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Abstract: With the continuous expansion of system scale, the parameter coupling of the system is
prominent. Due to limitations in knowledge and experience, it is difficult for designers to objectively
analyze the interaction relationship between parameters, resulting in the low accuracy of engineering
parameter selection, hence affecting conflict solving. In order to improve the accuracy of engineering
parameter selection and the efficiency of conflict solving, this paper proposes a conflict solving process
based on mapping between physical parameters and engineering parameters. First, the physical
parameters related to the components of the system function model are extracted, and dimensional
analysis is used to construct a physical parameter logical network. Secondly, the physical parameter
change path related to the problem in the physical parameter logical network is found, and the
physical parameter sets corresponding to both conflicting parties are obtained. Then, the engineering
parameters corresponding to conflicts can be selected through the mapping model between physical
parameters and engineering parameters, which is trained by a neural network with the sample
data of physical parameter sets and engineering parameters in existing cases. Finally, Theory of
Inventive Problem Solving (TRIZ) tools are used to solve conflicts, and the final design scheme is
obtained through evaluation. The feasibility and effectiveness of the proposed method are verified by
redesigning a bulk traditional Chinese medicine dispenser.

Keywords: conflict solving; engineering parameter; physical parameter; mapping model; neural network

1. Introduction

With continuous change in market demand, the complex features of systems, such as
nonlinearity and coupling are prominent [1], which has an impact on solving conflict. In
addition, limitations in knowledge and experience lead to poor accuracy in transforming
conflicts into engineering parameters for designers in the conflict solving process [2]. TRIZ
theory proposes to solve conflicts by abstracting both conflicting parties into engineering
parameters and querying the conflict matrix according to it to determine invention prin-
ciples [3]. Failure to accurately obtain engineering parameters may lead to poor effect or
even development failure of the scheme obtained from solving conflict. Therefore, it is
of great significance to propose a method that can enhance the accuracy of engineering
parameter selection for conflict resolution.

The process of conflict generation can be regarded as the solution of an original prob-
lem leading to the emergence of a new problem in the system [4]. Engineering parameters
can be used to describe the problem state of systems [5]. Some studies believe that all
problems in the system can also be expressed by physical terms such as physical parame-
ters [6,7]. It can be found that there is a certain relationship between engineering parameters
and physical parameters in the description of system problems. The analysis of physical
parameters can help designers understand the system problem more deeply [6]. Therefore,
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this study intends to select engineering parameters by mapping from physical parameters
to engineering parameters in the perspective of physical parameter analysis, so as to reduce
the difficulty of directly searching engineering parameters from both conflicting parties.
However, due to parameter coupling, it is difficult to map multiple physical parameters to
engineering parameters, and their mapping relationship is relatively complex. The neural
network has an intelligent adaptive learning ability and can effectively handle the mapping
relationship between data [8], so using the neural network to train the mapping relationship
between physical parameters and engineering parameters, so as to obtain the mapping
model between them, has been considered. The mapping model can assist the designer to
select engineering parameters.

On the basis of the above research, in order to reduce the influence of parameter cou-
pling on engineering parameter selection and improve the efficiency of conflict resolution,
a conflict solving process based on mapping between physical parameters and engineering
parameters is proposed. Firstly, the existing problems of the system are determined, and
its function model is constructed. Secondly, the components of the system function model
are divided, and different types of physical parameters are extracted according to different
components; hence, the physical parameter logic network is constructed by dimensional
analysis. Thirdly, the improvement goal is determined by using the current reality tree, and
the conflict analysis is carried out in the physical parameter logic network. Then, taking the
physical parameter sets and engineering parameters in the existing cases as sample data,
the mapping model between physical parameters and engineering parameters is trained by
a back propagation (BP) neural network. According to the results of conflict analysis, the
engineering parameters corresponding to the conflict can be selected through the mapping
model. Finally, the conflict is solved by TRIZ tools, and the final design scheme is obtained
through the analytic hierarchy process and the expert scoring method.

The contributions of this study are as follows:

1. The study proposes a mapping model between physical parameters and engineering
parameters, which is trained by BP neural network. The mapping model assists
the designer to select engineering parameters, which improves the accuracy of the
designer’s engineering parameter selection during conflict solving.

2. The proposed conflict solving process can guide the designer to discover the conflicts
in the design process, thus optimizing the application process of the classical TRIZ
conflict matrix.

The following sections of this paper are arranged as follows. Section 2 is the litera-
ture review, which introduces the related research status of the engineering parameters
and artificial neural network. In Section 3 theoretical methods are described, including
the mapping relationship between physical parameters and engineering parameters, the
construction process of the mapping model between physical parameters and engineering
parameters, and the conflict solving process based on mapping between physical param-
eters and engineering parameters. Section 4 is the case study, taking the bulk Chinese
medicine dispenser as an engineering case to prove the feasibility of the proposed method.
Section 5 discusses the scientific nature and effectiveness of the method. Section 6 summa-
rizes the contributions and shortcomings of the paper and puts forward future directions
of the work.

2. Literature Review
2.1. Engineering Parameter in Conflict Matrix

The engineering parameter is an abstract description of both sides of conflict in
the conflict matrix of TRIZ. The system runs as one, so any attempt to improve one
part (functions, characteristics) of the system through known technologies may lead to
the deterioration of other parts (functions, characteristics) of the system, which leads
to conflicts [9]. TRIZ describes the improvement target and deterioration result with
engineering parameters respectively, and then uses the conflict matrix to find invention
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principles, so as to obtain the scheme to solve conflict [10]. The 39 engineering parameters
are shown in Table 1.

Table 1. 39 Engineering parameters.

No. Name No. Name No. Name

1 Weight of moving object 14 Strength 27 Reliability
2 Weight of stationary object 15 Durability of moving object 28 Measurement accuracy
3 Length of moving object 16 Durability of non-moving object 29 Manufacturing precision
4 Length of stationary object 17 Temperature 30 Object-affected harmful
5 Area of moving object 18 Illumination intensity 31 Harmful side effect
6 Area of stationary object 19 Use of energy by moving object 32 Ease of manufacture
7 Volume of moving object 20 Use of energy by stationary object 33 Ease of operation
8 Volume of stationary object 21 Power 34 Ease of repair
9 Speed 22 Loss of energy 35 Adaptability of versatility
10 Force 23 Loss of substance 36 Complexity of device
11 Stress or pressure 24 Loss of information 37 Complexity of control
12 Shape 25 Loss of time 38 Level of automation
13 Stability of the object 26 Quantity of substance 39 Productivity

The conflict can be solved by querying invention principles with 39 engineering pa-
rameters, and its effectiveness has been verified in the published research [11–13]. However,
due to the increase in system complexity, there is an impact on the solution of system con-
flict, which is usually manifested in the low accuracy of selecting engineering parameters.

