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Abstract: In recent years, teleoperation has experienced rapid development. Numerous teleoperation
applications in diverse areas have been reported. Among all teleoperation-related components,
computer vision (CV) is treated as one of the must-have technologies, because it allows users to
observe remote scenarios. In addition, CV can further help the user to identify and track the
desired targets from complex scenes. It has been proven that efficient CV methods can significantly
improve the operation accuracy and relieve user’s physical and mental fatigue. Therefore, furthering
understanding about CV techniques and reviewing the latest research outcomes is necessary for
teleoperation designers. In this context, this review article was composed.
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1. Introduction

Teleoperation, which allows users to manipulate remote objects through sensing, actu-
ating and communication technologies, has been applied in diverse application scenarios
such as space exploration and remote surgery. A typical teleoperation system can mainly be
divided into a master part and a slave part. The former is at the operator’s side, functioning
to receive the operator’s commands by employing intention detection techniques, such
as body motion monitoring and brain activity detection. The latter is with the remote
object, for conducting desired operations issued by the user, normally by robotic arms. To
allow users to acclimatize to the remote situation, which is essential for performing precise
operations, different types of sensors can be installed at the slave side. Among all sensing
techniques, computer vision is treated as the most important, because visual perception is
the key functionality of human beings, i.e., computer vision techniques can provide users
direct knowledge of the remote situation.

Computer vision is itself a very comprehensive subject. In terms of teleoperation,
two CV techniques are of significance: object detection and distance measurement. These
can help the user to find and locate desired objects easily, and they are essential to avoid
mental/physical fatigue issues and enhance the operation accuracy. In 2014, the deep
learning method demonstrated its advantage with the emergence of the family of R-CNN,
which shows benefits in terms of robustness compared with traditional methods. Distance
measurement methods are based on monocular vision, stereo vision, time-of-flight (ToF),
and structured-light-based mechanisms. The integration of the two novel methods is of
significance in both teleoperation and automatic manipulation. Figure 1 shows how object
detection and distance measurement visually assist the operator in teleoperation. When the
target object is localized and classified, and the distance information is learned, the operator
can precisely move the arm to the expected position. Similarly, in automatic manipulation,
this visual information is essential in making decisions, which could be applied in many
broad fields requiring high implementation accuracy, such as remote surgery.
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for young scientists and engineers in the meantime. Although there has been some re-
search using object detection and distance measurement methods to assist teleoperation, 
little work has been carried out to summarize and organize them, making it difficult for 
people who need to use these techniques to obtain relevant information easily and 
quickly. To help beginners learn the basic and mainstream methods in object detection 
and distance measurement, and develop research for specific application scenarios, we 
composed this review article. 

We searched Google Scholar for studies published from 2000 to 2021 on the applica-
tion of object detection and distance measurement methods based on computer vision in 
teleoperation and automatic manipulation. Keywords used include “Object detection”, 
“distance measurement”, “computer vision”, “teleoperation”, “automatic manipulation”, 
and their combinations. Computer vision technology has only begun to flourish in recent 
years; therefore, the combination of object detection and distance measurement methods, 
which are based on computer vision, with teleoperation technology is still in the early 
stage. There are few related research papers; thus, we summarized and organized the re-
search papers according to the different application scenarios as much as possible. In ad-
dition, some applications in automatic manipulation have been included to show how 
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A total of 22 studies which applied object detection and distance measurement methods 
were found. The application scenarios could be divided into five application scenarios: 
medical surgeries, nuclear decommissioning, space and undersea exploration, various in-
dustries, and daily service. All these studies indicate that object detection and distance 
measurement methods play an important auxiliary role in teleoperation. It also shows that 
the cross-direction cooperation between teleoperation and automatic manipulation and 
teleoperation has great potential. Table 1 shows the number of papers published, the num-
ber of papers cited in this article, and the methodology used for selection. In addition, in 
order to enable beginners to quickly learn object detection and distance measurements, 
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operator visually in teleoperation.

The development of object detection and distance measurement has been unprece-
dentedly fast. Each year, numerous new methods are proposed and implemented in
teleoperation, and they advance the field considerably but also boost the entry-level thresh-
old for young scientists and engineers in the meantime. Although there has been some
research using object detection and distance measurement methods to assist teleoperation,
little work has been carried out to summarize and organize them, making it difficult for
people who need to use these techniques to obtain relevant information easily and quickly.
To help beginners learn the basic and mainstream methods in object detection and distance
measurement, and develop research for specific application scenarios, we composed this
review article.

We searched Google Scholar for studies published from 2000 to 2021 on the applica-
tion of object detection and distance measurement methods based on computer vision in
teleoperation and automatic manipulation. Keywords used include “Object detection”,
“distance measurement”, “computer vision”, “teleoperation”, “automatic manipulation”,
and their combinations. Computer vision technology has only begun to flourish in recent
years; therefore, the combination of object detection and distance measurement methods,
which are based on computer vision, with teleoperation technology is still in the early
stage. There are few related research papers; thus, we summarized and organized the
research papers according to the different application scenarios as much as possible. In
addition, some applications in automatic manipulation have been included to show how
object detection and distance measurement methods operate together in remote control. A
total of 22 studies which applied object detection and distance measurement methods were
found. The application scenarios could be divided into five application scenarios: medical
surgeries, nuclear decommissioning, space and undersea exploration, various industries,
and daily service. All these studies indicate that object detection and distance measurement
methods play an important auxiliary role in teleoperation. It also shows that the cross-
direction cooperation between teleoperation and automatic manipulation and teleoperation
has great potential. Table 1 shows the number of papers published, the number of papers
cited in this article, and the methodology used for selection. In addition, in order to enable
beginners to quickly learn object detection and distance measurements, and put them into
use for their own remote control systems, 45 papers covering the mainstream algorithms of
object detection and 36 papers on vision-based distance measurements, which include four
mainstream methods (monocular vision, stereo vision, ToF, and structured light), are cited
in this article.
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Table 1. The number of papers published, the number of papers cited in this article, and the
methodology used for selection.

Overall Selected Methodology

Object detection technology 6000–8000 45 Representative mainstream algorithm with strong
universality and high performance, which is suitable for

beginners to gain a quick overview of the fieldDistance measurement technology More than 10,000 36

Applications 22 22 All studies that apply object detection and distance
measurement to remote control from 2000 to 2021

The rest of this paper is organized as follows. Section 2 reviews the features of
traditional objection detection and deep-learning-based object detection methods. This
section also includes some paradigms of two-shot detectors and one-shot detectors as
well as the generative model and discriminable model of target tracking. Section 3 covers
four usual target tracking methods. Section 4 offers applications of these methods in the
field of teleoperation in medical surgeries, nuclear decommissioning, space and undersea
exploration, various other industries, and daily service. The conclusions and potential
trends for future development are presented in Section 5.

