
����������
�������

Citation: Xie, Y.; Chang, G.; Yang, J.;

Zhao, M.; Li, J. Process Optimization

of Robotic Polishing for Mold Steel

Based on Response Surface Method.

Machines 2022, 10, 283. https://

doi.org/10.3390/machines10040283

Academic Editor: Gianni Campatelli

Received: 24 March 2022

Accepted: 14 April 2022

Published: 18 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Process Optimization of Robotic Polishing for Mold Steel Based
on Response Surface Method
Yinhui Xie 1, Guangsheng Chang 1,2, Jinxing Yang 1, Mingyang Zhao 1 and Jun Li 1,*

1 Quanzhou Institute of Equipment Manufacturing Haixi Institutes, Chinese Academy of Sciences,
Quanzhou 362200, China; xyh1932@fjirsm.ac.cn (Y.X.); changuansen@163.com (G.C.);
jxyang@fjirsm.ac.cn (J.Y.); 218527144@fzu.edu.com (M.Z.)

2 Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology,
Beijing 100124, China

* Correspondence: junli@fjirsm.ac.cn

Abstract: Aimed to reduce surface roughness (Ra) and improve surface quality of mold steel, the
optimizations of process parameters for robotic polishing, such as polishing pressure, feed speed
and rotating speed of tool, are accomplish in this research. The optimum range of each parameter is
obtained according to a single factor experiment, and the central composite design experiments on
the three polishing parameters are conducted to establish a prediction model of surface roughness.
Furthermore, a significance test of the prediction model is carried out through variance analysis.
The optimum polishing parameters are obtained based on the analysis of response surface, and
are then adopted in the polishing experiments of mold steel for validation. The experiment result
of model verification indicates that the relative errors of predicted Ra ratio and actual Ra ratio are
within the allowable range (maximum is 13.47%). It proves the accuracy of the roughness prediction
model. Meanwhile, the experimental results of multipath polishing show that the surface roughness
decreased effectively after polishing with the optimum polishing parameters. The prediction model
of surface roughness and optimum polishing parameters are helpful to improve surface quality in
robotic polishing for mold steel.

Keywords: robotic polishing; mould steel; surface roughness; response surface method; parame-
ters optimization

1. Introduction

The surface quality of a mold has a direct impact on the quality and service life of mold
casting products. In order to remove the knife marks and hard layers left by mechanical
machining on the surface of a mold cavity, the die surface needs to be polished to obtain
the required size, shape and surface roughness. Mold steel is an important technical and
material base of die industry and is used in the manufacture of various dies. Additionally,
its surface quality has great influence on the performance, service life and manufacturing
cycle of die [1,2].

At present, most polishing process of mold steel is carried out by hand, which takes
more than 20% of the total mold manufacturing time and 30% of the total product machin-
ing cost. In addition, there are many defects such as poor polishing accuracy, low efficiency,
lack of consistency and stability of product quality in manual polishing and the process
must be carried out by skilled workers, resulting in high production costs and long work
cycle [3]. A lot of achievements have been made on the automatic polishing technology
of mold steel, both at home and abroad. Shan et al. [4] analyzed the thermodynamic
process in laser polishing based on the basic equation of heat conduction. The quasi-static
model is established by numerical simulation to predict the mold steel process parameters
of laser polishing. Wang et al. [5] used magnetorheological polishing fluid to polish the
aspheric surface made of S-136 mold steel. The effects of polishing parameters, including
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constituent of magnetorheological polishing fluid and rotational speed of workpiece on
surface roughness Ra and surface forming, were researched. Almeidaa et al. [6] predicted
the material removal in the course of polishing mold steel. The simulation model elimi-
nated the repetitive machining and polishing error, therefore promoting the production of
mold steel.