Some scholars have studied the selection of engineering parameters. Among them,
Coelho [5] considered the human factors in the manufacturing process and proposed
a preliminary correspondence between the human factors and engineering parameters.
According to common unit operations and specific problems in the chemical industry,
Pokhrel [14] et al. summed up new engineering parameters to enhance the application of
TRIZ in chemical processes. By analyzing a large number of patents, Zhai [15] extracted
keywords reflecting the changes of engineering parameter entities and attributes, con-
structed a technical conflict dictionary, and used the keywords to construct the regular
expression of each engineering parameter. Huang [16] et al. quickly transformed con-
flicts into engineering parameters and solved them by constructing an association table
between the scheme design attributes of machine fixtures and 39 engineering parameters.
Rajic [17,18] classified 39 engineering parameters according to basic quantities, derived
quantities and conditional expressions from the perspective of dimension, in which the
conditional expression is expressed by multiplying or dividing two known parameters
with LT dimension. In addition, some authors also combine the standard factors affecting
ecological efficiency with engineering parameters to solve the conflict between technology
and ecology [19–21]. The above research focuses on the formulation of mapping rules from
specific problems to engineering parameters, which has made a certain contribution to the
selection of engineering parameters, but only for a certain product or field. In addition, in
the formulation and application of relevant rules, the designer’s subjective tendency has a
great impact and there is a lack of consideration of the system coupling problem, meaning
accuracy in engineering parameter selection cannot be guaranteed.

In order to improve the accuracy of engineering parameter selection, this paper pro-
poses analysis from the perspective of physical parameters in order to reduce the difficulty
of directly searching engineering parameters from both conflicting parties. However, due
to the parameter coupling relationship, it is difficult to map multiple physical parameters to
engineering parameters, and the mapping relationship is relatively complex. We consider
using the artificial neural network to assist the mapping process.

2.2. Artificial Neural Network

The artificial neural network (ANN), which is a set composed of artificial neurons or
nodes, has been proved to be one of the most useful artificial intelligence techniques in
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multidisciplinary applications [22]. It can be used to predict and analyze the nonlinear
mapping relationship of data with self-learning properties and has been successfully
applied in the fields of pattern recognition, prediction, classification, image annotation,
semantic analysis and audio parsing.

In view of the self-learning characteristics of ANN, many scholars have applied it
to the product design process. Quan [23] et al. combined perceptual engineering with
ANN for product innovation, which can convert the color, pattern, etc., of an image into
a shape of the product in real time. Lin [24] et al. used ANN to train the product design
data obtained by the Taguchi method to predict the most suitable variable eigenvalues.
Kang [25] used ANN to establish the mapping relationship between key perceptual factors
and representative product design elements and, based on this, found the most perceptually
attractive product designs. Wang [26] used engineering parameters as an intermediary
between complexity and the law of technological evolution, then trained ANN to predict
the law of technological evolution to control the negative effects of product complexity.

It can be seen from the above literature that using an ANN-assisted mapping process
can achieve good results. In order to obtain better results, the widely used BP neural
network is selected [27]. The BP neural network implements a mapping function from
input to output. It can automatically extract rules between the input and output data
during training, and adaptively memorize the learning content in weights of the network.
At the same time, the BP neural network has a certain fault tolerance ability, which will
ensure global training results are not affected after some neurons or nodes are damaged.

To sum up, this paper proposes that it is feasible to use the BP neural network to
establish the mapping model between physical parameters and engineering parameters,
and to assist designers in selecting engineering parameters.

3. Theoretical Methods

The research content of theoretical methods in the paper is mainly divided into three
parts: the mapping relationship between physical parameters and engineering parameters,
the construction process of the mapping model between physical parameters and engi-
neering parameters, and the conflict solving process based on mapping between physical
parameters and engineering parameters.

3.1. Mapping Relationship between Physical Parameters and Engineering Parameters

When using a BP neural network to train the mapping model between physical
parameters and engineering parameters, the mapping relationship between them must
be clarified first. According to the specific introduction of engineering parameters in the
conflict matrix [4], engineering parameters are a description of physical parameters in
systems. For example, “No.7 Volume of moving object” is related to speed and volume;
“No.12 shape” is related to length, width, radian and other parameters; “No.31 Object-
affected harmful” is related to physical parameters such as radiation intensity, sound
intensity, vibration displacement and speed. Each engineering parameter is related to
at least one physical parameter and problems are often caused by the action of multiple
physical parameters due to the increased coupling of systems. From this, it is found that
the engineering parameters can be mapped by multiple physical parameters. They are in a
many-to-one relationship, which can be trained through the BP neural network, as shown
in Figure 1.
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Figure 1. Mapping relationship between physical parameters and engineering parameters.

3.2. Construction Process of the Mapping Model between Physical Parameters and Engineering
Parameters

The construction process of the mapping model between physical parameters and
engineering parameters is divided into four steps: the determination of case sets, the
extraction of sample data, the coding of sample data and the training of the mapping
model.

3.2.1. Determination of Case Set

As a kind of supervised learning, the BP neural network needs to be fully trained to
achieve a better classification effect. This paper takes the authorized patent and enterprise
application cases as the case sources and collects 200 cases as the case set for training.
Among them, the patents come from the authorized patents in the relevant machinery field
retrieved from Patsnap [28], and the enterprise application cases are mainly selected from
case books [29,30].

3.2.2. Extraction of Sample Data

The sample data includes physical parameter sets and engineering parameters. The
following describes the extraction process of the physical parameter set and engineering
parameters, respectively.

(1) Extraction of the physical parameter set.

In the extraction process of the physical parameter set, it is necessary to extract the
root causes related to the system problem from the case and extract the physical parameter
set corresponding to the root causes as the input data of the BP neural network. It is mainly
divided into the following steps.

Step 1: Establishing a function model [31], which can help designers better analyze
the system.

Step 2: Building a current reality tree (CRT) model of the system problem based on the
function model.

CRT is a logical analysis tool that describes the current state of a product, locating root
causes in reverse through a series of causal relationships [32]. As shown in Figure 2, the
CRT model consists of an undesirable result (UR), intermediate result (IR) and root cause
(RC), where the ellipse represents the logical “and” relationship.

Figure 2. CRT model.
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Step 3: Extracting root causes related to the system problem according to the logical
“and” relationship of the CRT model.

The logical “and” means that the causes work together to derive a result, so the root
causes of the “and” relationship should be considered together. For example, in the CRT
model shown in Figure 2, {RC2, RC3} and {RC1, RC4} are extracted respectively as the root
causes related to UR.

Step 4: Using Python to extract physical parameters corresponding to root causes with
the rules, which are formed according to the definition of physical parameters, keywords
and relevant description, and obtaining the physical parameter set by sorting physical
parameters according to the influence degree on the problem.

As shown in Figure 3, for example, if the extracted root causes are “high-speed friction”
and “poor cooling effect”, the corresponding parameters for extraction are speed, frictional
force and temperature. The physical parameters corresponding to each group of root causes
are extracted, and then sorted according to their influence on the problem to determine the
input position in the neural network, thereby forming a physical parameter set, which is
expressed as P =

(
p1, p2, . . . , pj, . . . , pn

)
, with the influence degree of pj > pj+1. Using the

above procedure, 530 physical parameter sets are extracted from the case set.

Figure 3. Extracted physical parameters corresponding to root causes with Python.

(2) Extraction of engineering parameters.

After extracting the physical parameter sets, it is necessary to determine the engineer-
ing parameters corresponding to the physical parameter sets and take them as output data.
Firstly, five experts with more than 10 years of mechanical innovation design experience are
invited to determine the engineering parameters corresponding to each physical parameter
set in the case set. Secondly, in order to reduce the influence of subjectivity and ensure the
accuracy of determined engineering parameters, the Kendall synergy coefficient is used for
a consistency test [33]. The consistency test result is shown in Table 2.

Table 2. Consistency test result.