2. Object Detection

Object detection is a method used to locate and classify the target object in a given
image. As a result, the target object will be located by a bounding box with a category label,
which can provide the operators with good operating experience in teleoperation.

In this section, we summarize the structure of object detection and review the main-
stream paradigms.

2.1. Object Detection Structure

Object detection has developed rapidly as the algorithms continue to be optimized
and updated. In early eras, traditional object detection algorithms were mainly based
on hand-crafted feature extraction, which performed well on specific datasets, and were
simple and quick. However, traditional detection algorithms have made slow progress in
developing high performance. In 2012, Krizhevsky et al. [1] applied deep convolutional
neural networks (DCNNs) to successfully classify images. Then, in 2013, Sermanet et al. [2]
developed one of the earliest deep-learning-based detectors, OverFeat. Subsequently, object
detection experienced a new era of deep learning, and its performance greatly exceeded
that of traditional detection algorithms.

From the perspective of top-level structures, object detection can be divided into three
steps: proposal generation, feature extraction, and classification.

The proposal generation stage mainly involves the search of possible ROIs (regions of
interest) of the target from images containing a large amount of background information.
The most direct method is to scan the whole image with different ratios and scales using a
sliding window [3–5]. However, due to the need to scan the image line by line, this method
is time-consuming, and selective search is later produced through the relationship between
pixels [6].

In the feature extraction stage, representative features need to be extracted from the
ROIs to facilitate subsequent classification and regression tasks. Many typical traditional
target detection methods elaborate feature descriptors to describe features, such as SIFT
(scale-invariant feature transformation) [7] and HOG (gradient histogram) [8].

After the first two steps, the targets are contained by a large number of overlapping
bounding boxes. There is a need to filter and reorganize to determine each target single
box. Then, the target region is classified by a region classifier. Typical classifiers include the
support vector machine (SVM) [9] and deformable component-based model (DPM) [10].
Support vector machines are used because of their good performance with a small range
of training data. DPM is a flexible model which deals with severe deformation by com-
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bining the deformation cost with parts of the object. In addition, Bagging [11], cascading
learning [12], and AdaBoost [13] are also widely used.

In recent years, interest in deep learning methods has surged because they have been
shown to outperform previous state-of-the-art techniques. First of all, because traditional
methods require manual analyses of features of images, many professionals are required,
whereas deep learning networks can automatically extract and filter features. In addition,
deep learning has advantages in the recognition ability and adaptability of the algorithm.
Therefore, in the sections below, we review deep-learning-based detection.

2.2. Detection Paradigms

There are two paradigms of object detection: one-stage and two-stage. Two-stage
techniques are performed with two different networks: one is for generating region pro-
posals, and the other is for classification. One-stage techniques can export bounding boxes
and classification labels performed with only one network. One-stage detectors are much
faster and more desirable for real-time object detection applications, but exhibit a rela-
tively poor performance compared with two-stage detectors. We present the milestones of
deep-learning-based detection methods in Figure 2.
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2.2.1. Two-Stage Detectors

Two-stage detectors are divided into two stages. First, proposal regions are generated.
Then, feature vectors of the generated proposals are extracted for deep convolutional neural
networks to predict the target category.

In 2014, two-stage detectors came into focus with the introduction of R-CNNs [14].
Subsequently, methods such as SPP [15], Fast R-CNN [16] and Faster R-CNN [17] have
constantly been derived to further promote the development of two-stage detectors. In
2014, The Faster R-CNN was proposed as a regional proposal network with a milestone
significance, which can improve the efficiency of detectors and enable the end-to-end
training of detectors. Since then, various approaches have emerged to enhance the perfor-
mance of Faster R-CNN from different perspectives. For example, FPN [18] implements the
processing of scale variance through pyramid prediction. Cascade R-CNN [19] extended
the Faster R-CNN to multilevel detectors through a cascade architecture. Mask R-CNN [20]
added a Mask branch to refine detection results through multi-task learning. In addition,
the Libra R-CNN [21] and Grid R-CNN [22] were derived from Faster R-CNN. Figure 3
shows the principles of R-CNN, Fast R-CNN, Faster R-CNN, and Mask R-CNN.

• RCNN.

R-CNN is a groundbreaking two-stage detector. Its pipeline can mainly be divided
into three steps. First, the input image is selectively searched, and the bottom-up region
proposal is extracted. Then, the proposal is cropped and resized, and a large convolutional
network is used to compute the characteristics of each proposal. Finally, a class-specific
linear support vector machine is used to classify each region and a bounding box regressor
is used to localize the target object more tightly. An average accuracy of 53.7% (mAP) was
achieved on PASCAL VOC 2010.
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• Fast RCNN.

Similar to R-CNN, Fast R-CNN still uses selective search to generate proposal regions,
but the difference is that all regional suggestions are extracted separately and then classified
by a support vector machine classifier. In addition, feature extraction, region classification,
and bounding box regression can all be optimized end-to-end, without requiring addi-
tional cache space to store features. Compared with R-CNN, it has better accuracy and
training speed.

• Faster RCNN.

Faster R-CNN is the third iteration of R-CNN. By adding a regional proposal network
(RPN), it tries to eliminate the dependence on selective search, so that the model can fully
realize end-to-end training. Faster R-CNN could make predictions at five frames per second
on a GPU and achieved state-of-the-art results on many common benchmark datasets such
as PASCAL VOC 2007, 2012 and MSCOCO. Currently, detectors based on Faster R-CNN
have a large number of variants and are widely used.

• Mask RCNN.

Mask R-CNN is also improved on the basis of Faster R-CNN. Similar to the existing
branches for classification and bounding box regression, Mask R-CNN adds a branch
to predict segmentation masks by pixel to pixel. In addition, Mask R-CNN adopts a
simple layer, named “RoI Align”, to retain the corresponding relationship in pixel space,
thus eliminating the negative impact of the bias introduced by Faster R-CNN in feature
calculation on pixel-to-pixel Mask prediction. This small change greatly improves the
accuracy of the mask.
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2.2.2. One-Stage Detectors

Different from two-stage detectors, which splits the detection pipeline into two phases,
proposal generation and region classification, one-stage detectors do not have an inde-
pendent stage for proposal generation. They typically consider all positions on the image
as potential objects and try to classify each region of interest as either a background or a
target object.
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One-stage detectors mainly included OverFeat, SSD variants [23,24], YOLO vari-
ants [25–28], and RetinaNet [29]. Figure 4 shows the principles of OverFeat, SSD, YOLO,
and RetinaNet.
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• OverFeat.

OverFeat is one of the early successful deep-learning-based one-stage detectors. The
main innovation of the OverFeat method is the integration of multi-scale, sliding window,
offset pool, and identification, localization, and detection methods based on AlexNet. By
using the convolutional layer to share the overlapping region, it has a significant speed
advantage compared with R-CNN. However, the training of the classifier and regressor is
separated and cannot be optimized together.

• YOLO.

