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Abstract: In order to effectively extract the characteristic information of bearing vibration signals
and improve the classification accuracy, a composite fault diagnosis method of rolling bearing based
on the chaotic honey badger algorithm (CHBA), which optimizes variational mode decomposition
(VMD) and extreme learning machine (ELM), is proposed in this paper. Firstly, aiming to solve
the problem that the HBA optimization process can easily fall into local optimization and slow
convergence speed, sinusoidal chaotic mapping is introduced to improve HBA, and the advantages
of CHBA are verified by 23 benchmark functions. Then, taking the Gini index of the square envelope
(GISE) as the fitness function, the VMD is optimized with CHBA to obtain the optimal number of
modes K and the quadratic penalty factor. Secondly, the first four IMF components with the largest
GISE values are selected, and the IMF components are grouped by the “Systematic Sampling Method
(SSM)” to calculate the signal energy to form the fault feature vector. Finally, taking the classification
error rate as the fitness function, the feature vector is input into the ELM model optimized by CHBA
to classify and identify different types of faults. Through experimental analysis, and compared
with BP, ELM, GWO-ELM, and HBA-ELM, this method has better diagnosis results for composite
faults, and the accuracy of fault classification can reach 100%, which provides a new way to solve the
problem of composite fault diagnosis.

Keywords: honey badger algorithm; chaotic mapping; fault diagnosis; extreme learning machine;
Gini index of square envelope

1. Introduction

Rolling bearing is the core component of mechanical equipment and plays an irreplace-
able role. It is known as the “joint of industry”. It is widely used in automobile, high-speed
railway, wind power generation, chemical industry, shipbuilding, aerospace and other
fields. However, due to its special structural design and harsh working environment,
it often fails, resulting in safety accidents and economic losses. According to statistics,
mechanical equipment failure caused by bearing failure accounts for about 1/3 of the total
number of damages. Therefore, the advanced fault diagnosis method is of great significance
for the safe operation of the equipment. There are two common fault diagnosis methods:
model-based and data-driven [1]. Firstly, the signals of the bearing are collected by sensors,
and then the collected signals are analyzed and processed to identify the fault type and
damage degree. The preprocessing of the vibration signal is a key step in fault diagnosis. In
1998, Huang, et al. [2] proposed empirical mode decomposition (EMD), which made a great
contribution in solving the problem of bearing fault diagnosis. However, there is a serious
problem of mode aliasing when EMD decomposes signals. In view of its shortcomings,
Amrinder, et al. [3] proposed the ensemble empirical mode decomposition (EEMD), and,
combined with the signal fuzzy entropy to estimate the damage degree of the inner and
outer rings of the bearing, Zheng, et al. [4] proposed an improved uniform phase EMD
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method by adding uniform phase sine wave as the mask signal and adaptively selecting
sine wave amplitude, which effectively realized the fault diagnosis of the bearing rotor. In
2014, Dragomiretskiy, et al. [5] proposed the VMD for the first time and proved the superi-
ority of the VMD decomposition method over EMD. The research shows that the number
of modes K and the penalty factor α of VMD directly affect the signal decomposition effect.
For example, too large a K value will lead to signal over-decomposition, and too small a
value will lead to insufficient signal decomposition. Therefore, the setting of K and α value
are the key parameters affecting the signal decomposition result. Ye, et al. [6] decomposed
the fault signal into several IMF with VMD, and then used the characteristic energy ratio
criterion to reconstruct the signal. They combined this with the SVM optimized by particle
swarm optimization (PSO) algorithm to realize the effective identification of different bear-
ing faults. Fu [7] used the central frequency observation to determine the decomposition
layers of VMD, but it was limited to replacing the decomposition layers of all signals only
by determining the decomposition layers of part of the signal. Zhang, et al. [8] proposed the
IVMD method to determine parameters, and first determined the optimal decomposition
layer K by using the maximum kurtosis index. Then, the global optimal parameters were
selected according to the minimum energy loss coefficient, and the support vector machine
was optimized with the Sparrow algorithm to achieve the classification of different gear
faults. Li, et al. [9] used the sum of envelope spectral kurtosis and sample entropy of the
signal as the fitness function to determine the VMD parameters, and then realized fault
feature extraction of the inner ring through envelope analysis. Liang, et al. [10] optimized
VMD with an improved genetic algorithm to select optimal parameters by taking enve-
lope entropy as the fitness function. Zhi, et al. [11] used average envelope entropy as the
fitness function to optimize VMD and select optimal parameters with the particle swarm
optimization algorithm. Mganb, et al. [12] optimized VMD with the Gini index (GI) as an
indicator and selected the optimal parameters with the sailfish algorithm, thus achieving
accurate extraction of the fault characteristic frequencies of the bearings. However, the
above algorithm can easily fall into local optimization when solving practical problems.
The convergence speed is not fast, and the application of VMD to the composite defect
diagnostics of rolling bearings has not been well received. HBA is a new meta-heuristic
algorithm proposed by Hashim, et al. [13] in 2021, and it has been proved that the algorithm
is superior to existing algorithms in terms of convergence accuracy and convergence speed.
To further improve the performance of HBA, we introduced chaotic mapping to improve
HBA, and took the Gini index of the square envelope as the fitness function. The chaotic
honey badger algorithm was used to optimize VMD and select optimal parameters.

