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Abstract: The premature failure of a cylindrical roller bearing took place during service, with a
total operation time of 100 h. The failure cause was analyzed by macroscopic and microscopic
observation, metallographic analysis, hardness testing, tightening axial force influence analysis, and
test verification. The results show that failure modes of the bearing are contact fatigue spalling, wear,
and fatigue fracture. The outer ring, inner ring, rollers, and cages all have suffered relatively heavy
damage in the sides corresponding to the bearing side with laser marking. Excessive load, induced by
the excessive tightening axial force, derived from the lock nut, is the cause of the bearing failure. The
failure mechanism is that excessive tightening axial force caused a great deformation and cylindricity
increase of the inner ring raceway, which induced high local contact stress between one side of the
ring raceways, as well as the corresponding ends of the rollers, resulting in the bearing failure. At last,
measures for prevention of this failure are put forward as follows: controlling the tightening axial
force within the range of technical requirement, increasing the convexity of the inner ring raceway
and rollers, and decreasing the grinding undercut size of the inner ring.

Keywords: cylindrical roller bearing; contact fatigue spalling; wear; tightening axial force

1. Introduction

Bearings are the key components used to support the rotating elements and load
transformation, and they play a very important role in providing stiffness and rotational
accuracy [1,2]. Additionally, many mechanical systems rely on the consistent and reliable
operation of bearings [3]. If bearings are properly designed, assembled, operated, and
maintained, they can give excellent service life [4]. However, premature failures of bearings
are often encountered as the root cause of machinery failure and bottleneck in uninterrupted
operation [4–6].

Bearing failures may result in the maintenance or damage of machinery, or even fatal
accidents [7]. Bearing failure modes mainly include contact fatigue (falking, spalling, or
pitting), wear, overheating, and corrosion [3,8,9]. The reasons for bearing failure may be
errors in bearing design, manufacturing, installation, or application, such as unreasonable
structure or size, related to bearing design, unqualified heat treatment, or dimension,
related to bearing production, misalignment, or excessive tightening axial force, related to
bearing assembly, excessive vibration, or contamination, related to bearing application [10].
There are often corresponding relationships between bearing failure morphologies and
failure causes. For examples, failures induced by excessive axial load in an aeroengine
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will show a pattern of flaking along the raceway and balls [11–13]. Additionally, failures
induced by misalignment may show a pattern of flaking, taking place at particular locations,
such as diagonally opposite the locations of the raceway [11,14–16], or one end of the rollers
alone shows severe damage, with the other end having only slight contact scratches [17].

Bearing failure analysis greatly depends on the recognition of the morphology of the
failure bearing and demands very specific experience. Additionally, the root causes of a
bearing failure may be a combination of several factors, such as design error, hardware
deviations, and improper assembly operation [12,18,19]. The complexity of identifying the
bearing failure root cause will greatly increase [17] when the root cause of a bearing failure
is a combination of several factors. Therefore, it is very important to explore extensive
characteristics, which indicate the relationships between the bearing failure modes and
failure causes.

Improper installation induces assembly errors, such as excessive tightening axial force
and misalignment, and is one of the major failure causes of bearing. Excessive tightening
axial force results in the geometry increasement of local stress and exceptional friction, as
well as the decrease service life of bearing [2]. Misalignment, as shown in Figure 1, is the
common bearing failure cause. Misalignment and bearing failure induced by misalignment
are widely studied. Wang [20] studied the effects of assembly misalignment on contact stress
of the cylindrical roller bearing with the finite element method and found that misalignment
will increase the contact stress on one side of the roller and decrease the contact stress on
the other side. Li [21] studied the effect of the misalignment error on contact pressure
and found that the contact pressure distribution is changed from a uniform distribution
into a slope distribution, due to the misalignment error and maximum contact pressure
increase of about 3.7%, when 0.05◦ misalignment error formed in a cylindrical roller bearing.
Zou [22] found that fracture of a G20Cr2Ni4A steel bearing roller was induced by assembly
misalignment of the shaft that the bearing fixed on. Ejaz [12] conducted failure analysis of
an aeroengine and found that the aeroengine failure was caused by the misalignment of
the ball bearing fitted on the main shaft of the engine.
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Figure 1. Schematic diagram of the bearing misalignment (angle θ, existing between the rollers and
inner ring, is often referred to as the tilting angle of the roller) [21].