YOLO is a real-time detector that can directly predict boundary boxes and class
probabilities from a complete image in a single evaluation. The omitted the proposal
generation step can be optimized end-to-end. When the image was inputted into the
detector, feature vectors are extracted and the feature vectors are resized into feature maps.
Then, the feature map is divided into fixed number of grid cells. Additionally, the class
prediction and bounding box used for localization are made for each cell.

• SSD.

SSD is another single-stage detector that addresses YOLO’s limitations. It also divides
the image into grid cells, but unlike the fixed grid cell prediction adopted by YOLO, a set
of anchor points with multiple scales and aspect ratios are generated in each grid cell to
discretize the output space of the bounding box.

• RetinaNet.

RetinaNet used feature pyramid network to obtain feature pyramid and used two
subnetworks for each feature layer to perform class prediction and bounding-box regression.
Before the proposal of RetinaNet, the two-stage approach based on R-CNN applied a
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classifier and achieved the highest accuracy of the target detector. In contrast, single-
stage detectors may be faster and simpler, but have consistently lagged behind two-stage
detectors in accuracy. However, RetinaNet is able to achieve the speed of previous single-
stage detectors while exceeding the accuracy of the most advanced two-stage detectors
with both speed and accuracy.

2.2.3. Detector Structure

The backbone, as a part of feature extraction in a detector, greatly affects the final
performance of object detection. An appropriate backbone can be selected according to the
accuracy and efficiency requirements of specific tasks.

When high accuracy is required, compact backbone can be selected, such as VGG [30],
ResNet [31], ResNeXt [32], or DenseNet [33]. They usually run on the GPU. When speed
and efficiency are pursued, lightweight backbone can be selected. Examples include
MobileNet [34], ShuffleNet [35], SqueezeNet [36], and Xception [37], which usually run on
the CPU.

2.3. Datasets

There are four datasets commonly used in object detection: Pascal VOC [38],
MSCOCO [39], ImageNet [40], and Open Images [41].

• Pascal VOC.

Pascal VOC is a mid-scale dataset. Pascal VOC2007 and VOC2012 are the most widely
used, which both contains 20 object categories. They are all split into three subsets (training,
validation, and testing). The former has 2501, 2510, and 5011 images, respectively, and the
latter has 5717, 5823 and 10,991 images, respectively.

• MSCOCO.

MSCOCO is the most widely available dataset for object detection, which contains
0.2 million images and 80 object categories with annotations concluding bounding boxes
and per instance segmentation masks.

• ImageNet.

ImageNet is the largest database for image recognition, which contains more than
14 million images covering more than 20,000 categories. More than one million images
were labeled with locations and specific categories.

• Open Images.

Open Images is the largest contemporary dataset, which contains 1.9 million images,
600 categories, and 15.4 million bounding-box annotations. Most of the object position
annotations are manually labeled by professionals, ensuring their consistency and accuracy.

Table 2 shows how the detectors introduced in Sections 2.2.1 and 2.2.2 performed on
Pascal VOC or COCO dataset.

2.4. Others

To better complete the teleoperation, the techniques of 3D object detection and target
tracking can be used. Three-dimensional object detection can achieve a more interactive
interface when the teleoperator is in control of the robotic arm. Meanwhile, target tracking
can provide online tracking so that the target object can be precisely controlled under
remote control.

2.4.1. Three-Dimensional Object Detection

In recent years, 3D object recognition has undergone rapid progress, with advances
in 3D deep learning and strong application demands. In contrast to the 2D object objec-
tion we introduced above, it is no longer confined to a plane. It can detect not only the
object category, but also length, width, height, rotation angle, and other information in
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three-dimensional space as well. At present, 3D target detection is in a period of rapid
development. It mainly uses a monocular camera, binocular camera, and multi-line lidar
to carry out 3D target detection. Lidar can achieve the highest accuracy, but it costs the
most. However, with the continuous industrial development of lidar, the cost is constantly
reduced. Moreover, there are also some technical solutions for the comprehensive use of a
monocular camera and lidar with fewer rays.

Despite the many studies on 3D object detection that are currently being conducted,
there are still many problems in its practical application. The first problem is the dynamic
environment around the object shelter, truncation, and robustness of the problem. The
second problem is that the existing methods mostly depend on the object surface texture
or structure, which can easily cause confusion. Finally, there is an issue with meeting the
accuracy requirements and algorithm efficiency.

Table 2. Comparison of object detection methods. The mean average precision (mAP) is an index to
measure the detection accuracy in object detection.

Name Year Author Type mAP (%) Test Time on
GPU (s/Image)

R-CNN [14] 2014 Ross Girshick, Jeff Donahue, Trevor Darrell, and
Jitendra Malik Two-Stage 58.5 on VOC 2007 13

SPP-Net [15] 2014 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun Two-Stage 59.2 on VOC 2007 0.14
Fast R-CNN [16] 2015 Ross Girshick Two-Stage 66.9 on VOC 2007 0.32

Faster R-CNN [17] 2015 Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun Two-Stage 73.2 on VOC 2007 0.2
YOLOv1 [25] 2016 Joseph Redmon, Santosh Divvala, and Ali Farhadi et al. One-Stage 63.4 on VOC 2007 0.02

SSD [23] 2016 Wei Liu, Cheng-Yang Fu 1, and Alexander C. Berg et al. One-Stage 74.3 on VOC 2007 0.017

Mask R-CNN [20] 2017 Kaiming He, Georgia Gkioxari, Piotr Dollár, and
Ross Girshick Two-Stage 37.1 on COCO 0.2

FPN [18] 2017 Tsung-Yi Lin, Bharath Hariharan, and Serge Belongie et al. Two-Stage 33.9 on COCO 0.2
YOLOv2 [26] 2017 Joseph Redmon, Ali Farhadi One-Stage 78.6 on VOC 2007 0.025

RetinaNet [28] 2017 Tsung-Yi Lin, Ross Girshick, and Piotr Dollár et al. One-Stage 39.1 on COCO 0.122
Cascade R-CNN [19] 2018 Zhaowei Cai, Nuno Vasconcelos Two-Stage 42.8 on COCO 0.115

YOLOv3 [27] 2018 Joseph Redmon, Ali Farhadi One-Stage 57.9 on COCO 0.051
Libra R-CNN [21] 2019 Jiangmiao Pang, Huajun Feng, and Dahua Lin et al. Two-Stage 43.0 on COCO 0.2
Grid R-CNN [22] 2019 Xin Lu, Junjie Yan, and Quanquan Li et al. Two-Stage 43.2 on COCO 0.2

YOLOv4 [29] 2020 Alexey Bochkovskiy, Chien-Yao Wang et al. Two-Stage 43.5 on COCO 0.015

2.4.2. Target Tracking

This section reviews the main object tracking algorithms. Early work focused on
generative model tracking algorithms, such as the optical flow method, Kalman [42]
filtering, particle filtering, Meanshift algorithm, and Camshift algorithm. This method first
builds the target model or extracts the target features and searches for similar features in
the subsequent frames. Step-by-step iterations achieve target positioning. However, this
method also has obvious disadvantages, i.e., the background information of the image has
not been fully utilized. Additionally, the appearance of the target itself has characteristics
of randomness and diversity, so it is very limited to describe the target to be tracked by a
single mathematical model. Specifically, in the case of illumination changes, motion blur, low
resolution, target rotation deformation, etc., the establishment of the model will be greatly
affected, thus affecting the accuracy of tracking. The establishment of the model has no
effective prediction mechanism, and it cannot be solved well when target occlusion occurs.