Feature extraction is the key part of fault diagnosis. In recent years, the feature
extraction method represented by entropy has obtained good application in the field
of fault diagnosis, sample entropy [14], fuzzy entropy [15], permutation entropy [16],
energy entropy [17], etc., due to the small difference in energy entropy distribution, faults
cannot be accurately distinguished. Improved entropy algorithms include multi-scale
fuzzy entropy [18]. Udmale, et al. [19] took the wavelet energy of the signal as the input
feature set and achieved a good fault diagnosis effect. Shi, et al. [20] completed bearing
fault diagnosis by constructing a wavelet energy entropy matrix of vibration signals based
on compressive sensing. The accuracy of the method was proved through experiments.
Gao, et al. [21] used wavelet transform to perform multi-scale time-frequency analysis of
signals, and calculated four features such as energy, wave index, deflection and marginal
factor as the input of multi-core learning SVM, which successfully realized the early fault
diagnosis of circuits. Song, et al. [22] used wavelet packet to extract the features of sound
signals. By calculating the ratio of energy of each node to total energy to form a feature
vector, fault diagnosis of the mine ventilator was realized. Through the above analysis, this
paper uses the energy information of the signal as the feature of fault diagnosis to address
the problem of composite fault diagnosis of bearings. See Section 3.3 for the specific fault
feature matrix construction process.
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Huang, et al. [23] proposed extreme learning machine theory (ELM). Due to its fast
learning rate, strong generalization ability, and simple structure, it has achieved a good
effect in image processing, biometric identification, feature extraction, fault diagnosis, and
other fields. Xiao, et al. [24] first applied ELM to the fault diagnosis of rolling elements.
They proposed the two-stage evolutionary ELM algorithm and proved the effectiveness
of this method through experiments. Qin, et al. [25] proposed the diagnostic model of
EMD-ELM and compared it with the diagnosis results of EMD-BP and EMD-SVM. The
results show that EMD-ELM is better than these two methods in running speed and
classification accuracy. To improve the identification accuracy of ELM, the use of the
intelligent optimization algorithm has been the main direction of the research in recent years.
For example, Wang [26] improved the grey wolf algorithm by using wavelet parameters of
the extreme learning machine network, and successfully applied it in the fault diagnosis of
rolling bearing. He [27] used the reverse cognitive flies algorithm to optimize the extreme
learning machine, and multi-scale permutation entropy was used as the fault feature vector
to realize the fault diagnosis of bearings. Wang, et al. [28] proposed an improved bat
algorithm to optimize ELM’s fuel system fault diagnosis method, and experiments proved
that the improved bat algorithm significantly improved ELM’s classification accuracy and
generalization ability. Based on this, this paper uses the excellent performance of the chaotic
honey badger algorithm (CHBA) to optimize ELM, and proposes a new fault diagnosis
method of CHBA-ELM.

The main contributions of this paper are summarized as follows:

1. Chaotic mapping improved Honey Badger algorithm (CHBA);
2. A novel adaptive variational mode decomposition (VMD) is established based on

variational mode decomposition;
3. A novel adaptive extreme learning machine (ELM) is established based on extreme

learning machine.

The remaining parts are organized as follows: Section 2 introduces the basic theory
of HBA,VMD and ELM. Section 3 introduces the fault diagnosis method of CHBA-VMD-
CHBA-ELM proposed in this paper. Section 4 verifies the excellent performance of CHBA
algorithm by using test functions. Section 5 verifies the practicability of the proposed
method in actual fault data. Finally, Section 6 concludes this paper.

2. Theoretical Analysis of Algorithm
2.1. Introduction to the Honey Badger Algorithm (HBA)

This section gives a brief introduction to the HBA. For detailed analysis, please refer
to [13]. The honey badger is a large weasel, mostly living in tropical rain forests and open
grassland areas in Africa. When HBA solves the parameter optimization problem, it can
be divided into “digging” and “honey”. The following describes the model of the HBA,
where ri represents a random number from 0–1:

The total X of candidate solutions in HBA is expressed as:

X =


x11 x12 · · · x1D
x21 x22 · · · x2D

· · ·· · · ·· · · ··
xn1 xn2 · · · xnD

 (1)

The mathematical expression for the location of the ith honey badger is: xi =
[
xi

1, xi
2, . . . , xi

D].
Step 1: Initialization. The number and location of honey badgers are initialized by

Equation (2).
xi = lbi + r1 × (ubi − lbi) (2)

where xi is a positional parameter, which is a candidate solution, and ubi and lbi are the
range of the target parameter values.
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Step 2: Define intensity (I). Predation intensity is related to the concentration intensity
of prey and the distance between prey and honey badger. Ii is defined by Equation (3) and
represents the scent intensity of prey.

Ii = r2 × S
4πdi

2

S = (xi − xi + 1)2

di = xprey − xi

(3)

where S represents concentrated intensity (Figure 1 shows the location of the prey), and di
represents the distance between prey and the ith generation badger.

Figure 1. Prey location map (Inverse square law).

Step 3: Density factor (α). α controls the randomness of changes over time to ensure a
reasonable transition from exploration to development. The updated formula is shown in
Equation (4).

α = A× exp(− n
nmax

) (4)

where n represents the current iteration number, A represents a constant (default A = 2),
and nmax represents the maximum iteration number.