However, case studies on failures caused by bearing deformation induced by improper
installation are comparatively smaller, compared to case studies on failures caused by
assembly misalignment and other reasons, such as unqualified bearing production [23] and
lubrication [24,25].

Therefore, this paper investigated the failure of a cylindrical roller bearing caused by
excessive tightening axial force and identified failure modes of the bearing. The influence
of tightening axial force on the cylindricity (deformation) was obtained. Additionally,
recommendations were provided. It is hoped that the present research can provide a
reference for the analysis and prevention of bearing failure induced by improper installation
(excessive tightening axial force).

The cylindrical roller bearing was found failure with spalling and wear of the inner
and oture ring, broken of the cage after operation for 100h. Additionally, the inner ring is
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fixed on the shaft by an axial tightening axial force applied by the lock nut. An installation
diagram of the cylindrical roller bearing is shown in Figure 2. The installation morphology
of the inner ring in the test rig and lock nut, which is related to the failure cause, are shown
in Figure 3.

Machines 2022, 10, x FOR PEER REVIEW 3 of 16 
 

 

The cylindrical roller bearing was found failure with spalling and wear of the inner 
and oture ring, broken of the cage after operation for 100h. Additionally, the inner ring is 
fixed on the shaft by an axial tightening axial force applied by the lock nut. An installation 
diagram of the cylindrical roller bearing is shown in Figure 2. The installation morphology 
of the inner ring in the test rig and lock nut, which is related to the failure cause, are shown 
in Figure 3. 

 
Figure 2. Installation schematic diagram of the cylindrical roller bearing. 

 
Figure 3. Installation morphology of the inner ring and assembly schematic diagram of the bearing 
on the test rig. 

Figure 2. Installation schematic diagram of the cylindrical roller bearing.

Machines 2022, 10, x FOR PEER REVIEW 3 of 16 
 

 

The cylindrical roller bearing was found failure with spalling and wear of the inner 
and oture ring, broken of the cage after operation for 100h. Additionally, the inner ring is 
fixed on the shaft by an axial tightening axial force applied by the lock nut. An installation 
diagram of the cylindrical roller bearing is shown in Figure 2. The installation morphology 
of the inner ring in the test rig and lock nut, which is related to the failure cause, are shown 
in Figure 3. 

 
Figure 2. Installation schematic diagram of the cylindrical roller bearing. 

 
Figure 3. Installation morphology of the inner ring and assembly schematic diagram of the bearing 
on the test rig. 
Figure 3. Installation morphology of the inner ring and assembly schematic diagram of the bearing
on the test rig.

According to the installation structure of the inner ring, as shown in Figures 2 and 3,
the inner ring raceway will deform and form high cylindricity on one side (causing the
sloped shape of the inner ring raceway, due to the different diameter increase of the raceway
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surface at two ends, such as locations A and B in Figure 4) under excessive tightening axial
force; in this situation, it is very easy to cause the single side clearance between the rollers
and ring raceway, because it is too small during the service of the bearing, resulting in
local contact between one side of the ring raceway and one end of the rollers, as shown in
Figure 4. This may cause uneven load distribution with high local contact stress, resulting
in contact fatigue spalling and wear, eventually leading to failure of the bearing.
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2. Materials and Methods

Five cylindrical roller bearings were evaluated in this paper. One bearing was the
faulty bearing used for failure analysis. Three bearing were used to study influence of the
tightening axial force on the inner bearing. Additionally, one bearing was used for the
comparative experiment.

The dimension and working conditions of the bearing are shown in Table 1.

Table 1. Dimension and working conditions of the bearing.

Diameter of Outer
Ring (mm)

Diameter of Inner
Ring (mm) Rotational Speed (rpm) Lubrication

Viscosity of the
Lubrication

(L/min)
Radial Load (N)

68 45 20000
4050

aviation
lubricating oil

0.3 3500

The inner and outer rings and rollers of the bearings were made of M50 steel, and their
microstructures consisted of tempered martensite, primary carbides (Fe,Cr)3C, tempered
carbides, and retained austenite. The amount of retained austenite was about 3%. The
chemical composition of the M50 steel is shown in Table 2.
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Table 2. Chemical compositions of M50 steel (wt.%).

Elements C Cr Mo V Ni Mn Si

Content 0.81 4.05 4.23 1.05 0.11 0.31 0.21

Additionally, the cage is made of 40CrNiMoA steel, with the microstructure of tem-
pered sorbite. Chemical composition of 40CrNiMoA steel is shown in Table 3.