Since 2000, people have gradually tried to use classical machine learning methods to
train classifiers, such as MIL, TLD, support vector machine, structured learning, random
forest, multi-instance learning, and metric learning. With the wide application of deep
learning, depth features have been applied to target tracking. Subsequently, people began
to consider using deep learning to establish a new framework for target tracking. In the
past two years, target tracking algorithms based on deep learning have emerged in an
endless flow, such as PrDiMP [43], D3S [44], etc., and achieved good results.
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3. Distance Measurement

The image processing techniques explained in the previous sections can support
the functionalities of identifying the object categories, localizing objects of interest, and
continuously tracking target objects in real time during teleoperation. However, they have
merely study special two-dimensional (2D) knowledge at the x–y axes, lacking the objects’
depth information (z-axis), which is essential for the high level of precision required in
teleoperate applications.

To implement depth detection, vision-based methods are broadly used. Among the
available methods, monocular vision, stereo vision, time-of-flight (ToF), and structured
light technologies are in widespread use.

3.1. Monocular Vision

Monocular vision requires only one camera to capture image information. The general
pipeline is shown in Figure 5. The network can mainly be divided into two parts—encoding
layers and decoding layers—which consist of a series of operations such as convolution,
pooling, and deconvolution to deal with the image input. The network is end-to-end, which
means that a dense depth map can be directly obtained after the image is put into the network.
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Inspired by the fact that humans can use prior information about the world to perceive
depth information from a single image. Early depth estimation algorithms realized single-
image depth estimation by combining existing information, such as geometric relationships
between buildings, the sky, and earth [45].

However, this prior information requires certain assumptions. When the assumptions
are invalid, these methods are not reliable. In recent years, many deep learning models have
been developed for monocular vision in depth estimation [46–49]. With the development
of computing hardware and the availability of rich training data, a monocular depth
estimation method based on convolutional neural networks (CNNs) [50–56] is proposed,
which greatly improves performance. In addition, a lot of work has been carried out on
CRFs [57] to achieve further improvements. Some methods [58–62] combine CNN with CRF
models to generate depth maps that are more edge-friendly. In addition, depth estimations
have advanced by combining closely related data [63,64], such as surface normal flow and
optical flow.

3.2. Stereo Vision

Stereo-vision-based methods simulate the way the human brain interprets the dis-
tances between objects. The general pipeline is shown in Figure 6. Two RGB images from
two cameras with baselines represent the 2D scenes generated by our left and right eyes.
By establishing the corresponding relationship between the two images and calculating the
parallax (relative displacement), the distance information of the target can be determined.
There are two strategies for matching correspondence: the local correspondence method
and global correspondence method [65].
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Local methods take region block matching [66] and gradient-based optimization [67]
as sub-methods, and tend to search for corresponding pixels within a limited window or
through features such as grayscale and color. The local method has high efficiency due to its
low computational complexity. However, it is limited when dealing with large, untextured
areas and occlusion boundaries.

Global methods include belief propagation [68], dynamic programming [69], and
graph cutting [70], and regard the matching of two images as an optimization problem. By
using non-local features, the global method has better performance than the local method.

Although stereo vision has been widely used, there is still a series of problems. For
the two strategies mentioned above, the local counterpart algorithm is effective, but not
as accurate as the global counterpart algorithm, which has a high computational cost. In
addition, performance suffers to some extent due to the lack of information such as the
surface texture of the object.

3.3. ToF

Figure 7 shows the working principle of the ToF (time-of-flight) camera. It works by
illuminating the scene with a modulated light source and observing the reflected light. The
phase shift is measured between illumination and reflection and converts it into distance.
The ToF system does not depend on geometric parameters. Typically, ToF ranging systems
use pulse modulation [71] or continuous wave (CW) modulated light sources [72].

Machines 2022, 10, x FOR PEER REVIEW 10 of 22 
 

 

3.2. Stereo Vision 
Stereo-vision-based methods simulate the way the human brain interprets the dis-

tances between objects. The general pipeline is shown in Figure 6. Two RGB images from 
two cameras with baselines represent the 2D scenes generated by our left and right eyes. 
By establishing the corresponding relationship between the two images and calculating 
the parallax (relative displacement), the distance information of the target can be deter-
mined. There are two strategies for matching correspondence: the local correspondence 
method and global correspondence method [65]. 

 
Figure 6. The general pipeline for stereo vision distance measurement. 

Local methods take region block matching [66] and gradient-based optimization [67] 
as sub-methods, and tend to search for corresponding pixels within a limited window or 
through features such as grayscale and color. The local method has high efficiency due to 
its low computational complexity. However, it is limited when dealing with large, untex-
tured areas and occlusion boundaries. 

Global methods include belief propagation [68], dynamic programming [69], and graph 
cutting [70], and regard the matching of two images as an optimization problem. By using 
non-local features, the global method has better performance than the local method. 

Although stereo vision has been widely used, there is still a series of problems. For 
the two strategies mentioned above, the local counterpart algorithm is effective, but not 
as accurate as the global counterpart algorithm, which has a high computational cost. In 
addition, performance suffers to some extent due to the lack of information such as the 
surface texture of the object. 

3.3. ToF 
Figure 7 shows the working principle of the ToF (time-of-flight) camera. It works by 

illuminating the scene with a modulated light source and observing the reflected light. 
The phase shift is measured between illumination and reflection and converts it into dis-
tance. The ToF system does not depend on geometric parameters. Typically, ToF ranging 
systems use pulse modulation [71] or continuous wave (CW) modulated light sources [72]. 

 
Figure 7. ToF camera operation. Figure 7. ToF camera operation.

Due to the simple operation of ToF processing in depth map estimation, no moving
components can be used to generate dense depth maps, without artifacts caused by occlu-
sion, scene textures, etc. ToF-based methods have strong robustness and can perform good
depth measurements in real-time scenes. Other depth estimation systems such as structured
light (SL) and stereo vision systems lack these capabilities; therefore, ToF cameras are better
in many cases [73].
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However, ToF has not become the dominant mode of deep acquisition due to its
disadvantages such as low depth resolution and high noise when working in close ranges.
In addition, because the components of the emitted light may undergo multiple reflections
within the scene, light from different paths ends up being received by a pixel, leading to an
incorrect estimation of the corresponding depth [74–76].