The machining efficiency and surface quality of mold steel should be considered at the
same time. Based on the above presented state of automatic polishing technology for mold
steel, it should be noted that optimization of the polishing process parameters, especially,
are reflected in the study of surface roughness. However, there are still little research on
the polishing process parameters (especially polishing pressure) and surface roughness
prediction of the robotic polishing for mold steel. Ma et al. [7] built a prediction model of
surface roughness for point grinding low expansion glass by applying BP neural networks
and genetic algorithm, and optimization of parameters was carried out based on genetic
algorithm. Junde et al. [8] investigated the coupling influence of process parameters such
as sand belt speed, maximum cutting depth and feed speed on surface roughness through
an artificial neural network method, and built a prediction model of surface roughness. For
grinding 45# steel with a sand belt, Li et al. [9] established a prediction model of surface
roughness with the response surface method and obtained the optimal value of process
parameters. Perec et al. [10] adopted the methodology of the response surface to create
a mathematical-statistic model about erosion of the metamorphic rock—marble by the
abrasive water jet. Perec et al. [11] built the model of abrasive water suspension jet cutting
process through using a response surface method. The best dimensions of the working
nozzle and level of abrasive flow rate were obtained to achieve the biggest cutting depth.
Nguyen et al. [12] optimized the machining parameter of shear thickening polishing for gear
surfaces by response surface methodology. The method could improve the surface quality
and mechanical properties of material. Das et al. [13] conducted research into process
parameters and characterization of surface texture with rotational-magnetorheological
abrasive flow finishing through using response surface methodology. The experimental
result showed that rotational speed of the magnet had a significant effect on output response.
The research results of this research shows that the response surface method can be applied
to process parameter optimization in different processing scenarios.

In the above prediction model of surface roughness, a variety of prediction methods
were used. The genetic algorithm takes all individuals in a population as an object and
guides the efficient search of a coded parameter space by using the randomization. How-
ever, the genetic algorithm has certain dependence on the selection of initial population
and low search efficiency. The neural network system is a complicated dynamic system
with highly non-lineal kinetics. The neural network needs a lot of parameters and is unable
to observe the learning process, that resulted in studying for too long may not even achieve
the purpose of learning [14]. The response surface method establishes a continuous variable
surface model to evaluate the factors and their interactions affecting processes and deter-
mine the optimal level range. Moreover, the number of experimental groups is relatively
small, which can improve the efficiency of the optimization calculation. Compared with
the genetic algorithm and the neural network algorithm, the response surface method has
higher efficiency and fitting precision [15].

The polishing pressure varies greatly due to the vibration and the change of workpiece
surface curvature. The control of polishing pressure is always the focus of polishing process
optimization. Aimed to accurately explore the influence of polishing pressure, rotating
speed of the tool and feed speed on the quality of the workpiece’s surface during the
polishing process, a robotic polishing platform with constant force control is built based on
a 6-DOF industrial robot and a six-dimensional force sensor. In this research, the response
surface method is adopted to optimize the process parameters of robotic polishing. Then the
polishing parameters experiments of mold steel are tested with a small polishing tool. The
regression analysis of polishing parameters is carried out by the response surface method,
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and the prediction model of surface roughness is established to realize the prediction and
control of surface roughness.

2. Experiments Preparation
2.1. Experiment Equipment Setup

For the purpose of studying the influence of polishing pressure variation on machining
quality, it is necessary to control the size and direction of polishing pressure during the
polishing process. Therefore, a robotic polishing platform with force control is established,
as in Figure 1. The robotic polishing platform mainly consists of three main parts: industrial
robot, magnetic worktable for polishing and circulating water cooling system [16–18]. The
model of industrial robot is KUKA KR60-3 with a 60 kg load. Additionally, the repositioning
accuracy of the robot is ±0.06 mm. The positioning of the polishing tool is carried out by the
movement of a manipulator. The magnetic worktable is installed in the working range of
an industrial robot and used for fixing the workpiece. The circulating water-cooling system
can provide cooling polishing fluid through a double circulation channel during workpiece
processing. Figure 2 gives the structure of the end-effector, which is composed of a small
polishing tool, servo motor and six-dimensional force sensor, etc. The servo motor rotates
the polishing tool to realize the polishing of the workpiece surface, and the six-dimensional
force sensor is adopted to collect the variations of polishing force during the course of
polishing. The six-dimensional force sensor is installed at the end of manipulator of the
model, which is ATI Delta IP60. In the coordinate system of the force sensor, the range of
pressure in the X and Y directions is ±330 N and the range of pressure in the Z direction
is ±990 N. The range of torque in the X, Y and Z directions are all 30 N·m. Additionally,
a high-speed servo motor is selected as the spindle motor to provide the rotation speed
of the polishing tool. The servo motor which is the DELTA ECMA-C10604R model has a
power of 400 W and a Max RPM of 4500. During the course of polishing, the forces between
the workpiece and the polishing tool are collected for transmission to the controller of the
robot. By combining the constant control of poshing pressure, the polishing tool is precisely
positioned through the 6-DOF industrial robot.
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Figure 2. The end-effector of the robot.