Step 4: To avoid local optimization, HBA introduces parameters to change the search
direction and improve the search ability.

Step 5: Update the population location.
Digging phase: as shown in Figure 2, the movement of the honey badger at this stage is

simulated as a heart (the circle is the location of the honey badger, and the heart line is the
odor intensity range). The movement track of the honey badger is simulated by Equation (5):

xnew = xprey + Q× γ× I × xprey
+ Q× r3 × α× di × |cos(2πr4)− cos(2πr4) ∗ cos(2πr5)|

(5)

where xprey represents the global optimal location, γ represents the power of honey badger
to obtain food (default γ= 6), and parameter Q controls the search direction, which is
determined by Equation (6):

Q =

{
1 r6 ≤ 0.5
−1 else

(6)

Figure 2. Schematic diagram of honey badger movement in excavation stage.

Honey phase: The process by which the guide bird leads the honey badger to the hive
is determined by Equation (7):

xnew = xprey + Q× r7 × α× di (7)
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where xnew represents the new location of honey badger, and xprey is the location of prey.

2.2. Variational Modal Decomposition (VMD)

This section gives a brief introduction to VMD. VMD has been widely used in the field
of fault diagnosis since it was proposed. VMD decomposes non-stationary signals into
several IMFs in a non-recursive form [29], and the mathematical expression of component
uk is:

uk = ak(t) cos(ϕk(t)) (8)

where a is the amplitude, and ϕ is the phase.
The Hilbert transform is applied to uk, and the bandwidth of each mode can be

obtained from Equation (9):

(δ(t) +
j

πt
)× uk(t) (9)

where δ(t) is the Dirichlet function, and ∗ is the convolution operator. Equation (8) is
multiplied by the exponential term, and the spectrum is transformed into the central
frequency band, as shown in Equation (10).[

(δ(t) +
j

πt
)× uk(t)

]
ejωkt (10)

where {ωk} = {ω1, ω2 · · ·ωK} is the center frequency, {uk} = {u1, u2 . . . uK} is the K
modes after decomposition, and the bandwidth of the component is estimated by the
square of the modulated signal L2 norm, with the sum of the minimum bandwidth as the
constraint condition, as shown in Equation (11):

min
{uk},{ωk}

{
∑
k

∥∥∥∥∂t
[(

δ(t) +
j

πt

)
× uk(t)

]
e−jωkt

∥∥∥∥2

2

}
(11)

The sum of all components uk is the original signal f , f = ∑
k

uk.

L({uk}, {ωk}, λ) = α∑
k

∥∥∥∂t

[(
δ(t) + j

πt

)
× uk(t)

]
e−jωkt

∥∥∥2

2

+

∥∥∥∥ f (t)−∑
k

uk(t)
∥∥∥∥2

2
+

〈
λ(t), f (t)−∑

k
uk(t)

〉 (12)

ADMM [5] is used when selecting the optimal solution, as shown below:

ûn+1
k (ω) =

f (ω)−∑ K−1
i=1 ûn+1

i (ω) + λ̂(ω)
2

1 + 2α(ω−ωk)
2 (13)

ωn+1
k =

∫ ∞
0 ω

∣∣∣ûn+1
k (ω)

∣∣∣2dω∫ ∞
0

∣∣∣ûn+1
k (ω)

∣∣∣2dω

(14)

λ̂n+1(ω) = λ̂(ω) + τ

(
f̂ −

K

∑
k=1

ûn+1
k (ω)

)
(15)

where n represents the number of iterations, ˆ represents the Fourier transform, τ repre-
sents the Lagrange multiplier sub-step, and the center frequency and bandwidth of each
component are iterated and updated until the condition of Equation (16) is met:

K

∑
k=1

(∥∥∥ûn+1
k (ω)− ûn

k (ω)
∥∥∥2

2
/‖ûn

k (ω)‖2
2

)
< ε (16)
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where ε stands for tolerance.
Previous studies have proved that VMD decomposition layers K and penalty factor

α are the key parameters affecting VMD decomposition performance. In this paper, the
CHBA is used to optimize VMD and select the optimal parameters.

2.3. Extreme Learning Machine (ELM)

This section gives a brief introduction to ELM. The mathematical model of ELM is as
follows: Suppose that N training samples are expressed as:

N = {(xi, ti)|xi ∈ Rn, ti ∈ Rm, i = 1, 2, · · ·, N} (17)

The neural network mathematical model with m input layer nodes, n output layer
nodes and L hidden layer nodes is as follows:

L

∑
i=1

βi p(aixj + bi) = tj j = 1, 2, · · ·, N (18)

where p(x) is the activation function, ai = [ai1, ai2, . . . , aim]
T is the input weight matrix,

βi = [βi1, βi2, . . . , βin]
T is the output weight matrix of the hidden layer, bi is the threshold

of the hidden layer, and ti = [ti1, ti2, . . . , tin]
T is the network output matrix.

Equation (18) is expressed in the following matrix form:

Kβ = T (19)

where K =

 p(a1x1 + b1) · · · p(aLx1 + bL)
...

...
p(a1xN + b1) · · · p(aLxN + bL)


N×L

represents the output of the hidden

layer, β = [β1, β2, · · · , βL]
T represents the output weight, and T = [T1, T2, · · · , TN ]

T repre-
sents the target output.