Content Value

Number 5
Kendall synergy coefficient 0.967

Chi square 2557.839
Freedom 529

Asymptotic significance 0.000

The asymptotic significance is 0.000, less than the threshold value of 0.005, and the
Kendall synergy coefficient is 0.967, greater than 0.8, indicating high data consistency.
Finally, the determined engineering parameters are modified. For a small number of
sample data with different opinions, if there are three or more experts who agree, the
minority shall obey the majority, and the opinions shall not be adopted in the other cases.
According to the above process, the engineering parameters corresponding to the physical
parameter sets are finally obtained.

3.2.3. Coding of Sample Data

After obtaining the sample data, it is necessary to code the data so that it can be trained
in the BP neural network.
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(1) Coding of the physical parameter set.

In the paper, the mapping relationship between physical parameters and engineering
parameters is trained by the BP neural network. Because the physical parameter is a basic
concept used to describe physical phenomena in a broad definition, it cannot be trained
directly, so a reasonable code method is needed to represent the physical parameter. The
Length-Time (LT) dimension is considered to reflect the inherent attributes of physical
parameters, and the LT matrix formed by LT dimensions is an orderly combination of
physical parameters, which is similar to the conflict matrix in TRIZ theory [17,18,34].
Therefore, the physical parameter is coded based on the LT dimension to facilitate training.
However, with only using dimension as input, there are some cases where some data cannot
be distinguished, so it is necessary to introduce other features of the physical parameter,
mainly including the kind, material form and value size. In the paper, the features of each
physical parameter are represented by column mark (L), line mark (T), kind (K), material
form (M) and value size (V), as shown in Figure 4.

Figure 4. Features of the physical parameter.

L and T represent the LT dimension of the physical parameter, and the corresponding
values are the dimensional indexes of L and T. K represents the kind of physical parameter,
where 0 represents space and time, 1 represents mechanics, 2 represents heat, 3 represents
electromagnetism, 4 represents optics and 5 represents acoustics. The classification basis
is Chinese national standard GB 3102-93. M represents the material form of the physical
parameter carrier, where 0 represents the absence of carrier, 1 represents solid state, 2 rep-
resents liquid state, 3 represents gaseous state and 4 represents field state. V represents
the value size of a physical parameter, where −1 represents small, 0 represents normal,
1 represents large and 2 represents fluctuation.

From the analysis of extracted sample data and the actual physical phenomena, it
can be recognized that there are generally about four physical parameters related to the
problem, so the number of input physical parameters is determined to be four. However, in
the extraction process of physical parameters, the number is not fixed, so the code of the
physical parameter set is divided into the following two cases.

• When the number of physical parameters in the physical parameter set is n < 4, the
feature codes of the (n + 1)th to the 4th physical parameter are all set to 0. Taking
the number n = 2 as an example, the code of the physical parameter set is shown in
Figure 5a.

Figure 5. (a) Code of the physical parameter set when n = 2; (b) code of the physical parameter set
when n ≥ 4.
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• When the number of extracted physical parameters is n ≥ 4, the 4th to nth physical
parameters need to be synthesized, and the synthesized physical parameter is used as
the 4th input parameter. The parameter synthesis rules are derived from the genetic
idea of Bartini in the LT matrix. A new dimension LnTm is obtained by multiplying the
dimensions Ln1Tm1 and Ln2Tm2 of two physical parameters x and y. Then the physical
parameter z corresponding to LnTm will inherit the attributes of both x and y [35,36].

When i(i = n− 3, n ≥ 4) physical parameters need to be synthesized, (i− 1) times
dimension multiplication is completed to obtain the synthesized new dimension. According
to the synthesized new dimension, the codes of L and T are ∑n

j=4 Lj and ∑n
j=4 Tj, respectively.

At the same time, because the 4th physical parameter has a greater impact on the system
problem than other physical parameters, the code of K, M and C shall be subject to the
4th physical parameter. As shown in Figure 5b, it is the code of the physical parameter set
when n ≥ 4.

(2) Coding of engineering parameters.

After determining the code of the physical parameter set, the engineering parameters
need to be coded. If 39 engineering parameters are coded directly according to the serial
number 1–39, it may affect the training effect due to the large classification dimension.
Therefore, it is necessary to classify the engineering parameters before coding. Applying
system or super system resources to solve the problems existing in the system is a basic
viewpoint of TRIZ [4]. According to the form of resources, they can be divided into six cate-
gories: material resource, space resource, time resource, field resource, structure resource
and information resource. Since each engineering parameter has the characteristics of a
resource [37], it is classified according to the relationship between engineering parameters
and resources as shown in Table 3.

Table 3. The relationship between engineering parameters and resources.

Category Engineering Parameter

Substance No.1, No.2, No.14, No.23, No.26
Space No.3, No.4, No.5, No.6, No.7, No.8, No.12
Time No.9, No.15, No.16, No.25, No.39
Field No.10, No.11, No.17, No.18, No.19, No.20, No.21, No.22

Structure No.13, No.29, No.32, No.36
Information No.24, No.27, No.28, No.30, No.31, No.33, No.34, No.35, No.37, No.38

According to the classification of 39 engineering parameters, the engineering pa-
rameters are coded. The code of the engineering parameter is Ep =

[
k t

]
, where

k represents the code of the engineering parameter category, corresponding to value 1–6; in
turn, t represents the code of the engineering parameter sequence in each category, which
is accumulated one by one from 1, according to the sequence number from small to large.

The coding results are shown in Table 4. The value in the bracket is the code of the
engineering parameter sequence in each category. In the extraction process of sample data,
No.24 Loss of information, No.35 Adaptability of versatility and No.38 Level of automation
are difficult to express with physical parameters. Therefore, such labels are deleted before
coding.

Table 4. Code of engineering parameters.

Category Code (k) Engineering Parameter and Its Code (t)

Substance 1 No.1 (1), No.2 (2), No.14 (3), No.23 (4), No.26 (5)
Space 2 No.3 (1), No.4 (2), No.5 (3), No.6 (4), No.7 (5), No.8 (6), No.12 (7)
Time 3 No.9 (1), No.15 (2), No.16 (3), No.25 (4), No.39 (5)
Field 4 No.10 (1), No.11 (2), No.17 (3), No.18 (4), No.19 (5), No.20 (6), No.21 (7), No.22 (8)

Structure 5 No.13 (1), No.29 (2), No.32 (3), No.36 (4),
Information 6 No.27 (1), No.28 (2), No.30 (3), No.31 (4), No.33 (5), No.34 (6), No.37 (7)
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3.2.4. Training of Mapping Model

(1) Determining the training method of the mapping model.

According to the code of the sample data, the training method of the mapping model
can be obtained. As shown in Figure 6, firstly, the engineering parameter category is
trained. Its input is the physical parameter set and the output is the category. Then, the
engineering parameter sequence in each category is trained. Its input is also the physical
parameter set and the output is the sequence. Finally, the mapping model between the
physical parameter set and category/sequence of the engineering parameter is obtained. It
is called the mapping model between physical parameters and engineering parameters in
the paper, hereinafter referred to as the mapping model.

Figure 6. Training method of the mapping model.

(2) Determining the training algorithm for the mapping model.

In this paper, the Genetic Algorithm (GA) [38] and Levenberg–Marquardt (LM) [39]
are used to optimize the BP neural network to improve the accuracy of the mapping model.
Among them, LM has a faster convergence speed and can avoid falling into the minimum
value. GA can optimize the initial connection weights and thresholds of the BP neural
network, avoiding the uncertainty of random selection.

(3) Training the mapping model.

