we exploited the random noise sampled from
the uniform noise within the [−τ,τ] value, Tanh-P2P, Tanh-P2S, and our Relaxation Norm
Method (RNM). The hyperparameter β in Equation (12) was set as 1/K, where K is the
length of the hash bits. The maximal perturbation magnitude ε was 0.032. We adopted
PGD [18] to optimize the Tanh method and our method. We set the maximum iteration as
2000 with a learning rate of 1 for comparison.

5.4. Results

Convergence analysis: Hamming distance. We show the Hamming distance between
the generated adversarial hash code and the target hash code over the entire iteration
optimization in Figure 2. We summarize the following two points: First, our method has
faster convergence than the strategy using the Tanh(·) function. For example, in Figure 2d,
demonstrating the convergence speed on the NUS-WIDE dataset with the 48-bit hash code,
our method can minimize the Hamming distance within 100 iterations. According to the
description in Equation (2), the hyperparameter α with the tanh(·) function will gradually
increase. Specifically, the α was set as 0.1 for the first 1000 iterations, and sequentially
became [0.2, 0.5, 0.7, 0.9] in the last 1000 iterations. However, the convergence rate of the
Hamming distance in the first 1000 iterations was fast at the beginning and then appeared
to be slow. The optimal solution was reached after 2000 iterations. Obviously, our method
showed a better performance in terms of the convergence speed. Second, although our
method performs well on both datasets, it is noticed that the Tanh(·) function strategy also
performs relatively well on the FLICKR-25K dataset. We consider the reason for this to be
that the continuous feature value C(I

′
q) of the retrieval model on the FLICKR-25K dataset is

more concentrated, so that the optimization process can be performed smoothly even when
α = 0.1 in the first 1000 iterations. Through the analysis of convergence, it is concluded that
our proposed method can generate adversarial examples faster and start privacy protection
in a shorter amount of time.

Privacy protection effect: t-MAP. Table 1 lists the t-MAP and original MAP of FLICKER-
25K and NUS-WIDE datasets with [16, 24, 32, 48] hash bits in length. t-MAP shows the
attack efficiency, and the higher the t-MAP value, the better the privacy protection. The
MAP was computed based on the original labels and represents the original performance
of the retrieval model. The t-MAP values of noise on the FLICKR-25K and NUS-WIDE
datasets are very small, which indicates that the image with random noise cannot cause
the deep hash model to return the target image. In contrast, all t-MAP values of RNM
and Tanh are higher than the “Original” MAP value, which validates the effectiveness of
adversarial attacks. In addition, the method with the P2S property is more effective than the
P2P method, which means that our method can be generally applicable to the adversarial
attack method of deep hash retrieval. However, we noticed that the the t-MAP of RNM is
slightly higher than Tanh under 16, 24, 32, and 48 bits. For example, in 16 bits, Tanh-P2S
is 85.79%, while RNM-P2S is 85.92%. A similar situation can be seen in another setting.



Machines 2022, 10, 278 11 of 17

We selected the same target hash code for each adversarial example of the four methods.
After sufficient optimization iterations for both Tanh and RNM, the generated adversarial
hash codes were very close to the target hash codes. The results show the superiority of the
adversarial attack method from the side. Targeted adversarial attack methods can be used
for image content privacy protection. By retrieving the carrier image with the adversarial
attack, the same retrieval content as the original image can be obtained, and the returned
experimental result may even be better than the original image.

Table 1. t-MAP(%) on targeted attack methods and MAP(%) of query object with the target hash code
of query images under 16, 24, 32, 48 bits hash code on two images datasets.