When p(x) is infinitely differentiable, ELM randomly selects the input weight and the
threshold of the hidden layer, and the matrix K remains unchanged during training, so the
training process of ELM is to find the least square solution β̂.

β̂ = K+T (20)

where K+ represents the generalized inverse of the matrix K.

3. Proposed Method
3.1. Chaotic Mapping-Improved Honey Badger Algorithm (CHBA)

Chaotic behavior is a nonlinear random phenomenon, and has been widely used in
algorithm optimization due to its excellent performance. Introducing chaotic mapping
into the algorithm can successfully solve the drawbacks of setting into local optimum or
slow convergence. Common chaotic mapping includes the sine map, Circle map, Logistic
map, Iterative Map, etc.; examples include the hybrid strategy improved sparrow search
algorithm [30], the nonlinear chaotic Harris–Eagle algorithm [31], the chaotic map opti-
mized gray wolf algorithm [32], and the hybrid strategy improved whale optimization
algorithm [33]. Through the above inspiration and analysis, we propose a new chaotic
honey badger algorithm (CHBA), in which chaotic values are used instead of random
values in the updating stage of the population position. Therefore, Equations (5) and (7)
are rewritten as follows:

xnew = xprey + Q× γ× I × xprey
+ Q× cm1 × α× di × |cos(2πcm2)× [1− cos(2πcm3)]|

(21)

xnew = xprey + Q× cm4 × α× di (22)
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where cmi is the sinusoidal chaos number generated in each iteration.

3.2. CHBA Optimizes VMD and ELM
CHBA-VMD Model

The Gini index (GI) is an indicator of the income gap of residents in a country or region,
and has been used in fault diagnosis in recent years. In 2017, Miao, et al. [34] improved
kurtogram and ProTrugram by substituting GI for the kurtogram index of the signal, and
confirmed the robustness of GI to impulse noise for the first time. Albezzawy, et al. [35]
replaced kurtogram with GI to achieve optimal modal extraction of wavelet decomposition.
In 2021, Miao, et al. [36] proposed the Gini index of the square envelope (GISE). This paper
verifies that GISE is a suitable time domain index affecting GI performance In this paper,
the maximum value of GISE is taken as the criterion to establish the CHBA-VMD model,
and the optimal VMD parameters for decomposition of different fault signals are adaptively
selected. The GISE value of the signal can be calculated as follows:

GISE = 1− 2
N

∑
n=1

(SE(n)/‖SE‖1)(N − n + 0.5/N) (23)

where, SE = |s|2 and its order SEorder = [SE(1) · · · SE(i) · · · SE(N)], SE(1) ≤ · · · ≤ SE(i) · · ·
SE(N), and SE(n) represents the nth element in vector SE.

To make up for the deficiency of ELM and improve the classification accuracy, the
CHBA-ELM model was established to adaptively select the optimal initial weight and
threshold value of ELM. The fitness function is shown in Equation (24):

f itness = argmin(Error1 + Error2) (24)

where argmin represents the minimum value, Error1 represents the error rate of training
set, and Error2 represents the error rate of testing set.

3.3. Feature Extraction

Systematic sampling is a common method in statistics to study the characteristics
and rules of numbers. It has the advantages of simplicity, convenience and good sample
representativeness. Its mathematical definition is as follows: N samples are selected from
N samples, with K= [N/n] as the sampling interval ([·] represents the integer function),
and a number I is randomly selected from 1~K, so the N samples are i, i + k · · · i + (n− 1)k.

In this paper, the “Systematic Sampling Method (SSM)” is used to group the signals
decomposed by VMD. Assuming that a group of signals is Y= [y1, y2, y3, · · · , yN ], n num-
bers are extracted from them as a group, and the sampling interval is K= [N/n]. The data
is divided into k groups:

A =


y1(1), y1+K(2) · · · y1+(n−1)K(n)
y2(1), y2+K(2) · · · y2+(n−1)K(n)

· · ·
yK(1), yK+K(2) · · · yK+(n−1)K(n)

 (25)

The energy component feature vector E(E = [E1, E2, E3, · · · , EK]
T) of each group of

signals in A is calculated, and the energy calculation equation is as follows:

Ei =
n

∑
n=1

yi(n)
2 (26)
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3.4. Fault Diagnosis Model

To sum up, combined with the excellent performance of CHBA, VMD and ELM, this
paper propose a composite fault diagnosis model of CHBA-VMD-CHBA-ELM. The basic
process is shown in Figure 3, and the main process has the following four steps:

Figure 3. Flowchart of fault diagnosis.

Step 1: The chaotic honey badger algorithm optimizes variational modal decompositions,
selects the optimal parameters of signals of different fault types [k, α], and decomposes the
signals into several IMF components by using the selected optimal parameters.

Step 2: Using the Gini index of square envelope as the criterion, the GISE value of the
IMF component is calculated and the four largest components are selected.

Step 3: The “SSM” is used to group the signals of each component and calculate the
energy composition of high-dimensional fault feature vectors.

Step 4: The chaotic honey badger algorithm optimizes the extreme learning machine,
selects the optimal parameters of ELM, and inputs the high-dimensional fault feature vector
into the CHBA-ELM model to classify and recognize different types of fault signals.