2.2. Experiment Conditions

The cylindrical tool and the plane mold steel are selected as the polishing tool and
workpiece, respectively, as shown in Figure 3. The polishing tool, which has a radius of
16.5 mm is made of nylon, and the material of mold steel is 40Cr, which has a specific
chemical composition that includes: carbon C: 0.45%, Silicon Si: 0.37%; Manganese Mn:
0.8%; Chromium Cr: 1.1%; Iron Fe: >90%. Table 1 shows the specific material parameters.
The polishing fluid is an aqueous solution of 2000 mesh white corundum which has a
concentration of 5%, and the abrasive is a diamond polishing paste, which has a brand of
W10 (2000 mesh). The surface roughness Ra of mold steel is measured by a stylus surface
roughness measuring instrument (SJ-210). The diameter of tip is 2 µm, as shown in Figure 4.
The speed of the measurement is 0.5 mm/s and the time of each measurement is 15 s.
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Figure 3. The polishing tool and the initial mold steel: (a) Polishing tool; (b) Plane mold steel.

Table 1. The material parameters.

Name Material Elastic Modulus (GPa) Poisson Ratio Density (kg/m3)

Mold steel 40Cr 211 2.77 7850
Polishing tool Nylon 8.3 0.28 1150
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Figure 4. The measurement process of roughness.

3. Parameters Optimization of Single Polishing Path

Usually, the raster path is chosen to be the machining path for the robotic polishing
process of the plane. In order to explore the effect of several process parameters on surface
roughness of mold steel quickly, the first experiments in a single path are performed to
optimize the polishing parameters of a single path. Then the multipath machining experi-
ments are carried out by determined the distance of the raster path. The key parameters of
the single-path polishing experiment are selected for the single-factor experiments, and
the center composite experiments are designed according to the result of single-factor
experiments. It can not only reduce the number of experimental groups but also obtain
more accurate combination of optimal process parameters.

3.1. Determination of Process Parameters Level

The process parameters that have a great influence on surface roughness, including
polishing pressure, rotation speed of tool and feed speed were selected as research ob-
jects. With these parameters as constraint conditions and the surface roughness as the
optimization objective, the single factor experiments were carried out. Based on the actual
condition of polishing, the values of polishing parameters are selected, as shown in Table 2.
Where P, R and V represent polishing pressure, rotation speed of tool and feed speed,
respectively. The initial average roughness of experimental samples is 1.384 µm. When the
single factor experiments are carried out, the other two factors are set as the middle value
of the variable range, respectively apart from the variable factor. Additionally, the three
different points of surface were measured three times in the middle of the polishing path
at the same processing condition to calculate the average value which was taken as the
surface roughness after polishing. According to the experimental results, the relationships
between polishing pressure, rotation speed of tool, feed speed and surface roughness of
mold steel can be obtained, respectively, as shown in Figure 5.

Based on the result of single factor experiments, the optimum range of polishing
parameters is determined. The ranges of polishing pressure, rotation speed of tool and
feed speed are 10~50 N, 500~2500 r/min and 0.25~1.25 mm/s, respectively. Moreover,
the experimental results show that the changes of key process parameters have obvious
influence on the surface roughness.

Table 2. Polishing parameters of single factor experiment.