Method Metric
FLICKER-25k NUS-Wide

16 bits 24 bits 32 bits 48 bits 16 bits 24 bits 32 bits 48 bits

Noise t-MAP 0.76% 0.57% 1.31% 0.29% 0.57% 0.57% 0.61% 0.96%
Tanh-P2P t-MAP 83.22% 84.39% 85.25% 85.92% 73.97% 76.10% 76.66% 77.49%
Tanh-P2S t-MAP 85.79% 88.44% 88.76% 89.18% 78.05% 79.53% 80.18% 81.10%
RNM-P2P t-MAP 83.95% 84.32% 83.22% 85.26% 74.02% 76.03% 76.93% 77.25%
RNM-P2S t-MAP 85.92% 88.45% 88.89% 89.49% 77.96% 79.60% 80.30% 81.33%
Original MAP 78.88% 80.69% 81.01% 81.48% 70.94% 73.01% 73.61% 74.11%

5.5. Ablation Study

Impact of Perturbation Magnitude on Privacy Protection. We explore the relationship
between privacy protection and adversarial perturbation magnitude. Table 2 shows the
different maximal magnitude of τ in Equation (1). We evaluate the experiment on 32 bits
with the different value τ ∈ {0.01, 0.02, 0.03, 0.04, 0.05} under two datasets and show them
in Table 2. It can be seen that the t-MAP will increase with the increasing τ value, proving
that there is a trade off between the attack performance and the perturbation magnitude.
The larger the perturbation magnitude, the better the privacy protection.

Table 2. The t-MAP (%) of targeted attack with variable parameter τ on NUS-WIDE dataset with
24-bit hash code.

Method Metrics 0.01 0.02 0.03 0.04 0.05

Noise t-MAP 1.24% 2.78% 1.31% 1.25% 1.14%
Tanh-P2P t-MAP 54.95% 63.11% 75.24% 75.90% 77.23%
RNM-P2P t-MAP 52.44% 67.03% 76.19% 76.13% 76.95%

Image Semantic Privacy Protection: Non-targeted attack. The non-targeted attack can
also be treated as a particular target attack requiring the target label to be different from
the original. We exploit the above method to explore the non-target attack and show it
in Table 3; it can be seen that our method can achieves excellent results on both datasets.
Untargeted attacks can be used to protect the privacy of image semantic information.

Comparison with Privacy Protection Methods. We introduced PSNR (Peak Signal-
to-Noise Ratio) and MAP to assess the visual quality and privacy protection effect of the
processed images, and show that higher PSNR values have better visual quality. The
low MAP have better privacy protection effect. We set up traditional privacy protection
methods such as mosaic, brightness, transparency, and noise. For our method, we generated
adversarial examples with values of hyperparameter τ of [0.1, 0.2, 0.3, 0.4] for comparison
and show the examples in Figure 3. We notice that the traditional privacy-preserving
strategy is less effective in terms of visual quality and privacy protection, and the best
performance in terms of traditional strategies is adding random noise with PSNR = 24.53 dB.
In adversarial strategies, PSNR and map performs better, for example, when τ = 0.2, and
PSNR = 43.51 dB, MAP = 19%, which is 18.98 dB and 71% higher than the best traditional
method on visual quality.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Examples under the action of traditional privacy-preserving strategies, such as mosaic (b),
brightness (c), transparency (d), and noise (e). We also show examples of adversarial attacks when
τ = [0.01, 0.02, 0.03, 0.04]. We demonstrate visual quality and the effect of privacy-preserving via the
PSNR metric and MAP. (a) Original images, MAP=91%; (b) mosaic, PSNR = 16.66 dB, MAP = 23%; (c)
brightness, PSNR = 13.02 dB, MAP = 89%; (d) transparency, PSNR = 18.28 dB, MAP = 88%; (e) noise,
PSNR = 24.53 dB, MAP = 90%; (f) τ = 0.01, PSNR = 44.45 dB, MAP = 20%; (g) τ = 0.02, PSNR =
43.51 dB, MAP = 19%; (h) τ = 0.03, PSNR = 43.32 dB, MAP = 17%; (i) τ = 0.04, PSNR = 43.22 dB,
MAP = 16%.
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A Visual Explanation of Why Adversarial Attack Shows the Better Performance in
Terms of Privacy Protection: Heatmap. Heatmaps can show the decisions of the DNN
regarding objects from a visual perspective. To verify the general applicability of adver-
sarial examples in privacy protection, we constructed a deep hash retrieval model with
Resnet50 [42] and Densenet161 [43] as the backbone. Furthermore, we utilized the widely
used method Grad-Cam [29] for generating heatmaps of traditional methods and adver-
sarial examples, as shown in Figure 4. We found similar results on the two benchmark
frameworks. Specifically, we noticed that only the heatmap generated by the mosaic
method is significantly different from the heatmap generated by the original image in the
traditional method. However, the example generated by the mosaic method is visually
different from the original image. Moreover, the heatmaps generated by the remaining
traditional methods are relatively similar to those of the original images. This shows that
the examples generated by traditional methods cannot protect the privacy of users well,
because the DNN-based hash model can still identify the examples normally. It is observed
that in the examples generated by adversarial attack, the warm-colored pixels are dispersed,
which means that the attention of the DNN-based hashing model is diverted. Therefore,
the examples generated by users using adversarial methods can enable the DNN-based
hashing model to identify errors, thereby effectively protecting user privacy.