4. Analysis of the Influence of Chaotic Mapping on the Performance of HBA
4.1. Low-Dimensional Single-Objective Test Function

To test the performance of CHBA, the whale optimization algorithm (WOA), honey
badger algorithm (HBA), moth-flame optimization algorithm (MFO), gray wolf optimiza-
tion algorithm (GWO) and chaos honey badger algorithm (CHBA) were selected for com-
parative analysis. The parameter settings of the algorithm are shown in Table 1. The
maximum number of iterations was set as 600, and the population number was set as 100.
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Table 1. Algorithm parameter settings.

Name of the Algorithm Name of the Parameter

MFO Convergence factor a: [−2 −1]
WOA Convergence factor a: [2 0]
GWO Convergence factor a: [2 0]
HBA The ability to get food γ = 6, constant A = 2

CHBA The ability to get food γ = 6, constant A = 2

Table 2 shows seven low-dimensional single-objective test functions. Such functions
have only one global optimal solution, which can test the convergence and local develop-
ment performance of the algorithm. Each test function is tested for 30 times independently,
and the average value and standard deviation are recorded to test the convergence accuracy
and stability of the algorithm. The results are shown in Appendix A.

Table 2. Seven high-dimensional single objective functions (Dim = 30).

Function Range Fmin

f1(x) =
n
∑

i=1
xi

2 [−100,100] 0

f2(x) =
n
∑

i=1
|xi|+

n
∏
i=1
|xi| [−10,10] 0

f3(x) =
n
∑

i=1

(
i

∑
j=1

xj

)2
[−100,100] 0

f4(x) = max{|xi|, 1 ≤ i ≤ n} [−100,100] 0

f5(x) =
n−1
∑

i=1

[
100(xi+1 − xi2 )2 + (xi − 1)2

]
[−30,30] 0

f6(x) =
n
∑

i=1
([xi + 0.5])

2
[−100,100] 0

f7(x) =
n
∑

i=1
ixi

4 + random[0, 1) [−1.28,1.28] 0

4.1.1. Analysis of Convergence Accuracy and Stability

It can be seen from Appendix A that CHBA can calculate the minimum mean value and
variance of functions f1(x) ∼ f4(x) and f7(x), and obtain the optimal solution of functions
f1(x) and f3(x), proving that its convergence accuracy and stability are better than the
other five algorithms. For function f5(x), HHO has the highest convergence accuracy and
stability. For function f6(x), HBA has the best convergence accuracy and stability.

4.1.2. Analysis of Convergence Speed

The curves of the seven high-dimensional single-objective functions are shown in
Figure 4. For f1(x) ∼ f4(x) and f7(x), the CHBA algorithm has the fastest convergence
speed. For functions f5(x) and f6(x), although the CHBA algorithm has poor convergence
accuracy and stability, its convergence speed is the fastest. The results show that the
overall performance of CHBA is better than other algorithms in the high-dimensional
single-objective test function.
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Figure 4. Convergence curve of high-dimensional single objective function.
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4.2. High-Dimensional Multi-Objective Test Function

Table 3 shows five kinds of high-dimensional multi-objective test functions, with one
global optimal solution and several local optimal solutions, which are used to test the local
and global search ability of the algorithm. Thirty independent tests were conducted for
each test function, and the mean value and standard deviation were calculated to verify the
convergence accuracy and stability of the algorithm. The results are shown in Appendix A.

Table 3. Five high-dimensional multi-objective test functions (Dim = 30).

Function Range Fmin

f8(x) =
n
∑

i=1
−xi sin(

√
|xi |) [−500,500] −418.9829n

f9(x) =
n
∑

i=1
[xi

2 − 10 cos(2πxi) + 10] [−5.12,5.12] 0

f10(x) = −20 exp(−0.2

√
1
n

n
∑

i=1
xi

2)

− exp( 1
n

n
∑

i=1
cos(2πxi)) + 20 + e

[−32,32] 0

f11(x) = 1
4000

n
∑

i=1
xi

2 −
n
∏
i=1

cos( xi√
i
) + 1 [−600,600] 0

f12(x) = π
n

{
10 sin(πy1) +

n−1
∑

i=1
(yi − 1)2[1 + 10 sin2(πyi+1)] + (yn − 1)2

}
+

n
∑

i=1
u(xi , 10, 100, 4), yi = 1 + xi+1

4

u(xi , a, k, m) =


k(xi − a)m xi > a
0 −1 < xi < a
k(−xi − a)m xi < −a

[−50,50] 0

4.2.1. Analysis of Convergence Accuracy and Stability

It can be seen from Appendix A, for function f8(x), HHO has the best convergence
accuracy and stability, and can accurately find the optimal solution, while the CHBA
algorithm cannot find the optimal solution. For function f9(x), except the MFO algorithm,
other algorithms have the same convergence accuracy and stability, and can find the optimal
solution accurately. For function f10(x) and f11(x), HBA, HHO and CHBA, the performance
is the same and the effect is excellent. For function f12(x), the HBA algorithm has the best
convergence accuracy and stability, while CHBA cannot find the optimal solution.

4.2.2. Analysis of Convergence Speed

The curves of the five high-dimensional multi-objective test functions are shown in
Figure 5. For functions f8(x) and f12(x), CHBA cannot find the optimal solution, but
the convergence speed is the fastest. For the other three functions, CHBA can find the
optimal solution and has the fastest convergence speed. The overall performance of the
high-dimensional multi-objective test function is better than other algorithms.
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Figure 5. Convergence curve of high-dimensional single objective function.