In this study, 80% of the sample data was randomly selected for training and 20%
for testing. The mapping model is finally obtained by using MATLAB to write relevant
programs for training. Appendix A is the training results of test samples, in which the
expected output is the label of each test sample, and the mapping output is the result
obtained by BP neural network training. According to the difference between the expected
output and the mapped output, the accuracy of engineering parameter category training
is 96%, and the accuracy of engineering parameter sequence training in each category is
shown in Table 5. The training results are good and increasing the amount of sample data
can further improve the accuracy rate.

Table 5. Accuracy of engineering parameter sequence training in each category.

Number Category Accuracy Number Category Accuracy

1 Substance 95% 4 Field 90%
2 Space 95% 5 Structure 94.7%
3 Time 90% 6 Information 95%

In order to facilitate the designer to quickly select the engineering parameter, a calling
module of mapping model between physical parameters and engineering parameters is
established through the GUI of MATLAB, as shown in Figure 7. This module includes
inputting the code of physical parameter set, mapping of category k, mapping of sequence
t and data initialization. For the situation where it is difficult to judge the engineering
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parameter due to the coupling effect of multiple physical parameters, the code of the
corresponding physical parameter set is inputted, and the engineering parameter can be
mapped for the designer to select.

Figure 7. Calling module of the mapping model between physical parameters and engineering
parameters.

3.3. Conflict Solving Process Based on Mapping between Physical Parameters and Engineering
Parameters

In order to enhance the accuracy of selecting engineering parameters and improve
the efficiency of conflict resolution, the paper analyzes the process of conflict generation
through the logical relationship between physical parameters, selects engineering param-
eters through the mapping model, and uses the TRIZ tools to solve the conflicts, so as
to obtain the conflict solving process based on the mapping of physical parameters and
engineering parameters. The process is shown in Figure 8.

Figure 8. Conflict solving process based on mapping between physical parameters and engineering
parameters.
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The process is mainly divided into six steps. The first step is to identify system
problems and build the function model; the second step is to build a physical parameter
logical network; the third step is to determine system conflicts; the fourth step is to select
engineering parameters through the mapping model; the fifth step is to solve conflicts; and
the sixth step is to evaluate schemes.

Step 1: Identifying the system problem and building the function model.
The current system problem is identified through market research and user feedback,

and a function model [31] is established to help the designer fully understand the system.
Step 2: Building the physical parameter logical network.
According to the logical relationship in the physical parameter logical network of the

system, it can be recognized that when a physical parameter changes, there are changes
in other related physical parameters. The construction process of the physical parameter
logical network is as follows:

(1) According to the integrity law of technical systems [40], the system components in
the function model are divided into four types: energy device, transmission device,
execution device and operation control device.

(2) The physical parameters of the corresponding types of components are extracted [41].
In addition, it is also necessary to consider the physical parameters corresponding to
targets and super-system components that affect the system.

(3) According to the π theorem in dimensional analysis [42], the logical relationship
between physical parameters is obtained. Dimensional analysis is a well-established
and widely used method in the physical and engineering sciences that enables the
analysis of relationships between variables, reducing the number of potential causes
that need to be considered. The steps of dimensional analysis are as follows:

1© The main related parameters x1, x2, . . . , xn, including the dependent variable from
the extracted physical parameters, are found according to the interaction between compo-
nents.

2© Basic quantities X1, X2, . . . , Xm involved in these physical parameters are deter-
mined, then the dimensions of parameters x1, x2, . . . , xn can be represented by Equation (1),
where αij is the dimension index of basic quantity, i = 1, 2, . . . , m and j = 1, 2, . . . n.

[
xj
]
=

m

∏
i=1

X
αij
i (1)

3© The dimensional product of these physical parameters is expressed in the dimen-
sional form. It is shown in Equation (2), in which the undetermined coefficient β j is the
index of physical parameter.

[π] =
m

∏
i=1

n

∏
j=1

X
β jαij
i (2)

4© According to the dimensional form [π] and homogeneity principle, the homoge-
neous linear equations can be obtained. It is expressed as AB = 0, where A =

[
αij
]

m×n

and B = (β1, β2, · · · , βn)
T . Then, the basic solution system

→
ek is obtained by solving the

homogeneous linear equations.
5© πk is obtained according to

→
ek, respectively. Then, the expression πk, including

the dependent variable xa, is selected and converted into the form πxa , which is used as
the basis for the reasoning of the logical relationship between physical parameters. πxa

is shown in Equation (3), where xh, xl , xo represent relevant physical parameters, and
βh, βl , βo are their indices. According to the positive and negative conditions of the index
in the equation, the logical relationship between parameters can be obtained.

πxa = xa × xβh
h × xβl

l × xβo
o (3)



Machines 2022, 10, 323 12 of 29

(4) According to the logical relationship displayed by the expression π and the interaction
relationship between components, the physical parameters are connected to generate
a physical parameter logical network as shown in Figure 9. The direction of the
arrow points from the independent variable to the dependent variable, indicating the
logical relationship between physical parameters. The solid arrow indicates a positive
correlation, and the hollow arrow indicates a negative correlation.

Figure 9. Physical parameter logic network.

Step 3: Determining system conflicts.
The conflicts existing in the system are determined by the changes of parameters in

the physical parameter logic network. The specific process of conflict determination is as
follows.

(1) Determining the improvement goal.

1© The CRT model of the system problem is built, in which the root causes are extracted
according to the logical “and” relationship.

2© Physical parameters related to root causes are extracted by Python and then sorted
according to the influence degree to form a physical parameter set P = (p1, p2, . . . , pn). P is
regarded as the improvement goal of the system.

(2) Determining the deterioration result.

1© The characterization parameter and its improvement direction are determined.
The characterization parameter refers to the physical parameter that can describe the
problem state, which is generally determined by the problem carrier. By adjusting the
characterization parameter, the problem can be improved. The improvement direction
refers to the direction from the current state to the ideal state of the system.

2© By adjusting the parameter to make the characterization parameter change accord-
ing to its improvement direction and analyzing the changes of the correlation parameters
in the physical parameter logic network, the physical parameter change path is obtained, as
shown in Figure 10. According to the physical parameter change path, it is judged whether
the change in correlation parameters will have adverse effects on the system. The parame-
ters that adversely affect the system may act alone or together, which need to be analyzed
according to the actual situation. They are regarded as the deterioration result, which is rep-
resented by the physical parameter set. It is expressed as P− =

(
p−1 , p−2 , · · · , p−j , . . . , p−n

)
with the influence degree of p−j > p−j+1.

Figure 10. Physical parameter change path.
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(3) Determining conflicts.

There is a conflict between the improvement goal P and deterioration result P−, where
P is the side that introduces useful effects or eliminates harmful effects (increasing useful
effects or weakening harmful effects), and P− is the side that leads to system deterioration,
as shown in Figure 11.

Figure 11. System conflicts determination.

Step 4: Selecting engineering parameters through the mapping model.
After the physical parameter sets corresponding to both conflicting parties are de-

termined, the mapping model constructed in Section 3.2 is used to select engineering
parameters. As shown in Figure 12, the engineering parameter selection process is as
follows.