Table 3. MAP (%) of non-targeted attack with various attack methods for queries on the FLICKER-25K
and NUS-WIDE datasets with 16, 24, 32, and 48 bits hash code. The best results are marked in bold,
and the second best results are underlined.

Method FLICKER-25k NUS-WIDE

16 bits 24 bits 32 bits 48 bits 16 bits 24 bits 32 bits 48 bits

Noise 74.16% 76.54% 78.47% 80.36% 70.08% 70.25% 71.48% 72.02%
Tanh-P2P 1.92% 3.54% 3.15% 2.01% 9.74% 7.26% 6.97% 9.50%
RNM-P2P 1.69% 2.42% 3.32% 1.90% 9.65% 6.47% 5.59% 9.75%

HAG 1.36% 2.64% 4.53% 1.97% 3.79% 3.64% 3.71% 3.12%

(a) (b) (c)

(d) (e) (f)

Figure 4. Cont.
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(g) (h) (i)

(j) (k) (l)

Figure 4. Examples generated by traditional methods and adversarial methods through the visual-
ization method, including mosaic, brightness, transparency, noise, and adversarial attack. We set up
Resnet50 and Densenet161 as the backbone for constructing a deep hash network. The warmer colors
in the examples indicate the attention of the deep neural network has been attracted. (a) Original
(Resnet50); (b) mosaic (Resnet50); (c) brightness (Resnet50); (d) transparency (Resnet50); (e) noise
(Resnet50); (f) adversarial example (Resnet50); (g) original (Densenet161); (h) mosaic (Densenet161);
(i) brightness (Densenet161); (j) transparency (Densenet161); (k) noise (Densenet161); (l) adversarial
example (Densenet161).

6. Conclusions

This paper explores the use of adversarial attacks to mislead image hash retrieval
systems in order to protect user privacy. Previous work used adversarial attacks to protect
user privacy; an approximation strategy based on the tanh function for binary output to
address the problem of vanishing gradients during optimization. We abandoned the
approximation strategy above by using a penalty term to strictly project image features
into binary values. We utilized PSNR and gradient-based heatmaps to compare the ad-
vantages of adversarial-attack-based privacy-preserving methods with those of traditional
methods. Our method achieves satisfactory performance in several aspects, and can be
easily extended to more industrial privacy protection fields, such as image sensors, and the
Appendix A illustrates the industrial application of our method.
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Appendix A

To demonstrate the practicability of our method, we apply our method in an industrial
scenario. Taking image sensor transmission as an example, Figure A1 shows the privacy
protection during image transmission in industrial scenarios.

In order to protect the privacy of the images in the image sensor, the output of the
image by the sensor can be directly transmitted to the image privacy protection system,
and the image privacy protection system can generate adversarial examples. It can be seen
from the image that the generated adversarial examples are visually indistinguishable from
the original images, but the hash codes generated are entirely different. Therefore, using
the generated adversarial examples for retrieval can effectively protect the privacy of the
image sensor.

In particular, the image privacy protection system can generate specific adversarial
examples according to the usage of the image.

Image Sensor Image Privacy Protection System Image Search Engine

Search
Image

Adversarial
Image

Figure A1. Above figure shows the industrial application scenario of the adversarial attack method.
In order to protect the privacy of the images collected by the image sensor, the output image of the
image sensor is input into the image privacy protection system to generate adversarial examples. It
can be seen from the figure that the hash code of the original image is different from the hash code of
the adversarial example. So, using adversarial examples for image retrieval can protect the semantics
of the original image’s privacy.
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