3.4. Structured Light

Structured light is a high-precision depth measurement method. The principle of
structured light for distance measurement is shown in Figure 8. In this method, the
encoding pattern is projected onto the scene, the distorted image is captured by the camera,
and then the parallax between the image and the distorted image is calculated. Methods
using structured light can be divided into space coding and time coding.
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Spatial coding techniques generate finely structured light patterns of various colors,
shapes and intensities, encoding features with unique tags. The patterns designed by
spatial coding technology are single beat patterns; therefore, the spatial coding mode is
suitable for dynamic scenes.

Time coding technology designs structured light patterns based on time series. Time-
encoding technology is performed in multi-shot mode, which encodes a pixel in the order
of several patterns projected onto the scene. Generally speaking, time coding schemes have
high accuracy.

Fringe projection profilometry (FPP) is one of the most widely used structured light
methods, which has strong robustness and importance. Hieu Nguyen et al. [77] studied this
integration from different perspectives in order to achieve accurate 3D shape reconstruction.

Structured light can solve the problem of stereo matching and improve the perfor-
mance of measuring untextured areas. In addition, because the reflected pattern is sensitive
to ambient light interference, structured light has interference problems outdoors. There-
fore, structured light tends to be more suitable for indoor applications.

Table 3 shows a comparison of the four distance measurement methods. Selections
could be made according to specific requirements. For example, because different methods
are affected differently by light conditions, if the teleoperation system works in dark
conditions, structured light and ToF should be taken into consideration.
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Table 3. Comparison of distance measurement methods.

Consideration Monocular Vision Structured Light Stereo Vision Time-of-Flight (ToF)

Working Principle

Focus scenes on the
camera’s image plane

through the lens

Machines 2022, 10, x FOR PEER REVIEW 12 of 22 
 

 

Table 3. Comparison of distance measurement methods. 

Consideration Monocular Vision Structured Light Stereo Vision Time-of-Flight (ToF) 

Working Principle 

Focus scenes on the 
camera’s image plane 

through the lens 

 

Measure coded optical pat-
terns’ variation through the 

feedback camera 

 

RGB image feature point 
matching and indirect tri-

angulation calculation 

 

Measure the time 
delay or phase delay 
of the reflected light 

Response Time (frames per second) 15–400 30–60 15–50 >100 
Depth Accuracy / 0.01–1 mm <1 mm 1–10 cm 

Work Outdoor No influence 
The influence is large, es-

pecially in low power 
No influence 

There is influence, 
but little 

Work in dark conditions No Yes No Yes 
Range / Within 5 m Within 20 m Within 10 m 

4. Applications 
Object detection and distance measurement have been used in many aspects of life, 

including medical surgery, nuclear decommissioning, space exploration, various indus-
tries, and everyday services. In these areas, the work is either high-risk or highly repeti-
tive. Therefore, there is an urgent need to ensure the safety of operators or free up the 
workforce. In addition, time and space constraints require remote operations or personnel 
changes. Automatic operation and semi-autonomous remote operation can solve these 
problems to a certain extent, and have their own advantages in different aspects. Auto-
matic robots with vision systems can complete tasks safely, quickly, and accurately, 
whereas manual operations and visual inspection are time-consuming and inefficient. 
However, semi-autonomous remote operation is essential when human intervention is 
necessary for specific tasks that robots cannot currently perform. 

Thus, fully autonomous manipulation, semi-autonomous teleoperation, and combi-
nations of the two are essential. The applications are listed below. Figure 9 shows the syn-
thesis of the application of object detection and distance measurement in teleoperation 
and automatic manipulation. 

 

Measure coded optical
patterns’ variation

through the feedback
camera

Machines 2022, 10, x FOR PEER REVIEW 12 of 22 
 

 

Table 3. Comparison of distance measurement methods. 

Consideration Monocular Vision Structured Light Stereo Vision Time-of-Flight (ToF) 

Working Principle 

Focus scenes on the 
camera’s image plane 

through the lens 

 

Measure coded optical pat-
terns’ variation through the 

feedback camera 

 

RGB image feature point 
matching and indirect tri-

angulation calculation 

 

Measure the time 
delay or phase delay 
of the reflected light 

Response Time (frames per second) 15–400 30–60 15–50 >100 
Depth Accuracy / 0.01–1 mm <1 mm 1–10 cm 

Work Outdoor No influence 
The influence is large, es-

pecially in low power 
No influence 

There is influence, 
but little 

Work in dark conditions No Yes No Yes 
Range / Within 5 m Within 20 m Within 10 m 

4. Applications 
Object detection and distance measurement have been used in many aspects of life, 

including medical surgery, nuclear decommissioning, space exploration, various indus-
tries, and everyday services. In these areas, the work is either high-risk or highly repeti-
tive. Therefore, there is an urgent need to ensure the safety of operators or free up the 
workforce. In addition, time and space constraints require remote operations or personnel 
changes. Automatic operation and semi-autonomous remote operation can solve these 
problems to a certain extent, and have their own advantages in different aspects. Auto-
matic robots with vision systems can complete tasks safely, quickly, and accurately, 
whereas manual operations and visual inspection are time-consuming and inefficient. 
However, semi-autonomous remote operation is essential when human intervention is 
necessary for specific tasks that robots cannot currently perform. 

Thus, fully autonomous manipulation, semi-autonomous teleoperation, and combi-
nations of the two are essential. The applications are listed below. Figure 9 shows the syn-
thesis of the application of object detection and distance measurement in teleoperation 
and automatic manipulation. 

 

RGB image feature
point matching and

indirect triangulation
calculation

Machines 2022, 10, x FOR PEER REVIEW 12 of 22 
 

 

Table 3. Comparison of distance measurement methods. 

Consideration Monocular Vision Structured Light Stereo Vision Time-of-Flight (ToF) 

Working Principle 

Focus scenes on the 
camera’s image plane 

through the lens 

 

Measure coded optical pat-
terns’ variation through the 

feedback camera 

 

RGB image feature point 
matching and indirect tri-

angulation calculation 

 

Measure the time 
delay or phase delay 
of the reflected light 

Response Time (frames per second) 15–400 30–60 15–50 >100 
Depth Accuracy / 0.01–1 mm <1 mm 1–10 cm 

Work Outdoor No influence 
The influence is large, es-

pecially in low power 
No influence 

There is influence, 
but little 

Work in dark conditions No Yes No Yes 
Range / Within 5 m Within 20 m Within 10 m 

4. Applications 
Object detection and distance measurement have been used in many aspects of life, 

including medical surgery, nuclear decommissioning, space exploration, various indus-
tries, and everyday services. In these areas, the work is either high-risk or highly repeti-
tive. Therefore, there is an urgent need to ensure the safety of operators or free up the 
workforce. In addition, time and space constraints require remote operations or personnel 
changes. Automatic operation and semi-autonomous remote operation can solve these 
problems to a certain extent, and have their own advantages in different aspects. Auto-
matic robots with vision systems can complete tasks safely, quickly, and accurately, 
whereas manual operations and visual inspection are time-consuming and inefficient. 
However, semi-autonomous remote operation is essential when human intervention is 
necessary for specific tasks that robots cannot currently perform. 