Figure 12. Engineering parameter selection process through mapping model.
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(1) The physical parameter sets P = (p1, p2, . . . , pn) and P− =
(

p−1 , p−2 , . . . , p−n
)
, corre-

sponding to both conflicting parties, are determined;
(2) Judging whether P or P− are affected by multiple physical parameters. If it is a

single physical parameter, the corresponding engineering parameters can be directly
determined; otherwise, the next step can be proceeded to;

(3) Judging whether P or P− is related to the engineering parameters (No.24, No.35 and
No.38). If it is related, it doesn’t need to be selected through the mapping model
to avoid engineering parameter selection errors; otherwise, the next step can be
proceeded to;

(4) The physical parameter set P or P− is encoded according to the LT dimension and
other physical parameter characteristics;

(5) The encoded physical parameter set P or P− is inputted into the mapping model.
Then, the corresponding engineering parameter is selected according to the mapping
result.

Step 5: Solving conflicts.
According to the engineering parameters corresponding to the improvement goal

P and deterioration result P−, the corresponding invention principle for solving conflict
is selected by querying the conflict matrix, so as to produce a design scheme. If the
engineering parameters corresponding to P and P− are the same, it is necessary to analyze
whether it can be transformed into a physical conflict for solution.

Usually, the conflict caused by the parameter coupling can be solved by a small
improvement of the system according to the invention principle, but there may be special
circumstances that make it difficult to solve the conflict, resulting in poor solution effect or
no solution. If the above situation exists, the effect knowledge base in TRIZ is used as a
supplementary method, and the solution is continued to generate design scheme.

Step 6: Evaluating schemes.
After obtaining the design schemes generated by the conflict solution, the schemes

are evaluated by combining the analytic hierarchy process (AHP) and the expert scoring
method to determine the final design scheme [43]. Firstly, the evaluation indicator system is
established. Secondly, the indicator weight is determined by AHP, and then each indicator
is scored by the expert scoring method. Finally, the best design scheme is determined
according to the ranking of schemes obtained through the weighted evaluation.

4. Case Study
4.1. Case Background

At present, most traditional Chinese medicines (TCM) are stored in bulk, and the
manual dispensing method is still mainly used for bulk TCM in the pharmacy. There are
some problems in the process of TCM proportioning, such as low efficiency, inaccurate
weighing, long processing time, difficult review and so on. The low efficiency of TCM has
caused the unfavorable phenomenon that patients experience a short time in which they
can see a doctor but a long waiting time. The innovative design of TCM-dispensing devices
and methods has become an inevitable trend [44]. Therefore, there is an urgent need for
an automatic dispensing machine for bulk TCM to improve the efficiency of pharmacy
dispensing. After analyzing the relevant equipment and patents, a bulk TCM dispenser is
selected as the prototype product, as shown in Figure 13.
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Figure 13. Bulk traditional Chinese medicine dispenser.

4.2. Case Design Process

Taking the existing bulk TCM dispenser as an example, according to the process shown
in Figure 8, this paper explains how to apply the proposed conflict solving process from
the following six steps.

Step 1: Determining the problem of the bulk TCM dispenser and building its func-
tion model.

After market research and user feedback, it is found that the existing bulk TCM
dispenser has the following problems: “Unable to dispense TCM continuously” and “TCM
accumulation at outlet”. Through the function analysis of the bulk TCM dispenser, its
function model is established, as shown in Figure 14.

Figure 14. Function model of the bulk TCM dispenser.

Step 2: Constructing the physical parameter logic network of the bulk TCM dispenser.
Firstly, the components in the function model are divided according to the integrity

law, and the corresponding physical parameters, which are represented by symbols, are
extracted according to the different types of components, as shown in Table 6. Then,
the extracted parameters are analyzed by dimensional analysis, and the dimensionless
expressions π of relevant physical parameters are obtained, as shown in Table 7. Some
relatively simple dimensionless expressions are not listed in the table. Finally, according to
the mathematical model displayed by the π expressions and the action relationship between
components, the physical parameters are connected to generate a physical parameter logic
network of the bulk TCM dispenser, as shown in Figure 15.
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Table 6. Physical parameters related to components in the function model.

System Composition Component Physical Parameters Symbol

Operating control
device Single chip microcomputer Current 1 Isl

Energy device Power supply device Power, Voltage, Current 2 P, Ue, Ie

Transmission device

Motor I Speed 4 vm1
Motor II Speed 5 vm2

Eccentric wheel Transmission ratio 1, Speed 1,
Eccentricity iw, vw, dw

Transmission assembly Speed 7, Transmission ratio 2 vda, ida

Execution device

Connecting rod Length, Frequency, Shear stress lr, fr, σ
Vibrating disk Speed 2, Area 1 vd, Sd

Outlet Speed 3, Area 2, Mass flow vo, So, Qo
Baffle Height Hg

Conveyor belt Area 3, Volume 3, Speed 6,Output flow,
Output weight, Output time Sc, Vc, vc, Qc, mc, tc

Weighing sensor Accuracy, Quantity Es, Ns
Frame Volume 1 VF

Medicine chest Volume 2 Vm

Super-system Environment Temperature T

Target Bulk TCM Friction, Viscosity, Pressure, Time F, µ, Fb, te

Table 7. Dimensionless expressions π of system related physical parameters.

No. Dimensionless Expression No. Dimensionless Expression

1 πvo = vo·vd
−1Sd

−1So 5 πIe = Ie·P−1·Ue
2 πvd = vd· f−1

d ·l
−1
r 6 πvda = vda·i−1

da ·v
−1
m2

3 π fd
= fd·dw·v−1

w 7 πmc = mc·Q−1
c ·t−1

c
4 πvw = vw·i−1

w ·v−1
m1 8 πVc = Vc·Sc

−1Hg
−1

Figure 15. Physical parameter logic network of the bulk TCM dispenser.

Step 3: Determining the conflict of the bulk TCM dispenser.
After constructing the physical parameter logic network of the bulk TCM dispenser,

the corresponding conflicts are determined from the problems (“Unable to dispense TCM
continuously” and “TCM accumulation at outlet”).

(1) Conflict determination process of “Unable to dispense TCM continuously”.

First, the CRT model of “Unable to dispense TCM continuously” is constructed, as
shown in Figure 16.
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Figure 16. CRT model of “Unable to dispense TCM continuously”.

According to the logic “and” relationship, the extracted root causes related to the
problem are {RC11} and {RC12, RC13}, which correspond to “Volume limit of medicine
collection space on conveyor belt” and “Acceleration by gravity, Flow limit of blanking”,
respectively, where the medicine collecting space is the space formed by the conveyor belt
and baffle for collecting TCM.

Then, Python is used to extract the physical parameters corresponding to {RC11} and
{RC12, RC13}, which are “Volume” and “Gravity, Acceleration, Mass flow”, respectively, as
shown in Table 8. By sorting the physical parameters of each group in Table 8 according to
the influence degree on the problem, it can be obtained that the physical parameter sets
related to “Unable to dispense TCM continuously” are P1 = (Vc) and P2 = (Qo, ab, G). P1
and P2 are the problem’s improvement goals.

Table 8. Physical parameters extracted from root causes of “Unable to dispense TCM continuously”.

No. Root Cause Extracted Parameters Physical Parameter Set

1 RC11 Volume VC P1 = (Vc)
2 RC12, RC13 Gravity G, Acceleration ab, Mass flow Qo P2 = (Qo, ab, G)

To achieve the purpose of continuous dispensing, on the one hand, is to improve the
dispensing speed, but the accuracy of the TCM weight cannot be guaranteed. Decreased
accuracy will make TCM review time longer, which is detrimental to continuous dispensing.
At the same time, if the speed is too fast, it will inevitably lead to the splashing of granular
TCM, resulting in waste. On the other hand, making multiple copies of TCM temporarily
stored on the conveyor belt increases the volume of the medicine collection space, which
can improve “Unable to dispense TCM continuously” caused by P1 and P2; hence, it is used
as the characteristic parameter of the problem. Its improvement direction is to become
larger. Then, the related physical parameter change path in the physical parameter logical
network is determined, as shown in Figure 17.