Parameter Value

P (N) 10 20 30 40 50
R (r/min) 500 1000 1500 2000 2500
V (mm/s) 0.25 0.50 0.75 1.00 1.25
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3.2. Center Composite Design Experiment

In the optimization of polishing process parameters, the central composite design
method is an experimental design method with high recognition and application. It can
evaluate the linear and interactive terms as well as the high-order surface effect and provide
more effective data of the independent variables and errors with the least number of test
cycles [19]. Three levels of each parameter are chosen and the distribution of the polishing
parameter is built according to the optimum range of polishing parameters, as shown in
Table 3. The central composite design experiment was planned for 17 groups through
Design Expert software. Table 4 shows the parameters setting of the experiment and
measurement results. Additionally, the surface of mold steel after polishing is shown in
Figure 6.

Table 3. Levels and distribution of polishing parameters.

Parameter
Level

−1 0 +1

A P (N) 10 30 50
B R (r/min) 500 1500 2500
C V (mm/s) 0.25 0.75 1.25

Table 4. Experiments and results using central composite design. Ra-surface roughness after polish-
ing; Ra0-Initial surface roughness; y-Ratio of Ra and Ra0.

No. A-P (N) B-R (r/min) C-V (mm/s) Ra (µm) Ra0 (µm) y

1 30 500 0.75 0.814 1.606 0.507
2 50 1500 0.25 0.328 1.748 0.187
3 50 1500 1.25 0.751 1.762 0.426
4 10 500 1.25 1.384 1.439 0.962
5 30 1500 0.25 0.497 1.946 0.155
6 50 2500 0.75 0.698 1.872 0.373
7 50 1500 1.25 0.759 1.663 0.457
8 10 1500 0.75 0.816 1.469 0.555
9 30 1500 0.25 0.171 1.517 0.253

10 50 500 0.25 0.418 1.677 0.249
11 10 2500 0.25 0.433 1.579 0.274
12 10 1500 0.75 0.815 1.721 0.474
13 30 2500 1.25 1.135 1.865 0.609
14 30 2500 1.25 1.167 1.881 0.62
15 30 500 0.75 1.031 1.909 0.54
16 10 500 0.25 0.983 1.725 0.57
17 10 1500 0.25 0.33 1.956 0.169



Machines 2022, 10, 283 7 of 14

Machines 2022, 10, x FOR PEER REVIEW 7 of 14 
 

 

14 30 2500 1.25 1.167 1.881 0.62 

15 30 500 0.75 1.031 1.909 0.54 

16 10 500 0.25 0.983 1.725 0.57 

17 10 1500 0.25 0.33 1.956 0.169 

 

Figure 6. The surface of mold steel after polishing. 

In the workpiece polishing process, surface roughness of workpiece is affected by 

many polishing parameters. The inputs and outputs in the prediction model of surface 

roughness are not proportional. Therefore, the prediction model of surface roughness is 

nonlinear and can be derived as Equation (1) by using quadratic regression [20]. 

2

0

1 1 1, 1

k k k k

a i i ij i j ii i

i i j i j i

Y R b b x b x x b x
= = =  =

= − = + + +     (1) 

where Y is the surface roughness of prediction model, Ra is the surface roughness after 

polishing, ε is the experimental error, b is the coefficients of model and x is the polishing 

parameter in each level. 

The coefficient matrix of the prediction model can be obtained through the following 

equation: 

1

1( )T Tb X X X Y−=  (2) 

where X is the matrix comprised of the experimental variables and Y1 is the matrix com-

posed by the experimental results. 

3.3. Significance Test of Prediction Model 

Aiming to improve the reliability of the prediction model, it is necessary to eliminate 

the insignificant factors in the model. Expert Design software was used to conduct vari-

ance analysis on the experimental data in Table 4. Additionally, the insignificant factors 

in the model were eliminated according to the step-by-step selection method, thus obtain-

ing the prediction model. Table 5 shows the analysis results. 

Variance analysis is mainly to test the fitting accuracy of the model, and the com-

monly used indicators include model testing value F, model probability value p and coef-

ficient of determination R2. The larger the testing value F is and the smaller the probability 

value p is in the model, the fitting accuracy of the model is higher. The model testing value 

F of 19.54, which is greater than the critical value Fc of 3.74, illustrates the high significance 

of the model. 