Thus, fully autonomous manipulation, semi-autonomous teleoperation, and combi-
nations of the two are essential. The applications are listed below. Figure 9 shows the syn-
thesis of the application of object detection and distance measurement in teleoperation 
and automatic manipulation. 

 

Measure the time delay
or phase delay of the

reflected light

Machines 2022, 10, x FOR PEER REVIEW 12 of 22 
 

 

Table 3. Comparison of distance measurement methods. 

Consideration Monocular Vision Structured Light Stereo Vision Time-of-Flight (ToF) 

Working Principle 

Focus scenes on the 
camera’s image plane 

through the lens 

 

Measure coded optical pat-
terns’ variation through the 

feedback camera 

 

RGB image feature point 
matching and indirect tri-

angulation calculation 

 

Measure the time 
delay or phase delay 
of the reflected light 

Response Time (frames per second) 15–400 30–60 15–50 >100 
Depth Accuracy / 0.01–1 mm <1 mm 1–10 cm 

Work Outdoor No influence 
The influence is large, es-

pecially in low power 
No influence 

There is influence, 
but little 

Work in dark conditions No Yes No Yes 
Range / Within 5 m Within 20 m Within 10 m 

4. Applications 
Object detection and distance measurement have been used in many aspects of life, 

including medical surgery, nuclear decommissioning, space exploration, various indus-
tries, and everyday services. In these areas, the work is either high-risk or highly repeti-
tive. Therefore, there is an urgent need to ensure the safety of operators or free up the 
workforce. In addition, time and space constraints require remote operations or personnel 
changes. Automatic operation and semi-autonomous remote operation can solve these 
problems to a certain extent, and have their own advantages in different aspects. Auto-
matic robots with vision systems can complete tasks safely, quickly, and accurately, 
whereas manual operations and visual inspection are time-consuming and inefficient. 
However, semi-autonomous remote operation is essential when human intervention is 
necessary for specific tasks that robots cannot currently perform. 

Thus, fully autonomous manipulation, semi-autonomous teleoperation, and combi-
nations of the two are essential. The applications are listed below. Figure 9 shows the syn-
thesis of the application of object detection and distance measurement in teleoperation 
and automatic manipulation. 

 

Response Time (frames per second) 15–400 30–60 15–50 >100
Depth Accuracy / 0.01–1 mm <1 mm 1–10 cm

Work Outdoor No influence The influence is large,
especially in low power No influence There is influence, but

little
Work in dark conditions No Yes No Yes

Range / Within 5 m Within 20 m Within 10 m

4. Applications

Object detection and distance measurement have been used in many aspects of life,
including medical surgery, nuclear decommissioning, space exploration, various industries,
and everyday services. In these areas, the work is either high-risk or highly repetitive.
Therefore, there is an urgent need to ensure the safety of operators or free up the workforce.
In addition, time and space constraints require remote operations or personnel changes.
Automatic operation and semi-autonomous remote operation can solve these problems
to a certain extent, and have their own advantages in different aspects. Automatic robots
with vision systems can complete tasks safely, quickly, and accurately, whereas manual
operations and visual inspection are time-consuming and inefficient. However, semi-
autonomous remote operation is essential when human intervention is necessary for
specific tasks that robots cannot currently perform.

Thus, fully autonomous manipulation, semi-autonomous teleoperation, and combi-
nations of the two are essential. The applications are listed below. Figure 9 shows the
synthesis of the application of object detection and distance measurement in teleoperation
and automatic manipulation.
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4.1. Medical Surgeries

In severe environments such as remote rural areas or battlefields, it is often difficult to
obtain timely medical assistance. In order to ensure the timeliness of rescue and the safety
of rescuers, the ability to fully automate the delivery of medical services by machines or
enable medical personnel to remotely control machines to perform medical procedures is
especially critical.

Computer-assisted surgery (CAS) [78] is referred to as image-guided surgery, surgical
navigation, and 3D computer surgery, using technologies such as 3D imaging and real-time
sensing surgical procedures.

One of the most well-known surgical systems in robot-assisted surgery is the Da
Vinci robot, which can perform a variety of laparoscopic surgeries, including scaling the
surgeon’s movements with very little communication delay. Baiquan Su [79] proposed
a robot system to complete the task of blood removal surgery. The system consists of a
pair of dual cameras, a 6-DOF (degrees of freedom) manipulator, a suction device with a
handle fixed on the manipulator and a pump connected to the suction device. In order to
thoroughly clean the blood flowing from the incision, a Mask R-CNN frame was used for
blood profile detection.

However, due to technical limitations, it is still difficult to achieve the full automation
of various medical services, and semi-autonomous remote operation in medical assistance
has become a viable predecessor. Md Masudur Rahman et al. [80] proposed a semi-
autonomous robot framework to infer high-level commands from the surgeon’s movements
and then perform them semi-autonomously on the robot. A 3D camera mounted on the top
of the robot takes continuous color (RGB) and depth images at 30 frames per second. It
uses the YOLOv3 network to detect the 2D object bounding box of each RGB frame. There
may be multiple items of the same class in the scenario; therefore, a target tracker is added
that uses the output of the YOLOv3 network. The target tracking algorithm is an extension
of SORT [81] (Bewley et al., 2016). If the object disappears from the scene and becomes
visible again, its position is updated by the tracker. The task execution success rate of the
system is as high as 86.6%. These results show that the semi-autonomous remote-control
system with high autonomy has the potential for success.

4.2. Nuclear Decommissioning

Radiation from nuclear resources is harmful for animals and humans because their
cells’ structure and normal function could be destroyed by radiation. In this case, it is crucial
to remove radioactive materials from these nuclear facilities. This method could help to
reduce harm to the environment, and the by-product of this process may have commercial
use. Changing one operating nuclear facility to a safe, non-operational type is known as
decommissioning. To finish the process, it has several steps involving characterization,
decontaminating, and waste management.

Nowadays, to implement characterization tasks, robotic systems always use electrical
power. Teleoperated by a human user, these systems also provide visual information
on environments. In order to detect the environment, various sensors are employed
to help construct detailed 2D or 3D computer models to perform the characterization
process. Liam Cragg and Huosheng Hu [82] designed one new architecture that could
enhance the practical decommissioning ability of existing robotic characterization systems
with limited functionality. Existing distributed computing, autonomous multi-robot, and
Internet robotic architectures are combined to make the characterization ability stronger.
The novel architecture could overcome the effects of latency and limited bandwidth of
Internet communications, making the system much more efficient.