Table 3. Chemical compositions of 40CrNiMoA steel (wt.%).

Elements C Cr Ni Mo Mn Si

Content 0.40 0.80 1.31 0.23 0.60 0.26

The macroscopic damage morphologies of the bearing were obtained by visual and
optical microscope observation. Microscopic damage morphologies of the bearing were
examined by scanning electron microscope. The microstructure of the bearing was checked
via an optical metallographic microscope. The microhardness was measured with the
microhardness tester. The cylindricity of the inner ring raceway was measured with
the cylindricity measuring instrument. The contact fatigue test of the bearing, used for
verification of the tightening axial force influence on bearing performance, was carried out
via bearing test equipment. The above experimental instruments and equipment are shown
in Table 4.

Table 4. Experimental instruments and equipment used in this paper.

Name Type Manufacturer

Stereo optical microscope Leica DM6000 Leica Microsystems Inc., Wetzlar, Gernmany
Optical metallographic microscope Olympus GX51 Olympus Corporation, Tokyo, Japan

Scanning electron microscope Camscan 3100 Obducat Camscan Ltd., Cambridge, United Kingdom
Microhardness tester TUKON2500 Wilson Hardness, Lake Bluff, USA

Cylindricity tester Talyrond 295 Taylor Hobson, Leicester, United Kingdom
Bearing test equipment 14K AECC Harbin Bearing Co., Ltd., Harbin, China

3. Results
3.1. Macroscopic and Microscopic Observation

Almost the whole circumferential area of the working track of outer ring raceway was
damaged, with the main characteristics of wear and contact fatigue spalling, as shown
in Figure 5. The damage, characterized by spalling pits with intermittent distribution on
the side with laser marking of the outer ring raceway, was more serious than that of the
other side of the outer ring raceway, as shown in Figure 6. There were regular golden
and blue-black rings (about 2 mm wide), mainly distributed in the whole circumferential
areas on the bearing side, with laser marking (the side with the bearing number engraved
on the edge by laser) on the outer diameter surface of the outer ring, while there were
blue-black patches on the other side of the outer diameter surface of the outer ring, as
shown in Figure 7. These discolouration areas resulted from overheating of the bearing,
induced by abnormal wear under high local stress.
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The damage, characterized by spalling pits of the inner ring raceway, was mainly
distributed in the areas that corresponded to the bearing side with laser marking, with
an axial width about 1 mm, and the circumferential length accounted for 3/4 of the
circumference of the outer ring raceway, as shown in Figure 8. The spalling pits showed
contact fatigue features with laminar and fan-shaped morphologies, as shown in Figure 9.
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The 20 rollers show a gray-black colour, serious contact fatigue spalling, and wear on
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Figure 12. Damages of the roller end face, away from the bearing side with laser marking.

The beams of six consecutive pockets (the pockets are numbered from No.1 to No.6),
in the twenty pockets of the cage, were broken at the corners formed by the beam and
side beam; the side beams corresponded to the bearing side with laser marking of the
six consecutive pockets, separately broken at the corners near the No.20 of No.1 pockets,
as well as at the corners near the No.5 of No.6 pockets; the other side beam of the six
consecutive pockets were only broken at the corners near the No.20 of No.1 pockets, as
shown in Figure 13. Most of the fractures were invisible, due to serious wear. The three
fractures (numbered from No.1 to No.3) of the side beam were visible, with a colour of
gray-black, and had their origins in the corner surfaces and flat propagation areas, with
fracture ridge and fatigue striations, as shown in Figure 14. Additionally, the side beam
surfaces showed severe contact wear morphologies, especially in the surfaces corresponded
to the bearing side with laser marking, as shown in Figure 15.
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3.2. Metallography

There are serious microstructure burns induced by heavy wear between outer ring
raceway and rollers in the outer ring raceway, which exhibit as a white quenching burn and
gray-black, high-temperature tempering burn. The burned area, corresponding to the bearing
side with laser marking, was heavier than that of the other side. Additionally, the deepest
part of the burns was almost equivalent to the thickness of the outer ring. The microstructure
of the outer ring was a homogeneous structure and consisted of acicular martensite + carbide.
The typical microstructure and burns of the outer ring are shown in Figure 16.
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There are serious microstructure burns induced by heavy wear between rollers and
ring raceways in the rollers. The burned area corresponding to the bearing side with
laser marking was heavier than that of the other side. The microstructure of the rollers
was a homogeneous structure and consisted of acicular martensite + carbide. The typical
microstructure and burns of the rollers are shown in Figure 17.
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The microstructure of the inner ring was a homogeneous structure and consisted of
acicular martensite + carbide. The microstructure of the cage was a homogeneous structure
and consisted of tempered sorbite.