4.3. Low-Dimensional Test Function

To more comprehensively test the convergence speed, stability, and accuracy of HBA,
the following ten fixed-dimensional functions are selected for testing, as shown in Table 4.
The results are shown in Appendix A.
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Table 4. Fixed-dimension test functions.

Function Dim Range Fmin

f13(x) =

 1
500 +

25
∑

j=1

1

j+
2
∑

i=1
(xi−ai j)

6

−1
2 [−65,65] 1

f14(x) =
11
∑

i=1

[
ai− x1(bi

2+bi x2)
bi

2+bi x3+x4

]2 4 [−5,5] 0.003

f15(x) = 4x1
2 − 2.1x1

4 + 1
3 x1

6 + x1x2 − 4x2
2 + 4x2

4 2 [−5,5] −1.0316

f16(x) =
(

x2 − 5.1
4π2 x1

2 + 5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10 2 [−5,5] 0.398

f17(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x1
2 − 14x2 + 6x1x2 + 3x2

2)]

×[30 + (2x1 − 3x2)
2 × (18− 32x1 + 12x1

2 + 48x2 − 36x1x2 + 27x2
2)]

2 [−5,5] 3

f18(x) = −
4
∑

i=1
ci exp

(
−

3
∑

j=1
aij(xj − pi j)

2

)
3 [0,1] −3.86

f19(x) = −
4
∑

i=1
ci exp

(
−

6
∑

j=1
aij(xj − pi j)

2

)
6 [0,1] −3.32

f20(x) = −
5
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1
4 [0,10] −10.1532

f21(x) = −
7
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1
4 [0,10] −10.4028

f22(x) = −
10
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1
4 [0,10] −10.5363

4.3.1. Analysis of Convergence Accuracy and Stability

As can be seen from Appendix A, for the 10 low-dimensional test functions, CHBA
has good stability and convergence accuracy. For f15(x), all six algorithms can obtain the
optimal solution, but WOA and GWO have poor stability. For f16(x), the CHBA algorithm
has the best stability. For f17(x), the six algorithms have the same convergence accuracy
and stability. For f18(x), MFO, HBA, HHO and CHBA, the results are the same. For
f19(x), f21(x) and f22(x), the CHBA algorithm is superior to others in terms of convergence
accuracy and stability. For f18(x), the HBA and CHBA algorithm have the same results.

4.3.2. Analysis of Convergence Speed

The curves of the ten low-dimensional functions are shown in Figure 6. In general, the
convergence speed of the CHBA algorithm is slightly better than that of other algorithms.
For the function f21(x), although WOA and HHO algorithms converge faster than the
CHBA algorithm, the CHBA algorithm has a higher convergence accuracy. Therefore, it
indicates that the CHBA has the optimal performance in low-dimensional test functions.

After this analysis, it was shown that the proposed HBA based on chaos mapping had
significantly improved convergence speed, stability and convergence accuracy compared
with HBA, and could better solve practical engineering problems.
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Figure 6. Cont.
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Figure 6. Convergence curve of low-dimensional test function.

5. Experimental Study
5.1. Parameter Selection of VMD

To verify the feasibility of the method in this paper, the bearing fault data of Xi’an
Jiaotong University in its full life cycle were selected for verification [37]. Six types of data
were selected: normal, outer race fault, inner race fault, cage fault, inner race and outer
race fault, and multi position fault of inner race, outer race, cage and rolling elements.
The sampling frequency fs = 25,600 Hz, and the sampling number N = 10000. Different
data were decomposed by CHBA-VMD, and the VMD parameter was set to a time-step
of dual ascent τ = 0, tolerance ε = 1× 10−9, and initial ω = 0, the settings of these three
parameters are the same as in the original paper [5]. The range of K and α was set to [2, 12]
and [100, 2500], the range settings of these two parameters are based on previous research
and experience. The optimal parameter values of VMD optimization by CHBA are shown
in Table 5. The number of the honey badger population was set to 10, and the maximum
iteration was set to 20. The convergence curve of the maximum GISE value chosen by
the CHBA to optimize the VMD is shown in Figure 7 (the data shown in the graph have
been normalized).
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Table 5. Optimal parameters of CHBA-VMD.

Fault Type K α

Outer race 11 841
Normal 8 2117

Inner race 10 1474
The inner and outer race 8 328

Cage 6 280
Inner race, outer race, rolling

elements and cage 9 265

Figure 7. The convergence curve of the maximum GISE.

5.2. Construction of Fault Feature Vector

The GISE of each IMF component after decomposition was calculated, as shown in
Figure 8. The first four components with the largest GISE value were selected, as shown
in Figure 9, which is the time domain diagram of each component, and each component
was divided into 100 groups (see Section 3.3 for the method), that is, each group of data
includes 100 samples, each type of fault consists of 100 × 4, and the labels of the six fault
types are set as 1, 2, 3, 4, 5 and 6.

Figure 8. Cont.
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Figure 8. Comparison of GISE values of various components.

Figure 9. Cont.
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Figure 9. Time domain diagram of fault signal.

5.3. Classification Results

The training set and testing set samples are separated by 7:3. That is, a total of 420
samples were selected as the training set and 180 samples as the test set. The samples were
input into BP, ELM, KELM, GA-ELM, GMO-ELM, HBA-ELM and CHBA-ELM models,
and each classification model was trained ten times. The maximum, minimum and average
accuracy of the training set and test set were recorded and compared, as shown in Table 6.
The CHBA-ELM model had the highest classification accuracy and is superior to others;
the classification results are shown in Figure 10.