Figure 6. The surface of mold steel after polishing.

Due to the different settings of polishing parameters, the differences of polishing
effects can be seen from Figure 6. When the polishing pressure is greater than 30 N, the
polishing traces of mold steel are more obvious. In addition, the surface quality of mold
steel is also related to rotation speed of tool and feed speed.

In the workpiece polishing process, surface roughness of workpiece is affected by
many polishing parameters. The inputs and outputs in the prediction model of surface
roughness are not proportional. Therefore, the prediction model of surface roughness is
nonlinear and can be derived as Equation (1) by using quadratic regression [20].

Y = Ra − ε = b0 +
k

∑
i=1

bixi +
k

∑
i=1

k

∑
j=1,i<j

bijxixj +
k

∑
i=1

biix2
i (1)

where Y is the surface roughness of prediction model, Ra is the surface roughness after
polishing, ε is the experimental error, b is the coefficients of model and x is the polishing
parameter in each level.

The coefficient matrix of the prediction model can be obtained through the following
equation:

b = (XTX)
−1

XTY1 (2)

where X is the matrix comprised of the experimental variables and Y1 is the matrix com-
posed by the experimental results.

3.3. Significance Test of Prediction Model

Aiming to improve the reliability of the prediction model, it is necessary to eliminate
the insignificant factors in the model. Expert Design software was used to conduct variance
analysis on the experimental data in Table 4. Additionally, the insignificant factors in the
model were eliminated according to the step-by-step selection method, thus obtaining the
prediction model. Table 5 shows the analysis results.

Variance analysis is mainly to test the fitting accuracy of the model, and the commonly
used indicators include model testing value F, model probability value p and coefficient of
determination R2. The larger the testing value F is and the smaller the probability value p
is in the model, the fitting accuracy of the model is higher. The model testing value F of
19.54, which is greater than the critical value Fc of 3.74, illustrates the high significance of
the model.

The model testing value F with a model probability value p (0.0004), which is near to
zero explains the high significance of this regression model. The coefficient of determination
R2 is calculated to be 0.9570 for response. The calculation result of R2 (coefficient of
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determination) indicates that 95.7% of experiment the data are in agreement with the data
of the predicted model, and only 4.3% of the total variations are found in the model. The
value of Adjusted R2 (adjusted coefficient of determination) is 0.9312 and shows that the
model has high significance. The Predicted R2 is 0.8502 and indicates that 85% of the
variability in the prediction model could be explained. Additionally, the Predicted R2 is
consistent with the Adjusted R2 of 0.9312. Adeq precision represents the signal to noise
ratio. Additionally, the model ratio of 22.9607, which is greater than 4 indicates sufficient
signal. So, the prediction model can be considered reliable.

Table 5. Analysis of experimental variance. R2 (coefficient of determination) = 0.9570, Adjusted
R2 = 0.9312, Predicted R2 = 0.8502, Adeq precision = 22.9607, DOF degrees of freedom, F testing value,
p probability value, S Significant, N Not significant.

Variation Source Quadratic
Sum DOF Root Mean

Square F p

Model 0.6744 9 0.0749 19.54 0.0004 S

A-P S 0.0981 1 0.0981 25.59 0.0015
B-R S 0.0283 1 0.0283 7.38 0.0299
C-V S 0.3209 1 0.3209 83.68 <0.0001
AB S 0.0200 1 0.0200 5.22 0.0563
AC S 0.0160 1 0.0160 4.17 0.0804
BC N 0.0004 1 0.0004 0.1031 0.7575
A 2S 0.0022 1 0.0022 0.5691 0.4752
B 2S 0.0416 1 0.0416 10.86 0.0132
C 2N 0.0008 1 0.0008 0.1963 0.6711