3.3. Hardness Test

Hardness examinations were respectively carried out on the matrix of the inner ring,
outer ring, rollers, and cage. Their hardness met the requirements, as shown in Table 5.
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Table 5. Hardness test results and requirements of the inner ring, outer ring, rollers, and cage.

Name Test Results (HRC) Requirement (HRC)

Inner ring 63.0
60.0–64.0Outer ring 62.5

Roller 63.0
Cage 34.0 33.0–37.0

4. Discussion

(1) Failure modes and direct failure cause
According to the bearing damage characteristics discussed in Section 3.1, the failure

modes of the outer ring raceway and rollers were contact fatigue spalling and wear. The
failure mode of the inner ring raceway was contact fatigue spalling, and the failure mode
of the cage was fatigue fracture. Additionally, fatigue fracture of the cage should occur
after spalling and wear of the raceways and rollers because, if the cage fracture occurred
first, then the spalling and wear of the raceways and rollers, as well as the axial damage of
the raceways and rollers, should be relatively uniform.

The original microstructure of the inner ring, outer ring, roller, and cage were homo-
geneous structures. The hardness of the inner ring, outer ring, roller, and cage met the
required specifications. Therefore, the material quality of the bearing was not responsible
for the bearing failure.

The outer ring, inner ring, rollers, and cages all had suffered relatively heavy damage
in the sides, corresponding to the bearing side with laser marking, which indicated that the
local contact stress in the bearing side with laser marking was too high. That is to say, the
high local contact stress, corresponding to the bearing side with laser marking, should be
the direct cause of the bearing failure.

(2) Tightening axial force influence analysis and test verification
The diameter of the lock nut was equivalent to the diameter of the inner ring flange.

Therefore, a high tightening axial force may lead to the deformation of the inner ring and
result in high local stress in some positions.

The influence of the tightening axial force on the inner bearing was analyzed by
studying the relationship between the tightening torque of the lock nut and cylindricity
variation of the inner ring raceway. The technical required axial tightening torque of the
inner ring is 338~372 N·m. Additionally, the minimum axial tightening torque (338 N·m),
tightening torque approximately in the middle axial tightening torque of the technical
requirements range (350 N·m), and maximum axial tightening torque (372 N·m) were
selected to study the relationship. The cylindricity of the inner ring raceway was measured
via a cylindricity measuring instrument, both before and after being fixed on the shaft, with
different tightening torques. The cylindricity of the inner ring fixed on the shaft was to be
measured as shown in Figure 18.

The tightening torque of the lock nut, as well as the comparable cylindricity of
the inner ring raceway, are shown in Table 6. After the tightening torque was applied,
the cylindricity of the inner ring raceway was generally greater than it was before
the tightening torque is applied. The cylindricity increased, which indicates that the
distortion and deformation of the inner ring raceway had been formed by the tightening
torque. Additionally, the cylindricity of the inner ring increased with the increase of the
tightening torque of the lock nut.
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Figure 18. Cylindricity of the inner ring fixed on the shaft is to be measured.

Table 6. The cylindricity of the bearing inner raceway under different tightening torque (µm).

Bearing Number No Tightening
Torque

Tightening Torque (N·m)