Table 6. Comparison of classification results.

Algorithm Accuracy of Training Set (%) Accuracy of Testing Set (%)

Min Max Mean Min Max Mean

BP 59.52 89.76 71.24 63.89 95.56 77.77
ELM 97.00 98.67 98.33 76.33 80.33 78.17

GWO-ELM 98.57 98.81 98.76 95.00 97.78 96.39
HBA-ELM 95.24 98.81 97.26 96.11 99.44 97.50

CHBA-ELM 98.10 100.00 98.80 100.00 98.83 99.50

Figure 10. Classification results of CHBA-VMD-CHBA-ELM.
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To verify the influence of the “SSM” proposed in this paper on the classification results,
the signals decomposed by CHBA-VMD were grouped in sequence to calculate the feature
vector of energy composition and input into the CHBA-ELM classifier. The classification
results are shown in Figure 11. Its classification accuracy is very poor; the accuracy rate
has been lower than 80% in numerous trials. Thus, the advantages of the proposed “SSM”
are verified.

Figure 11. Classification results of “SSM”.

6. Conclusions

This paper presents a new model for composite fault diagnosis of bearings. Aiming at
addressing the deficiency of the honey badger algorithm, chaos mapping was introduced
to improve it, and the superiority of CHBA was verified on 23 benchmark functions.
Aiming at the problem that parameters in variational mode decomposition and extreme
learning machine need to be set manually, a novel adaptive VMD is established based
on VMD, and a novel adaptive ELM is established based on ELM. Compared with other
models, the classification accuracy was up to 100%, which is superior to most existing
methods and has better stability. In addition, this paper introduces the “SSM” in statistics
to group the decomposed signals. Experimental verification shows that the “SSM” can
better characterize data and improve classification accuracy. At the same time, a new index
named GISE is introduced into fault diagnosis, which successfully solves the classification
problem of rolling bearing composite faults. Although this method has a remarkable
effect and obvious advantages, it may take too long to decompose complex signals using
CHBA optimization VMD. Therefore, shortening the decomposition time and improving
diagnostic efficiency is one of the research directions that need to be improved in the future.
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Appendix A

Table A1. Test Results of the Benchmark Function.