Residual error 0.0268 7 0.0038
Lack of fit 0.0177 2 0.0088 4.82 0.0682 N

Pure error 0.0092 5 0.0018
Cor total 0.7013 16

As can be seen in Table 5, the model testing value F of the single-factor polishing
pressure A, rotation speed of tool B, feed speed C and the interaction terms AB, AC and
B2 in the prediction models are all greater than 3.74, which are significant to the response
value, so they should be retained. However, the test values F of interaction terms BC, A2

and C2 are less than 3.74, which has no significant influence on the response value, so it
should be removed. Then, the actual prediction model is as follows after eliminating the
insignificant factors:

Ra = 0.658 − 7.05 × 10−3 A − 4.83 × 10−4B + 0.503 × 10C
+3.558 × 10−6 AB − 4.62 × 10−3 AC + 1.05 × 10−7B2 (3)

The diagnosis test of the prediction model is conducted through Design-Expert fitting,
and the result of residual analysis is presented in Figure 7. Most of the scattered points
of residuals fall around the predicted value and deviate from the straight line to a small
degree. Therefore, it can be considered that residuals follow normal distribution and the
model fits well. Figure 8 shows that the predicted data are mainly in agreement with
experimental result and the prediction model can achieve a high precision prediction effect
by comparison of predicted data with experimental result.
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3.4. Optimization and Validation of Process Parameters

According to the results in Table 4, the response surfaces of polishing process param-
eters are fitted as shown in Figure 9. Figure 9a is the response values of feed speed and
polishing pressure for surface roughness. The response surface curvature is small due to the
significant difference of interaction for feed speed and polishing pressure during the pro-
cess of polishing. The surface roughness decreases with the increase in feed speed, and the
roughness value decreases more when the polishing pressure is 50 N. While the roughness
value decreases less when the polishing pressure is 10 N. The roughness value decreases
greatly when the feed speed is larger. Thus, it can be judged that when the feed speed is
0.25 mm/s the surface roughness value decreases more. Figure 9b is the response values
of rotation speed of the tool and polishing pressure for surface roughness. According to
the response surface, when the polishing pressure is 50 N, the surface roughness decreases
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firstly and then increases with the increase in the rotation speed. When the rotation speed
of the tool is about 1600 r/min, the surface roughness is the lowest. Therefore, the optimal
process parameters for polishing are a polishing pressure of 50 N, rotation speed of the tool
of 1600 r/min and feed speed of 0.25 mm/s.
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The process parameters are optimized according to the response surfaces in process
parameter selection range of prediction model. The minimum Ra (surface roughness) ratio
and the maximum desirability are set as the optimization goal, and 5 groups of optimal
parameters combinations are obtained by using Design Expert software optimization, as
shown in Table 6. The roughness ratio is the value of roughness after machining to initial
roughness. The Ra ratio is the value of Ra after polishing to initial Ra and the desirability of
which is a maximum of 1 which represents the reliability of the parameter combination in
the response surface. The more the desirability approaches 1, the higher the reliability. The
optimal parameters combinations can be used in whole surface polishing of mold steel.

Table 6. The optimal parameters combinations.

No. Polishing
Pressure (N)

Rotation Speed
of Tool (r/min)

Feed Speed
(mm/s) Ra Ratio Desirability

1 50 1624 0.25 0.254 0.946
2 50 1644 0.25 0.215 0.944
3 50 1622 0.26 0.256 0.941
4 50 1417 0.25 0.274 0.941
5 50 1403 0.25 0.233 0.940

For the purpose of verifying the accuracy of the prediction model of the surface
roughness, five groups of process parameters combinations were randomly selected for
verification of the polishing experiments (as shown in Table 7). The polishing experiment
results of mold steel surface are shown in Figure 10. Additionally, the measurement result
of Ra ratio is shown in Table 7. The surface quality polished by using the optimized
parameters (No.5) is obviously better than that polished by a random combination of
process parameters. Figure 11 shows the comparison between predicted Ra ratio and actual
Ra ratio. The absolute value of relative errors in five groups is from 5.64% to 13.47%. The
relative errors are within the allowable range that proves the accuracy of the roughness
prediction model.
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Table 7. Results of polishing experiments for model verification.