In addition, remote operation is essential for manipulation in industrial environments,
such as nuclear applications. Remote operation in the nuclear industry ensures operator
safety and provides a cost-effective solution for manipulating, inspecting, and maintaining
nuclear power plants. It can be advantageous to perform operations that operators carry
out today to reduce workloads and risks of accidents or contamination. The system
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is a remote one-sided structure; therefore, visual feedback is critical. To minimize the
risk of human contact, glove boxes with sealed volumes are used to perform handling.
Although the operator could perform complex handling tasks with gloves, there is a
significant risk of breaking the seal. Ozan Tokatli et al. [83] presented a robotic synthesizer
demonstrator for handling nuclear material in a nuclear glove box. For object detection,
they chose models similar to “look once only” (YOLO) because they can produce detection
results at a faster rate (45 frames per second). A deep learning model was trained with
the dataset, using custom annotated images representing the glove box environment,
feeding the output detection results to the tracking algorithm during the whole process.
Moreover, it uses a monocular vision approach which could capture depth images with
an analog RGB-D camera mounted on the robot’s wrist and taking it as an input to the
neural network. Manuel Bandala [84] introduced the development of a vision-based semi-
automatic object grasping system which could be employed in a hydraulically driven dual
manipulator retraction robot. Based on the SDP model, a novel approach was applied to a
hydraulic manipulator, with the function of signal calibration, system identification, and
nonlinear control design for a situation where dynamic characteristics changed over time.
Kui Qian et al. [85] designed a small teleoperated robot for nuclear radiation and chemical
leak detection. In this system, a 5-DOF vehicle manipulator is used to perform sample
collection. During the process, the system receives all the data, including sound, image,
and other sensor information in real time. This information provides a basis for mission
command and decision making. The control range for this system is 5000 m maximum in
open areas and 1750 m maximum in urban areas. Telepresence is brought to the operator,
demonstrating good performance in tests.

4.3. Space and Undersea Exploration

Robots can be employed to investigate unknown things and explore environments that
are inaccessible to humans. The use of them satisfies the ambition of scientists, engineers,
and explorers in numerous fields.

Due to the complexity and unpredictability of the lunar surface, teleoperation is the
most important control method for the operation of a rover in space exploration. To support
the teleoperation of a rover, computer vision is an important technology. There are many
technical challenges, such as rapid positioning of the landing point and seamless high-
resolution mapping of the landing site during the powered descent stage and lunar surface
exploration. Teleoperation based on computer vision could effectively solve these problems.
Wang J., Li J., and Wang S. et al. [86] presented an important study providing support for the
topographical analysis of a landing site and mission planning for subsequent teleoperations.
To finish the positioning of the landing point for the Yutu-2rover, they used a stereo vision
method to obtain descent images. James Bird [87] introduced a simulator-based approach
using computer vision to address the problem of obtaining useful images during deep-space
travel. Their results showed that the simulator provides a training environment which
could be used to train models of features not yet observed by humans. The research also
presented an immersive and adaptive environment, allowing the function of navigation in a
novel way. Moreover, a teleoperated robotic hand [88] has been developed for the European
Space Agency by the German Aerospace Center (DLR) for a lunar rover prototype. Good
vision of the robot contributes to this assessment ability. Good vision and force feedback
produced nearly 100% correct assessments in grasp success tests.

In undersea exploration, robots could also be applied in various ways. Ocean One [89]
is one kind of humanoid underwater robot which has a specific structure for underwater
manipulation. There is a remote connection between a humanoid robot and a human
pilot, which makes it possible to perform dexterous manipulation in deep sea. While
avoiding micromanagement, whole-body controller-coordinated manipulation, posture,
and a set of haptic and visual human interfaces, which could facilitate intimate interactions.
In [90], an underwater vehicle employed physical underwater light transport models, with
target ocean and mission parameters to obtain clearer images during ocean exploration.
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In [91], Lu H. et al. proposed one computing model with YOLO to achieve the real-time
underwater recognition and tracking of multi-objects. In a comparison experiment, YOLO
demonstrated approximately the same performance as MedianFlow. However, YOLO had
the advantage on implementing detection on each frame and did not need to specify the
bounding box to initialize it, but MedianFlow needs the bounding box.

4.4. Various Industries

Aerial manipulation is also a challenging task. Often, researchers choose to use
unmanned aerial vehicles to finish this difficult task. This technique fits various applications,
and most of them are dangerous to human operators. With one RGB-D camera and dual
manipulators, R. Pablo et al. [92] proposed a system for grasping known objects with the
unmanned aerial vehicle. Three different devices tested CNN algorithms for performing
tasks of object detection to determine which kind of CNN could fit the system requirements
for the manipulation task and the payload limitations of the aerial manipulator. Faster
RCNN, SSD300, and YOLO (tiny YOLOv2) have tested. Under the hardware of one Jetson
TX1 with IrisGPU, the average computational times were 0.47 s, 0.113 s, and 0.051 s.
S. Hussmann et al. [93] established a robot vision system that demonstrates a real-word
problem on a small scale. When a container ship has to be loaded using a minimum storage
area, it needs the user to deliver the range data of the measured objects for the robot system.
A 3D ToF camera on top of the robot system was mounted. In this case, the robot system
can now pick up the containers correctly and place them on the container ship.

Fruit-picking operations are labor-intensive; therefore, it is urgent to realize auto-
matic fruit-picking to improve labor efficiency. The technique of artificial intelligence
and production has developed rapidly over the years; as such, we could replace manual
fruit-picking with machines. Researchers have developed a variety of robots for packing
based on the premise that machines could precisely and quickly recognize the fruits for
picking. S. Wan et al. [94] proposed an accurate and real-time image-based multi-class
fruit detection system through R-CNN. This system could complete tasks such as facili-
tating innovative higher-level farm tasks such as yield mapping and robotic harvesting.
T. Nan et al. [95] used a Fog Robotic system to perform grasping tasks through Mask R-
CNN and other intelligent grasping systems. It could instruct robots to finish generalized
human-compliant object pickup and manipulation tasks. With a teleoperated climbing
robot and enhanced deep learning algorithm, B. Ramalingam [96] proposed an aircraft
surface to perform object detection. Additionally, an enhanced SSD MobileNet framework
was added to improve the detection accuracy (96.2%) of aircraft surface defects (with an
average confidence level of 97%) and stains (with a 94% confidence level). In contrast,
compared with the conventional SSD MobileNet and other defect detection algorithms,
the proposed system achieved better detection accuracy because of removing most of the
unwanted background data.

4.5. Daily Service

In domestic areas, remote assistance is also required in specific situations. T. Sano [97]
trained Mask R-CNN with a COCO dataset, so that their robot could detect an area where
children were. In addition, they used a monocular approach to estimate the distance
between a toddler and the robot through a deep neural network. The accuracy of distance
estimation was over 65%.