Functions Value WOA GWO MFO HBA HHO CHBA

f1(x)
Ave
Std
Best

1.03 × 10−114

5.18 × 10−114

1.59 × 10−123

1.05 × 10−49

1.43 × 10−49

3.10 × 10−51

1.39 × 10−1

1.20 × 10−1

1.35 × 10−2

7.25 × 10−194

02.96 × 10−202

1.38 × 10−126

6.68 × 10−126

4.35 × 10−142

0
0
0

f2(x)
Ave
Std
Best

2.85 × 10−67

1.51 × 10−66

6.29 × 10−74

3.98 × 10−29

2.76 × 10−29

5.63 × 10−30

2.28 × 10
1.79 × 10

2.31 × 10−2

1.37 × 10−102

3.01 × 10−102

1.71 × 10−105

1.65 × 10−65

8.72 × 10−65

2.66 × 10−75

1.71 × 10−191

0
3.17 × 10−195

f3(x)
Ave
Std
Best

1.12 × 104

6.99 × 103

1.13 × 103

1.63 × 10−14

4.71 × 10−14

5.46 × 10−19

1.26 × 104

1.12 × 104

7.75 × 102

5.79 × 10−139

3.17 × 10−138

3.80 × 10−154

2.49 × 10−106

1.36 × 10−105

2.94 × 10−128

0
0
0

f4(x)
Ave
Std
Best

2.09 × 10
2.52 × 10

1.77 × 10−3

5.21 × 10−2

2.85 × 10−1

1.71 × 10−13

3.78 × 10
1.04 × 10
2.17 × 10

2.19 × 10−81

9.54 × 10−81

7.58 × 10−88

1.18 × 10−63

4.40 × 10−63

2.15 × 10−70

8.00 × 10−190

0
6.11 × 10−196

f5(x)
Ave
Std
Best

2.66 × 10
3.32 × 10−1

2.61 × 10

2.61 × 10
4.75 × 10−1

2.51 × 10

6.57 × 103

2.27 × 104

2.91 × 10

2.05 × 10
6.04 × 10−1

1.93 × 10

6.49 × 10−4

8.02 × 10−4

1.14 × 10−5

2.89 × 10
4.19 × 10−2

2.88 × 10

f6(x)
Ave
Std
Best

2.59 × 10−3

1.09 × 10−3

6.64 × 10−4

2.00 × 10−1

2.22 × 10−1

1.64 × 10−5

1.01 × 103

3.08 × 103

2.66 × 10−2

4.85 × 10−9

6.46 × 10−9

5.24 × 10−11

9.17 × 10−6

1.29 × 10−5

1.12 × 10−8

4.55
7.44 × 10−1

3.35

f7(x)
Ave
Std
Best

8.22 × 10−4

8.98 × 10−4

3.12 × 10−5

4.99 × 10−4

2.64 × 10−4

9.61 × 10−5

2.75
5.85

2.58 × 10−2

1.20 × 10−4

9.45 × 10−5

9.77 × 10−6

5.59 × 10−5

3.09 × 10−5

6.74 × 10−6

2.20 × 10−5

1.80 × 10−5

1.30 × 10−6

f8(x)
Ave
Std
Best

−1.18 × 104

1.18 × 103

−1.26 × 104

−6.50 × 103

6.59 × 102

−7.98 × 103

−8.84 × 103

7.15 × 102

−1.03 × 104

−9.27 × 103

1.08 × 103

−1.09 × 104

−1.26 × 104

2.76 × 10−2

−1.26 × 104

1.24 × 104

2.70 × 102

1.15 × 104

f9(x)
Ave
Std
Best

0
0
0

0
0
0

1.33 × 102

3.99 × 10
5.97 × 10

0
0
0

0
0
0

0
0
0

f10(x)
Ave
Std
Best

4.09 × 10−15

2.53 × 10−15

9.28 × 10−16

1.87 × 10−14

3.96 × 10−15

1.51 × 10−14

8.43
8.91

5.23 × 10−2

8.88 × 10−16

1.00 × 10−31

8.88 × 10−16

8.88 × 10−16

1.00 × 10−31

8.88 × 10−16

8.88 × 10−16

1.00 × 10−31

8.88 × 10−16

f11(x)
Ave
Std
Best

3.18 × 10−3

1.25 × 10−2

0

4.12 × 10−3

7.88 × 10−3

0

6.20
2.29 × 10

3.25 × 10−2

0
0
0

0
0
0

0
0
0

f12(x)
Ave
Std
Best

7.59 × 10−4

1.73 × 10−3

1.04 × 10−4

1.68 × 10−2

1.02 × 10−2

1.05 × 10−6

1.40
1.51

6.53 × 10−3

1.77 × 10−9

3.60 × 10−9

3.04 × 10−11

5.71 × 10−7

7.98 × 10−7

7.37 × 10−11

4.00 × 10−1

1.50 × 10−1

1.77 × 10−1

f13(x)
Ave
Std
Best

9.98 × 10−1

3.39 × 10−16

9.98 × 10−1

2.11
2.50

9.98 × 10−1

9.98 × 10−1

3.39 × 10−16

9.98 × 10−1

9.98 × 10−1

3.39 × 10−16

9.98 × 10−1

9.98 × 10−1

3.39 × 10−16

9.98 × 10−1

9.82 × 10−1

3.06 × 10−16

9.82 × 10−1

f14(x)
Ave
Std
Best

7.37 × 10−4

4.53 × 10−4

3.08 × 10−4

3.68 × 10−3

7.59 × 10−3

3.07 × 10−4

9.42 × 10−4

2.64 × 10−4

6.56 × 10−4

4.61 × 10−3

8.22 × 10−3

3.07 × 10−4

3.21 × 10−4

1.22 × 10−5

3.08 × 10−4

3.08 × 10−4

2.26 × 10−6

3.07 × 10−4
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Table A1. Cont.

Functions Value WOA GWO MFO HBA HHO CHBA

f15(x)
Ave
Std
Best

−1.03
4.52 × 10−1

−1.03

−1.03
4.52 × 10−16

−1.03

−1.03
0

−1.03

−1.03
0

−1.03

−1.03
0

−1.03

−1.03
0

−1.03

f16(x)
Ave
Std
Best

0.398
1.69 × 10−16

0.398

0.398
0

0.398

0.398
1.13 × 10−16

0.398

0.398
1.13 × 10−16

0.398

0.398
1.69 × 10−16

0.398

0.398
0

0.398

f17(x)
Ave
Std
Best

3
4.52 × 10−16

3

3
1.36 × 10−15

3

3
4.52 × 10−16

3

3
4.52 × 10−16

3

3
4.52 × 10−16

3

3
4.52 × 10−16

3

f18(x)
Ave
Std
Best

−3.86
1.54 × 10−4

−3.86

−3.72
3.50 × 10−3

−3.86

−3.86
2.71 × 10−15

−3.86

−3.86
2.71 × 10−15

−3.86

−3.86
2.71 × 10−15

−3.86

−3.86
2.71 × 10−15

−3.86

f19(x)
Ave
Std
Best

−3.25
6.18 × 10−2

−3.32

−3.29
5.20 × 10−2

−3.32

−3.25
5.92 × 10−2

−3.32

−3.26
6.40 × 10−2

−3.32

−3.22
5.71 × 10−2

−3.32

−3.32
1.09 × 10−4

−3.32

f20(x)
Ave
Std
Best

−9.23
2.42

−10.1532

−9.13
2.07

−10.1532

−8.64
2.61

−10.1532

−10.1532
1.81 × 10−15

−10.1532

−6.58
2.37

−10.1532

−10.1532
1.81 × 10−15

−10.1532

f21(x)
Ave
Std
Best

−9.03
2.56

−10.403

−10.403
2.77 × 10−4

−10.403

−9.52
2.00

−10.403

−5.54
3.56

−10.403

5.62
1.61

−10.403

−10.403
0

−10.403

f22(x)
Ave
Std
Best

−8.88
2.82

−10.536

−9.99
2.06

−10.536

−9.64
2.04

−10.536

−6.52
3.88

−10.536

−5.13
1.83 × 10−4

−5.13

−10.536
9.03 × 10−15

−10.536
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