Figure 17. Physical parameter change path of “Unable to dispense TCM continuously”.

Increasing the conveyor belt area can increase the volume of the medicine collection
space, but it will lead to an increase in the frame volume, which is contrary to the potential
demand for the reduction of it, thus creating a conflict. Therefore, the deterioration result
in the improvement process of the problem is represented by P−1 = (VF). The conflict is
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specifically described as improving “Unable to dispense TCM continuously” caused by
P1 and P2 through increasing the conveyor belt area, but it will increase the frame volume,
which is the deterioration result P−1 .

(2) Conflict determination process of “TCM accumulation at outlet”.

Firstly, the CRT model of “TCM accumulation at outlet” is constructed, as shown in
Figure 18. According to the logic “and” relationship, the extracted root causes related to
the problem are {RC22, RC25, RC26} and {RC21, RC23, RC24}, which correspond to “TCM
is squeezed, TCM is affected by temperature, Long exposure time” and “Small outlet area,
Mismatched vibration frequency, Limited connecting rod length”, respectively.

Figure 18. CRT model of “TCM accumulation at outlet”.

Then, Python is used to extract the physical parameters corresponding to {RC22,
RC25, RC26} and {RC21, RC23, RC24}, which are “Force, Temperature, Time” and “Area,
Frequency, Length”, respectively, as shown in Table 9. By sorting the physical parameters of
each group in Table 9 according to the influence degree on the problem, it can be obtained
that the physical parameter sets related to “TCM accumulation at outlet” are P3 = (T, te, Fb)
and P4 = ( fr, lr, So). P3 and P4 are the problem’s improvement goals.

Table 9. Physical parameters extracted from root causes of “TCM accumulation at outlet”.

No. Root Cause Extracted Parameters Physical Parameter Set

1 RC22, RC25, RC26 Force Fb, Temperature T, Time te P3 = (T, te, Fb)
2 RC21, RC23, RC24 Area So, Frequency fr, Length lr P4 = ( fr, lr, So)

According to the problem analysis, it can be seen that increasing the outlet speed can
improve “TCM accumulation at outlet”, caused by P3 and P4. On the one hand, increasing
the outlet speed can reduce the exposure time of TCM during the separation process,
thereby reducing the influence of temperature on TCM; but on the other hand, the TCM
can quickly pass through the outlet and fall. Therefore, the outlet speed is used as the
characteristic parameter of the problem, and its improvement direction is to become larger.
Then, the related physical parameter change path in the physical parameter logical network
is determined, as shown in Figure 19.
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Figure 19. The physical parameter change path of “TCM accumulation at outlet”.

Increasing the motor I speed can achieve the purpose of increasing the outlet speed.
However, in the process of increasing it, the shear stress of the connecting rod will increase,
which will affect the connection strength, resulting in conflict. Therefore, the deterioration
result in the improvement process of the problem is represented by P−2 = (σ). The conflict
is specifically described as improving “TCM accumulation at outlet” caused by P3 and P4
through increasing the motor I speed; however, this will increase the shear stress of the
connecting rod, which is the deterioration result P−2 .

Step 4: Selecting engineering parameters through the mapping model.
According to the physical parameter sets obtained in the previous step, the map-

ping model between physical parameters and engineering parameters is used to select
engineering parameters.

(1) P1 = (Vc), P−1 = (VF) and P−2 = (σ) are only related to one parameter. It can be seen
directly that the engineering parameters corresponding to P1 and P−1 are No.8 Volume
of stationary object, the engineering parameter corresponding to P−2 is No.11 Stress or
pressure.

(2) P2 = (Qo, ab, G), P3 = (T, te, Fb) and P4 = ( fr, lr, So) are related to the actions of
multiple parameters respectively. Direct correspondence with engineering parameters
is difficult. They have no relation to the engineering parameters (No.24, No.35 and
No.38).

(3) P2, P3 and P4 are encoded according to the code rules of the physical parameter set,
and then inputted into the mapping model, respectively. The obtained engineering
parameter mapping results are shown in Table 10. According to the mapping results,
the engineering parameters corresponding to P2, P3 and P4 are selected as No.39
Productivity, No.30 Object-affected harmful and No.25 Loss of time, respectively.

Table 10. Mapping results of engineering parameters.

Physical Parameter Set P2=(Q0,ab,G) P3=(T,te,Fb) P4=(fr,lr,So)

Input code 3-311-11-211-14-411000000 5-4231010114-411100000 0-101-11001-12001-100000

Mapping value

Ep4 =
[

3 5
]

Ep1 =
[

6 3
]

Ep2 =
[

3 4
]

Engineering parameter No.39 Productivity No.30 Object-affected harmful No.25 Loss of time
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Step 5: Solving the conflicts of the bulk TCM dispenser.
Through the invention principle or effect, the conflict existing in the bulk TCM dis-

penser is solved.

(1) Conflict solving process of “Unable to dispense TCM continuously”.

The invention principles queried according to the relevant conflicts P1 and P−1 , P2 and
P−1 determined in “Unable to dispense TCM continuously” are shown in Table 11.

Table 11. Invention principles corresponding to conflicts of “Unable to dispense TCM continuously”.

Deterioration Parameter→
Improved Parameter ↓ No.8 Volume of Stationary Object (P−1 )

No.8 Volume of stationary object (P1 ) —

No.39 Productivity (P2 ) No.35 Parameter changes, No.37 Thermal expansion,
No.10 Preliminary action, No.2 Taking out

It can be seen from Table 11 that P1 and P−1 correspond to No.8 Volume of stationary
object, which can be regarded as the volume of medicine collection space with opposite
requirements, which belongs to physical conflict, and shall be solved by applying the space
separation principle. By adding partitions, the conveyor belt is divided into a plurality of
medicine collection spaces for collecting TCM, and each space area contains the fixed dose
of TCM, as shown in Figure 20.

Figure 20. Solution through space separation principle.

The engineering parameters corresponding to P2 and P−1 are No.39 Productivity and
No.8 Volume of stationary object, respectively. The corresponding invention principles
in the conflict matrix are No.35 Parameter changes, No.37 Thermal expansion, No.10
Preliminary action and No.2 Taking out. The solution is obtained according to No.10
Preliminary action. After receiving the prescription information, the conveyor belt rotates
counterclockwise in advance to make the next medicine collection space reach the blanking
position, which is convenient for collection of the corresponding number of TCM on the
conveyor belt in advance, so that when the medicine taking device reaches the export area,
it can continuously take multiple copies of medicine, and ensure the accuracy of each TCM,
as shown in Figure 21.

Figure 21. Solution corresponding to Preliminary action.
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(2) Conflict solving process of “TCM accumulation at outlet”.

The invention principles queried according to the relevant conflicts P3 and P−2 , P4 and
P−2 determined in “TCM accumulation at outlet”, are shown in Table 12.

Table 12. Invention principles corresponding to conflicts of “TCM accumulation at outlet”.