No.
Polishing
Pressure

(N)

Rotation
Speed of Tool

(r/min)

Feed
Speed
(mm/s)

Predicted
Ra Ratio

Actual Ra
Ratio

Relative
Error

1 46 622 1.01 0.454 0.481 −5.64%
2 30 1860 1.19 0.485 0.528 8.88%
3 41 804 0.76 0.382 0.434 −12.03%
4 43 1447 1.25 0.472 0.416 13.47%
5 50 1593 0.25 0.248 0.238 −9.66%
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4. Experiment Validation of Multipath Polishing

In the previous section, the parameters optimization of a single polishing path has
been carried out through establishing the model of roughness prediction. In practical
machining, it is necessary to plan the polishing path and combine the optimal parameters
of a single path to finish whole surface polishing of mold steel.



Machines 2022, 10, 283 12 of 14

The polishing path is planned according to the shape of the workpiece surface, and pol-
ishing paths commonly used by robots mainly include raster path, spiral path, etc. [21,22].
The object of polishing is plane mold steel, so raster path is selected to plan polishing
path. The spacing of raster path is an important factor affecting polishing accuracy and
efficiency. In order to verify the effectiveness of optimal polishing parameters for whole
surface polishing, raster paths with different spacing are applied to experiments of whole
surface polishing. Five pieces of the same area (90 × 50 mm2) from the same mold steel
workpiece were selected, and five groups of raster paths with different spacing according
to the radius of the polishing tool (r = 16.5 mm) were set to conduct polishing experiments.
Figure 12 shows the surface of the mold steel with different polishing paths. The optimal
process parameters (polishing pressure of 50 N, rotation speed of tool of 1600 r/min, feed
speed of 0.25 mm/s) were adopted in polishing experiments. The experimental results
with different polishing paths are demonstrated in Table 8.
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Table 8. The experimental results with different polishing paths.

Spacing/mm 16.5 15 10 8 5
Number of paths 2 3 4 4 7

Time/min 9.1 14.0 17.8 17.6 29.8
Initial Ra/µm 0.941 0.885 0.914 0.986 0.944

Ra after polishing/µm 0.334 0.315 0.275 0.307 0.290
Ra ratio 0.355 0.356 0.301 0.311 0.307

The surface roughness decreases to about 0.3 µm effectively after polishing with the
optimal process parameters (the expected roughness ranges from 0.2 to 0.4 µm.), which
proves the feasibility of optimization for process parameters. The experiment group with
a better effect is the spacing of 10 mm, the surface roughness of 0.275 µm and Ra ratio of
0.301. The variation trend of surface roughness and Ra ratio corresponding to different
polishing spacing is exhibited in Figure 13. It is easy to see that with the decrease in the
polishing spacing the surface roughness firstly decreases and then increases, and the overall
trend decreases. However, too small spacing will increase the polishing time and lower
the polishing efficiency. Additionally, it is necessary to select a suitable polishing path for
polishing by considering the actual requirements of machining accuracy and efficiency.
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5. Conclusions

1. A robotic polishing platform with force control was built to realize the automatic
polishing of mold steel. The influence rule of robotic polishing parameters, which included
polishing pressure, rotation speed of tool and feed speed on surface roughness was ana-
lyzed through a single-factor experiment, and the parameters’ range of central composite
experiment was determined.

2. The prediction model of surface roughness was established through the center
composite design experiment. The prediction model that improved by variance analysis
is significant. Additionally, the polishing experiments were conducted with five groups
of process parameters and combinations were randomly selected. The relative errors of
predicted Ra ratio and actual Ra ratio are within the allowable range (the maximum error
value is 13.47%). that proves the accuracy of roughness prediction model.

3. The optimum polishing parameters were achieved according to the response surface
method. Additionally, experiments of multipath polishing were conducted to verify the
feasibility of optimization for polishing parameters. The surface roughness decreased to
about 0.3 µm effectively after polishing with the optimal process parameters. The prediction
model of surface roughness and optimum polishing parameters are helpful to improve
surface quality in robotic polishing for mold steel.
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