338 350 372

No.1 1.02 5.41 5.69 6.71
No.2 2.24 7.47 7.65 7.92
No.3 3.60 5.19 5.21 8.04

When large interference was used to install the inner ring, the inner ring deformation
and cylindricity increase was induced by the large tightening axial force (375 N·m) that
was used, which was 3 N·m larger than the maximum tightening torque of the bearing
requirement, and the test of the simulating bearing operation was carried out by bearing
contact fatigue test equipment. Before the bearing was installed on the test equipment,
cylindricity of the inner ring raceway is 2.90 um, and the cylindricity profile is shown in
Figure 19a. After the bearing was installed on the test equipment, the cylindricity of the
inner ring raceway increased to 10.98 um, and the cylindricity profile is shown in Figure 19b.
The tightening axial force caused obvious the taper deformation of the inner ring raceway.
Additionally, the diameters corresponding to the bearing side with laser marking of the
inner ring raceway increased obviously at some positions.
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Figure 19. Cylindricity of the inner ring raceway: (a) before installation; (b) after installation.
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The bearing was disassembled and inspected after a 50-h test. There were obvious
circumferential contact marks on the outer race raceway, a spalling area with a circum-
ferential length of about 12 mm, and an axial width of about 1.5 mm in the axial end,
which corresponded to the bearing side with laser marking of the outer ring raceway, as
shown in Figure 20a. There were obvious circumferential contact marks on the inner race
raceway and spalling strips, whose circumferential length separately accounted for 2/3
and 1/4 of the circumference of the outer race raceway, which, in the end, corresponded
to the bearing side with laser marking; the damage at the other end was not obvious, as
shown in Figure 20b. There were obvious circumferential contact marks on the 20 rollers.
Additionally, there were spalling strips on the end surfaces corresponding to the bearing
side with laser marking of the 13 rollers, as typically shown in Figure 20c. Damages of the
cage were mainly characterized by an uneven wear of the pocket and side beams, as shown
in Figure 20d.
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Figure 20. Damage morphology of the test verification bearing: (a) spalling morphology of the outer
ring raceway; (b) spalling morphology of the outer ring raceway; (c) typical spalling morphology of
the rollers; (d) wear morphology of the cage.

The severely damaged areas of the working tracks of the outer ring raceway, inner
ring raceway, and rollers were located at the working tracks end corresponding to the
bearing side with laser marking. This shows that there was excessive local contact stress at
the ends of the outer ring raceway, inner ring raceway, and rollers. Additionally, it can be
seen that the severely damaged areas of the outer ring raceway, inner ring raceway, and
rollers corresponded exactly to the areas with the maximum deformation of the inner ring
raceway, by comparing the cylindricity profile of the inner ring raceway and those severely
damaged areas. Therefore, the spalling failure of the bearing should be caused by the high
tightening axial force.

(3) Comprehensive analysis
The analysis results of the bearing damage morphologies, microstructure, and hard-

ness showed that high local contact stress, corresponding to the bearing side with laser
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marking, may be the cause of bearing failure. Excessive tightening axial force will cause
great deformation and cylindricity increase of the inner ring raceway, which will cause
high local contact stress between one side of the ring raceway and one end of the rollers,
resulting in contact fatigue spalling and wear failure of the bearing, in the case that the
bearing is installed with a large interference. Failure modes of the faulty bearing and test
bearing, to verify the excessive tightening axial force, are mainly fatigue spalling. Addition-
ally, the severely damaged areas of the two bearings are located at the working tracks end
corresponding to the bearing side with laser marking. Therefore, excessive tightening axial
force is the failure cause of the faulty bearing.

After further investigation on the cause of excessive tightening axial force, it was found
that tightening torque of lock nut of the faulty bearing was about 100 N·m bigger than
the minimum axial tightening torque of the technical requirement. Therefore, excessive
tightening axial force is induced by the bigger tightening torque of lock nut.

5. Conclusions

(1) The failure modes of the outer ring raceway and rollers are contact fatigue spalling
and wear. The failure mode of the inner ring raceway is contact fatigue spalling. Addition-
ally, failure mode of the cage is fatigue fracture.

(2) The outer ring, inner ring, rollers, and cages all exhibited relatively heavy damage
in the sides corresponding to the bearing side with laser marking, when the bearing failure
was induced by excessive tightening axial force of the inner ring raceway.

(3) Excessive tightening axial force, induced by the tightening torque of the lock nut,
is the cause of the bearing failure. Additionally, the failure mechanism is that excessive
tightening axial force causes great deformation and cylindricity increases of the inner ring
raceway, which induced high local contact stress between one side of the ring raceways and
one end of the rollers, resulting in contact fatigue spalling and wear failure of the bearing.

6. Recommendation

Controlling the tightening axial force, within the range of the technical requirements,
is the basic requirement to prevent such bearing failure. However, the following measures
can be taken to reduce the influence of the bearing inner ring deformation induced by
tightening axial force.

(1) Convexity increase of the inner ring raceway can offset a certain deformation of
the inner ring raceway.

(2) Convexity increase of the rollers can improve the bearing ability to resist the
deformation of the inner ring raceway [26].

(3) Size decrease of the grinding undercut of the inner ring can improve the ability of
the inner ring raceway to resist deformation [27].
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