Deterioration Parameter→
Improved Parameter ↓ No.11 Stress or Pressure (P−2 )

No.30 Object− affected harmful (P3 ) No.22 ‘Blessing in disguise’ or ‘Turn Lemons into Lemonade’,
No.2 Taking out, No.37 Thermal expansion

No.25 Loss of time (P4 ) No.37 Thermal expansion, No.36 Phase transitions, No.4 Asymmetry

It can be seen from Table 12 that the invention principles queried through engineering
parameters corresponding to P3 and P−2 are No.22 ‘Blessing in disguise’ or ‘Turn Lemons
into Lemonade’, No.2 Taking out and No.37 Thermal expansion. According to No.2 Taking
out, materials with thermal insulation performance should be used to make a relatively
closed environment.

The invention principles queried through engineering parameters corresponding to
P4 and P−2 are No.37 Thermal expansion, No.36 Phase transitions and No.4 Asymmetry.
According to the invention principles, there is no solution to the conflict, so the effect is
used for further solution.

The above conflict can be abstracted as changing speed. Then, the available effects,
such as roller, screw, rack and pinion, pulley, etc. are obtained by using the effect knowl-
edge base [45]. The screw effect is selected according to the difficulty of realization, and
the scheme is obtained by analogy between the case corresponding to the effect (screw
conveyor) and the regional structure of “TCM accumulation at outlet” (TCM separation
area), as shown in Figures 22 and 23. The scheme analogy process refers to the existing
research [26,34]. The scheme comprises a screw feeding barrel, a screw blade and a dis-
charge barrel. The screw feeding barrel is eccentrically arranged and connected with the
cylindrical medicine chest to make TCM fall into one side. The screw blade is used to push
the TCM and make it drop at the discharge barrel.

Figure 22. Analogy process of screw conveyor.

Figure 23. Screw effect analogy scheme.
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By combining the schemes obtained in the above solution process, a new scheme of
the bulk TCM dispenser is formed and its 3D model is established, as shown in Figure 24.

Figure 24. 3D model of the new scheme.

Step 6: Evaluating schemes.
The mechanical system performance is the sum of the service performance, economic

performance and green performance that the mechanical system must have to complete its
specific function [46]. After analyzing the requirements of the dispensing machine, its key
technical characteristics are “dispensing efficiency”, “automatic control” and “dispensing
error”. Therefore, the service performance, economic performance and green performance
are taken as three comprehensive indicators and subdivided to establish the evaluation
indicator system of the bulk TCM dispenser, as shown in Table 13.

Table 13. Evaluation indicator system.

Target Layer Comprehensive Indicator Layer (Weight Value) Project Indicator Layer (Weight Value)

Mechanical system performance

U1 Service performance (0.71)
U11 Dispensing efficiency (0.62)

U12 Automatic control (0.14)
U13 Dispensing error (0.24)

U2 Economic performance (0.10)
U21 Design cost (0.55)

U22 Production cost (0.12)
U23 Maintenance cost (0.33)

U3 Green performance (0.19)
U31 Environmental protection (0.11)

U32 Vibration and noise (0.63)
U33 Energy saving (0.26)

The relative importance of evaluation indicators is divided into five levels: “unim-
portant”, “slightly important”, “important”, “relatively important” and “very important”,
corresponding to values 1, 3, 5, 7, and 9 respectively, and values 2, 4, 6, and 8, respectively,
representing values between the two levels. As shown in Equations (4)–(7), the indicators in
the comprehensive indicator layer and the project indicator layer are compared according
to the relative importance standard to obtain the judgment matrices M, M1, M2, and M3.

M U1 U2 U3
U1 1 5 7
U2 1/5 1 1/3
U3 1/7 3 1

 (4)


M1 U11 U12 U13
U11 1 3 5
U12 1/3 1 1/3
U13 1/5 3 1

 (5)
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
M2 U21 U22 U23
U21 1 3 3
U22 1/3 1 1/5
U23 1/3 5 1

 (6)


M3 U31 U32 U33
U31 1 1/5 1/3
U32 5 1 3
U33 3 1/3 1

 (7)

The above matrix meets the consistency test, and its eigenvector is obtained by the
normalization algorithm [47], which are ω = {0.71, 0.10, 0.19} , ω1 = {0.62, 0.14, 0.24} ,
ω2 = {0.55, 0.12, 0.33} and ω3 = {0.11, 0.63, 0.26} , respectively. Thus, the weight value of
each indicator is obtained, as shown in Table 13.

In this paper, relevant experts, engineering technicians, manufacturing and mainte-
nance personnel, etc., are invited to form a five-person evaluation team (E1–E5) to score
each project indicator of the prototype dispenser (S1) and the newly designed bulk TCM dis-
penser (S2) using a ten-point system. The detailed scoring results are shown in Appendix B.

The scoring results are brought into Equations (8) and (9) for calculation, where W
is the final score of the scheme, k refers to the number of evaluators, Yi is the weighted
score of the comprehensive indicator, n is the number of comprehensive indicators, ωi is
the weight value of the comprehensive indicator, m is the number of project indicators, ωij

is the weight value of the project indicator, and Xl
ij is the score of the project indicator. The

final score results of the scheme’s mechanical properties are obtained, as shown in Table 14.
According to the results, the new scheme is obviously better than the prototype.

W =
n

∑
i=1

ωiYi (8)

Yi =
k

∑
l

m

∑
j=1

ωijXl
ij/k (9)

Table 14. Final score results.

Comprehensive Indicator Layer Prototype (S1) New Scheme (S2)

Service performance 4.94 5.85
Economic performance 5.66 4.93

Green performance 4.76 6.58
Final score 4.98 5.90

5. Discussion

This paper mainly focuses on how to accurately select engineering parameters corre-
sponding to conflict and applies the proposed method to the innovation design of a bulk
traditional Chinese medicine dispenser. Through the mapping model, the engineering
parameters are efficiently selected, and the conflict is solved by TRIZ, so as to obtain the
design scheme. At the same time, the patent application is completed according to the
scheme obtained. In order to further discuss the applicability and accuracy of the proposed
method, four TRIZ engineers with product design experience are invited to conduct case
analysis. As shown in Table 15, 15 cases are selected from the application cases of innovation
methods, of which the key technical problems, improvement parameters and deterioration
parameters of each case are known. Engineer T1 adopts the method proposed in the paper,
and the other three engineers adopt the traditional method, that is, the process of analyzing
conflict through causal analysis and conflict standardization. The four engineers analyzed
the 15 cases in turn, compared the results of the improved parameters and deterioration
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parameters selected in the cases with the known results, and recorded the number of correct
engineering parameters in Table 15.

Table 15. Results of case analysis.

Case Improved
Parameter

Deterioration
Parameter T1 T2 T3 T4

TCM dropping pill machine No.29 No.39 2 2 2 2
TCM pill wiping machine No.27 No.12 2 1 0 1

High-speed permanent magnet brushless DC motor No.9 No.30 2 1 2 1
New magnetic levitation rotor flowmeter No.27 No.26 2 2 1 2

Electric actuator cover No.23 No.14 2 1 2 1
Double Tourbillon Mechanical Watch No.13 No.36 1 2 1 2

Static metering method of continuous fluid No.28 No.9 2 2 2 2
Disposable anchor rod No.12 No.14 2 2 1 1

Coring device No.11 No.21 2 2 2 2
Twin screw oil and gas mixing pump No.32 No.30 1 0 1 1

Glass melting furnace No.30 No.16 1 1 0 2
Disc spring cylinder spectacle valve No.27 No.29 2 2 1 1

Hydrofining unit No.22 No.8 2 2 2 2
Mold for low pressure casting aluminum alloy wheel hub No.39 No.23 2 2 2 1

Belt conveyor of heavy calcium plant No.13 No.31 2 1 1 2
Selection accuracy 90% 76.7% 66% 70%

According to the engineering parameters in Table 15, the quantity (ni) corresponding
to category 1–6 is 5, 3, 5, 3, 6, and 8, respectively. Therefore, the mapping accuracy of the
trained mapping model is about 89.9%, as shown in Equation (10), where Ac represents the
accuracy of the engineering parameter category trained and Ai represents the accuracy of
engineering parameter sequence trained in each category.