L. Lecrosnier et al. [98] developed an advanced driver assistance system (ADAS) to
improve autonomy for disabled people on an innovative electric wheelchair. Based on
the detection, depth estimation, localization, and tracking of objects in a wheelchair’s
indoor environment, namely, doors and door handles, they proposed an adaptation of
the YOLOv3 object detection algorithm to solve the problem. In addition, with deep-
learning-based data augmentation, they increased their dataset’s diversity. Then, using
an Intel RealSense camera, they showcased their depth estimation approach. Finally,
they demonstrated the 3D object tracking approach based on the SORT algorithm. They
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implemented different experiments in a controlled indoor environment to validate all of
the developments. Using their own dataset, distance estimation and object tracking were
tested. Their models were re-trained with two datasets, involving the open MCIndoor20000
dataset and their own ESIGELEC dataset. They observed 85% and 90% precision for the
classification of handles and doors under recall rates of 0.29% and 0.80%, respectively, on a
set of 866 images. B. Thomas et al. [99] also demonstrated an autonomous service robot for
domestic environments, including diverse abilities such as manipulation with an image-
based method, human–robot interaction, person detection and tracking, object detection,
and classification. To complete “dirty work” such as ordering, fetching, and sending
food settlements in a restaurant, Q. Yu et al. [100] designed a restaurant service robot for
the customers in a robot restaurant. They employed a segmented positioning method,
which could be applied to consider the positioning costs and accuracy requirements in
the different stages. They chose to adopt the shape-based matching tracking method to
navigate the robot to the object. The restaurant service robot could provide its real-time
coordinates with ±2 cm positioning precision whatever its initial position.

5. Challenges
5.1. Challenges in Computer Vision

Even though computer vision has experienced great progress in recent years, an accurate
and robust approach in object detection and distance measurement based on computer vision
remains a great challenge today. The typical challenges of computer vision in the context of
teleoperation and automatic manipulation can be summarized in five points.

• Deformation.

In remote rescue, the victims may have different postures, which makes object detec-
tion very difficult. If the object detector is trained to only find people standing or running,
it may not be able to spot people lying on the ground or bent over, thus overlooking the
most necessary situation in which to help the injured.

• Occlusion.

Occlusion (partial occlusion/complete occlusion) may affect the calculation of back-
ground frames. However, occlusion can easily occur. For example, in a rescue scenario,
when the injured are blocked by other objects such as stones around them and cannot be
recognized, it will also lead to timely rescue.

• Illumination changes.

Illumination strongly affects the appearance and characteristics of objects and back-
grounds, such as the surface gloss and texture clarity of the same object when the light is
turned on or off indoors.

• Cluttered or textured background.

When the background is messy or textured, the object to be recognized may be mixed
into the background, making it difficult to be recognized. For example, when different
objects with similar textures and colors are stacked together, it is difficult to find the target
object to be recognized.

5.2. Challenges in Human Experience

The human experience here refers to using feelings and experience in remote operation.
First, data communication efficiency plays an important role. To achieve teleoperation,
hardware needs to wirelessly send and receive visual data (e.g., image and video data)
and associated information in real time. The size of visual data is often large, and it is
necessary to consider the format, space, and transmission type to efficiently store and
process the data. Exchanging different types of data and vast amounts of information
in real time may deteriorate wireless communication performance. If communication
performance deteriorates, errors including compatibility problems may occur in collecting
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and transmitting information due to data interference or transmission errors between
platforms. In addition, it takes a long time to process data, and there may be a time
delay in the operation. Communication errors or delay problems affect safety, work
efficiency, and accuracy in performing teleoperation tasks. Therefore, establishing an
efficient communication channel is important for the teleoperation of excavators. Moreover,
if too much information is provided visually, it may not be able to be digested during tasks
and likely lowers concentration and work efficiency. In this context, research on how to
optimally deliver information feedback via robust interfaces should be conducted in terms
of the contents of visual presentation, information format, and the relationship with other
sensory feedback.

6. Possible Future Directions and Conclusions

To address the challenges in computer vision listed above, in the face of deformation,
occlusion and illumination changes, the dataset can be expanded by sampling as much as
possible, or the data can be generated as close to the real sample as possible by a generating
adversarial network (GNN) [101,102]. In addition, when the part of the object is blocked,
the physical structure of the object can be inferred through modal perception and modal
segmentation to obtain the blocked part [103,104]. For cluttered or textured backgrounds,
disturbances can be evaluated by encoding the relationships between objects [105].

Computer vision mostly acts as an auxiliary technique to make operators manipulate
in their element, which is of great significance in remote operation. In the foreseeable
future, the use of computer vision in remote control will progress towards the following
two trends.

First, the data fusion of multiple sensors will further understandings of a specific scene
for operators. For a remote-control system, diverse sensors are needed to gain information
from all kinds of dimensions. However, this information is relatively independent of each
other. Thus, in the near future, a good direction would be to combine visual data with other
data to better achieve information synchronization. For example, when attention is focused
on a certain object, a user can not only localize, track, and classify it, but also accurately
learn some of its other properties such as hardness and smoothness.

In addition, physical modeling in teleoperation could be a good direction. To manipu-
late objects in a scene, the position of grasping and the amount of force applied are also
important. Therefore, physical modeling can be used to simulate the effect of different forces
and different positions of grasp on the object. In this way, in the process of real-time control, it
is beneficial for the operator to predict in advance and control the object more robustly.

7. Conclusions

This article demonstrates the use of computer vision in remote control, which con-
cludes object detection and distance measurement. The former provides the teleoperated
system with an ability to accurately localize and classify the target object. The latter makes
the system more comfortable for operators with the distance feedback. Moreover, it also
brings better performance for localization. The applications of object detection and distance
measurement in teleoperation and automatic manipulation have been reviewed as well.

For object detection, two-stage detectors (R-CNN, Fast R-CNN, Faster R-CNN, Mask
R-CNN, etc.) and one-stage detectors (OverFeat, YOLO, SSD, RetinaNet, etc.) have been
introduced. The performance of each one listed can be used as a reference for choosing and
putting it into use. Four distance measurement methods (monocular, stereo, ToF, structured
light) have been reviewed in detail, with principles presented for each and comparisons
drawn between them. The review of the five-application scene (medical surgeries, nuclear
decommissioning, space and undersea exploration, industries, and daily service) reveals
the considerable prospects.

For beginners, there are some suggestions could be given. First, beginners could
learn how to determine object detection and distance measurement methods for remote
operation systems from existing studies in similar application scenarios, which have been
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summarized and organized as much as possible in Section 4. If there is no fit or match,
they need to make their own selections. For selection of the object detection method, a
one-stage detector can be selected if rapid real-time speed is desired, whereas a two-stage
detector is preferred if higher accuracy is desired but speed is not required as urgently.
For the selection of distance measurement methods, trade-offs can be made based on the
comparisons between the four methods listed in Table 3. The two technologies process
the obtained video or image information and feed back to the operator concurrently. This
study focused on the integration of object detection and distance measurement methods in
remote control; thus, the performance could be evaluated by checking whether the visual
feedback is useful for operators to perform more accurate operations with less fatigue over
a longer time.
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