At =
6

∑
i=1

Ac Aini
30

= 89.9% (10)

The accuracy of engineering parameters selected by engineer T1 using the method
proposed in this paper is 90%, which is similar to the result of At. The accuracy selected by
the other three engineers was 76.7%, 66% and 70%, respectively. Therefore, the compar-
ative analysis results show that compared with the traditional method, the engineering
parameters selected through the method proposed in this paper can be effectively used
in the above cases, and improve the accuracy of engineering parameter selection. The
application of the invention principle is often completed by constantly trying and select-
ing engineering parameters, which greatly depend on the professional knowledge and
experience of the development team. The wrong selection of engineering parameters may
not only lead to poor effect in the obtained scheme, but also lead to the failure of product
development. Therefore, the selection of engineering parameters by using the mapping
model will effectively enhance the efficiency of conflict solving.

For enterprises, non-domain experts and inexperienced designers can also use the
proposed methods to avoid unnecessary waste of resources, time and cost. Twenty en-
gineers have been trained in the proposed method at Yueqing Institute of Technological
Innovation. These enterprise engineers mastered this method proficiently within 2 weeks
and applied it to the innovation design process of the company’s products. According to
their feedback, compared with before the application of the proposed method, 70% thought
that the design cycle was shortened, 85% thought that the resource cost was saved, and
95% thought that more problems could be found and solved, which improved the product
performance. The method proposed in this paper will further optimize the application
process of the conflict matrix in TRIZ, provide systematic operation process for enterprises,
and enhance the innovation ability and competitive market advantages of enterprises.
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Compared with the traditional method, the advantages of the method proposed in
this paper are as follows. On the one hand, the use of physical parameters can reduce the
difficulty of directly abstracting conflict into engineering parameters, which helps designers
to understand the process of conflict generation at a deeper level. On the other hand, the
BP neural network is used to train the mapping relationship between physical parameters
and engineering parameters, and a mapping model is constructed, which is convenient
for designers to use to select engineering parameters and avoids the incorrect selection of
engineering parameters to a certain extent. At the same time, the mapping model proposed
in this paper will increase applicability to a variety of physical problems in the industry.
Additionally, with the continuous increase in sample data and the optimization of relevant
details, the accuracy and applicability of the mapping model will be further increased,
thereby promoting the development of this method.

6. Conclusions

The support of systematic methods is the key to improving the efficiency of product
innovation design, which can enhance the market competitiveness of enterprises. In this
paper, a conflict solving process based on mapping between physical parameters and
engineering parameters is proposed. Firstly, the physical parameter logic network of the
system is constructed, and the conflict analysis is carried out from it. Then, a BP neural
network is used to train the mapping model between physical parameters and engineering
parameters, and the engineering parameters are selected through the mapping model.
Finally, the conflict is solved by using TRIZ tools, and the final design scheme is obtained
through evaluation. The effectiveness of the proposed method is verified by a case study.
When the engineering parameter cannot be accurately obtained due to the coupling effect
of multiple physical parameters, it can be selected through the mapping model proposed in
the paper, which improves the problem of low accuracy in engineering parameter selection.

Despite the contribution of the proposed method, the limitations of this study are also
evident. First, for some complex problems, it can’t extract physical parameters correctly
through Python, where manual adjustment is required in this case. Second, the mapping
relationship between physical parameters and engineering parameters is determined by the
expert group, which has a certain degree of subjectivity. In that case, consistency analysis
shall be conducted, and data where there are different opinions shall be modified. Third,
limited by the number and sources of sample data, it is necessary to further collect sample
data to improve the accuracy and applicability of the BP neural network. In the current
case of a small amount of sample data, the results obtained by the mapping model cannot
be guaranteed to be close to 100% correct. Therefore, the designer needs to choose whether
to use the results obtained by mapping according to the actual problems. Fourth, although
the designer can analyze and judge the system deterioration by constructing a physical
parameter logical network, it requires a large amount of calculation for a complex system.
A software platform is being developed to help designers construct it.

Meanwhile, these limitations indicate the direction of future research. First, the extrac-
tion rules of physical parameters should be further refined, and engineering parameters
should be expanded and updated according to relevant research to increase applicability.
Secondly, the proposed method should be applied to more cases, so a cloud services plat-
form [48], which can collect data in real time, should be built. The data collected should
be supplemented to the training data. Then, other machine or deep learning computing
models with the adoption of GPUs should be considered to train the mapping model on
the cloud, hence reducing the time for computation and the sharing of results. Finally, the
introduction of digital twins to dynamically reason about the impact of changes in relevant
parameters on the system is planned. We hope to make the proposed method more general
by improving these details described in the paper.

Author Contributions: Conceptualization, P.Z. and Q.M.; project administration, P.Z.; resources, P.Z.;
supervision, Z.N. and P.Z.; writing-review and editing, Q.M. and X.L.; writing-original draft, Q.M.,
X.L. and Z.N. All authors have read and agreed to the published version of the manuscript.



Machines 2022, 10, 323 26 of 29

Funding: This research was funded by the National Natural Science Foundation of China (Grant
51975181) and National innovation method work special project of China (Grant 2020IM020500).

Data Availability Statement: The data discussed in the current study are available from the corre-
sponding author on reasonable request.

Conflicts of Interest: There is no conflict of interest that exists in the submission of this manuscript,
and the manuscript has been approved by all authors for publication.

Appendix A

Figure A1. Training results of category (k) mapping model between physical parameters and engi-
neering parameters.

Figure A2. Training results of sequence (t) mapping model between physical parameters and various
engineering parameters.
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Appendix B

Table A1. Evaluation results of service performance.

Scheme Project Indicator Layer E1 E2 E3 E4 E5

S1
Dispensing efficiency 4 5 5 6 4

Automatic control 6 5 6 6 6
Dispensing error 4 6 5 5 4

S2
Dispensing efficiency 6 6 7 6 4

Automatic control 7 5 7 5 5
Dispensing error 6 7 6 6 5

Table A2. Evaluation results of economic performance.

Scheme Project Indicator Layer E1 E2 E3 E4 E5

S1
Design cost 7 6 6 5 6

Production cost 6 5 4 5 4
Maintenance cost 5 6 5 5 6

S2
Design cost 5 4 5 6 5

Production cost 5 4 6 5 5
Maintenance cost 4 5 4 6 5

Table A3. Evaluation results of green performance.

Scheme Project Indicator Layer E1 E2 E3 E4 E5

S1
Environmental protection 5 6 7 5 5

Vibration and noise 5 4 5 5 4
Energy saving 6 5 4 4 5

S2
Environmental protection 7 8 6 7 8

Vibration and noise 8 6 7 6 7
Energy saving 7 5 6 5 6
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